
 Getting Started Using MCIWnd

MCIWnd is a window class for controlling multimedia devices. A library of functions, messages, and
macros associated with MCIWnd provides a simple method to add multimedia playback or recording
capabilities to your applications.

Using a single function, your application can create a control that plays devices such as video, CD
audio, waveform audio, MIDI (Musical Instrument Digital Interface), or any device that uses the Media
Control Interface (MCI). Automating playback is also quick and easy. Using a function and two macros,
an application can create an MCIWnd window with the appropriate media device, play the device, and
close both the device and the window when the content has finished playing.

Note Some devices, such as CD audio devices, play content that is stored on a medium. Other
devices play content that is stored in files. For purposes of clarity, this book refers to both
circumstances as "playing the device."

 MCIWnd Window User Interface

MCIWnd provides additional features to adjust the look of the MCIWnd window, customize the behavior
of your application, and tune playback performance. The major features of the MCIWnd window include
the following:

· A toolbar with Play, Stop, Record and Menu buttons
· A trackbar that controls positioning within the playback content
· A pop-up menu containing common commands
· A playback area for video and other devices requiring it

The MCIWnd window includes a playback area for video, animation, and other devices that display
images during playback. MCIWnd omits the playback area from waveform-audio devices, MIDI
sequencers, and other devices that do not write to the display.

The Play button is located in the lower-left corner of the MCIWnd window. It appears when the content
is stopped. The user can play the content in the following ways:

· To play the content from the current position, select the Play button.
· To play the content full-screen from the current position, select the Play button while holding down

the CTRL key.
· To play the content backward from the current position, select the Play button while holding down

the SHIFT key.

The Menu button, located next to the Play button, activates a menu that allows the user to open and
close audio-video interleaved (AVI) files, and to adjust the image size, playback speed, and volume.
(The user can also activate the menu by clicking the right mouse button whenever the cursor is in the
client area of the window.) The menu also includes commands to change the configuration of the
current device, to copy the playback content to the clipboard, and to issue MCI commands.

The trackbar to the right of the Menu button represents the duration of the playback (or recorded)
content. The slider on the trackbar represents the current position within the content. When the slider is
positioned at the left end of the trackbar, the current position is the beginning of the content. The user
can move to different locations in the content by dragging the slider along the trackbar.

The MCIWnd controls can also include a Record button for devices that can record. The Record button
is marked with a red circle and appears only when the device is capable of recording.

Note The playback window must be aligned on a four-pixel boundary for the best video playback
performance. Typically, the Microsoft Windows operating system aligns the window automatically when
it is created. If a user moves or stretches the window from its initial position, video playback speed
might be reduced by half.

 Multimedia Playback

The MCIWndCreate function is the basis for controlling an MCIWnd window and the device associated
with it. In general, this function registers the MCIWnd window class and creates an MCIWnd window
for using MCI services. This section describes how to use this function to perform the following tasks:

· Add user-controlled playback to an application
· Automate playback in an application
· Use window styles to change the appearance and behavior of an MCIWnd window
· Allow the user to select files and MCI devices for playback

 User-Controlled Playback

You can add user-controlled playback to an existing application by calling the MCIWndCreate function
as follows:

MCIWndCreate(hwndParent, hInstModule, NULL, "filename.typ");

The MCIWndCreate parameters identify handles to the parent window and to the module instance
associated with the MCIWnd window. They also specify window styles and the filename (or device
name) to associate with the MCIWnd window.

MCIWndCreate automatically performs the following steps that, for other window classes, you would
normally have to code in your application:

1. Registers the MCIWnd window class.
2. Creates the MCIWnd window.
3. Loads the specified content.
4. Establishes the current position at the beginning of the content.
5. Displays the device control.
6. Displays the playback area of the window if needed.

 Automated Playback

You can automate playback in your application by using MCIWndCreate and the MCIWndPlay macro,
along with either the MCIWndDestroy or the MCIWndClose macro. To automate playback, specify the
MCIWNDF_NOPLAYBAR and MCIWNDF_NOTIFYMODE styles in the dwStyle parameter.
MCIWNDF_NOPLAYBAR hides the toolbar, and MCIWNDF_NOTIFYMODE issues an appropriate
notification message when the device stops playing.

You can play the device or file specified in MCIWndCreate by using MCIWndPlay. MCIWndPlay starts
playing the content from its current position and continues to its end.

You can destroy or close an MCIWnd window by using the MCIWndDestroy or MCIWndClose macro.
MCIWndDestroy closes the device or file and destroys the MCIWnd window by invalidating its handle.
If your application can reuse the MCIWnd window, use MCIWndClose to close the device without
destroying the window.

Your application can detect when the device stops playing and automatically close the window. To do
this, specify the MCIWNDF_NOTIFYMODE style for the dwStyle parameter of MCIWndCreate. This
causes the device to send a MCIWNDM_NOTIFYMODE message whenever it changes modes. Your
application can trap this message to determine whether the device has stopped playing and, if so,
close the window.

 MCIWnd Window Styles

As with any window, you can change the appearance and behavior of an MCIWnd window by choosing
from the standard Microsoft Win32 window styles. In addition, you can choose from several other
window styles that are specific to MCIWnd windows. With these styles, your application can change
these MCIWnd windows in the following ways:

· Change window size.
· Hide or display controls.
· Issue notification messages.
· Display information in the title bar.

You can set window styles by specifying them in the MCIWndCreate function, or you can use the
MCIWndChangeStyles macro to change the style of an existing MCIWnd window. You can also query
an MCIWnd window for its current styles by using the MCIWndGetStyles macro.

For a list of the MCIWnd-specific window styles, see the description of MCIWndCreate in the
Reference section.

 Additional Methods to Specify Files

You can associate a device or file with an existing MCIWnd window by using the MCIWndOpenDialog,
MCIWndOpen, and MCIWndOpenInterface macros, and the GetOpenFileNamePreview function.

To let a user of your application select a file to play, use MCIWndOpenDialog. This macro displays the
Open dialog box for choosing a file and associates the selected file with the current MCIWnd window.

You can let a user of your application select a file to associate with an MCIWnd window and preview
that file by using GetOpenFileNamePreview and MCIWndOpen. GetOpenFileNamePreview displays
the Open dialog box for choosing a file and lets the user preview (play) its contents. When the name of
an existing file is specified in the dialog box, GetOpenFileNamePreview provides a small control to let
the user preview the contents of the file. You can associate a specified file, selected with
GetOpenFileNamePreview or specified in another manner, with an MCIWnd window by using
MCIWndOpen.

You can also specify a device, such as "CDAudio," to associate with an MCIWnd window by using
MCIWndOpen.

To associate an MCIWnd window with a file interface or data-stream interface to multimedia data, use
MCIWndOpenInterface. For more information about file and data-stream interfaces, see AVIFile
Functions and Macros.

Note Before associating a new file or device with an MCIWnd window, MCIWndOpenDialog and
MCIWndOpen implicitly close any device currently associated with the window. Your application does
not need to close any open devices before using these macros.

 Playback Controls

MCIWnd includes several macros for controlling playback. This section describes how to use these
macros to perform the following tasks:

· Determine and change the current position.
· Start, pause, and resume playback.
· Play a portion of the content (scope).
· Play backward.
· Play in a continuous loop.

 Current Position

When a file or device is associated with an MCIWnd window, the position is initially set at the start of
the content, regardless of the media type. During playback, the position moves linearly through the
content and, if playback is uninterrupted, eventually reaches the end of the content. If an interruption
occurs, the current position is the location in the content where playback was stopped or paused.

You can retrieve the locations for the beginning and end of the content by using the MCIWndGetStart
and MCIWndGetEnd macros. You can determine the length of the content by subtracting the value
returned by MCIWndGetStart from the value returned by MCIWndGetEnd, or by using the
MCIWndGetLength macro. You can retrieve the current position by using the MCIWndGetPosition
macro, or you can retrieve the position as a null-terminated string by using the
MCIWndGetPositionString macro.

To change the current position, use the MCIWndHome, MCIWndEnd, and MCIWndSeek macros. You
can move the playback position to the start of the content by using MCIWndHome or to the end of the
content by using MCIWndEnd. Use MCIWndSeek to move the playback position to any location in the
content.

You can also step through the content by using the MCIWndStep macro. Beginning from the current
position, this macro moves the position forward or backward by a specified increment.

Note The units used to specify position vary among the different media types and devices. For
example, the position for AVI files used by the MCIAVI device is measured in frames; the position for
CD audio, waveform-audio, and MIDI files is measured in milliseconds.

Devices for other media types and third-party devices might use other units. For information about
determining these units, see Playback Enhancements.

 Starting, Pausing, and Resuming Playback

MCIWndPlay is the most general playback macro. This macro lets you play a file or device from the
current position. Playback continues through the end of the content unless it is interrupted.

You can temporarily interrupt a device that is playing by using the MCIWndPause macro. You can
resume playback from the paused position by using the MCIWndResume macro. Some devices do not
support the pause and resume commands. These devices usually map MCIWndPause to the
MCIWndStop macro, which stops playback or recording. You can restart a device that does not
support pause or resume by using MCIWndPlay, which starts playback from the current position.

 Playback Scope

MCIWnd provides macros that allow you to define the playback scope. The scope is the portion of the
playback you want to play. For example, you can play the content from a position other than the
beginning position by using the MCIWndPlayFrom macro. This macro seeks the specified location,
begins playback, and continues to the end of the content. Similarly, you can play the content to a
specified end point by using the MCIWndPlayTo macro. MCIWndPlayTo starts at the current position
and plays until the specified location or the end of the content is reached, whichever comes first.

Also, you can define both the beginning and ending positions by using the MCIWndPlayFromTo
macro. This macro seeks the specified beginning location and plays until the specified ending location
or the end of the content is reached.

 Reverse Playback

Some devices support playback in the reverse direction. You can play the content of such a device in
the reverse direction by using the MCIWndPlayReverse macro. This macro defines the playback
scope from the current position to the beginning of the content. The digital-video device, MCIAVI, can
play backward. Devices that cannot play backward, such as CD audio, can issue an error message
when MCIWndPlayReverse is invoked.

 Playback Loops

MCIWnd supports playback as a continuous loop. You can play the content of a file or device
repeatedly as a loop by using the MCIWndSetRepeat macro in combination with the Play button on
the toolbar. The video playback device, MCIAVI, supports playback loops. To determine if continuous
playback has been activated, use the MCIWndGetRepeat macro.

 Multimedia Recording

You can implement recording capabilities in your application by using the user interface built into
MCIWnd. You can use the MCIWndCreate function and the MCIWndNew macro to provide controls for
starting and stopping recording and for saving the recorded information. Using MCIWndCreate, you
can specify window styles to display an MCIWnd window and to include the Record button on the
toolbar. Using MCIWndNew, you can specify the device type that is being recorded and that the
information is to be captured in a new file.

If your application requires more sophistication, you can automate and customize the recording by
using the MCIWndRecord macro. For additional information about customizing the recording process,
see Customizing the Recording Process.

Note Some devices, such as CD audio and MCIAVI, are used for playback only. Other devices, such
as waveform-audio devices, can be used for recording. If you specify a device that cannot record,
MCIWnd omits the Record button from the toolbar.

 Saving Recorded Content

After completing the recording, you can save the content by using the MCIWndSave or
MCIWndSaveDialog macro, or by using the GetSaveFileNamePreview function with MCIWndSave.
MCIWndSave saves data in the file associated with the MCIWnd window. MCIWndSaveDialog lets
the user specify a filename and save the recorded data in the specified file. GetSaveFileNamePreview
displays the SaveAs dialog box for choosing a file and lets the user preview (play) the file. When the
name of an existing file is specified in the SaveAs dialog, GetSaveFileNamePreview provides a small
control in the dialog box to let the user preview the contents of the file. You can save the recorded data
in a file selected with GetSaveFileNamePreview by using MCIWndSave.

 Playback Enhancements

When your application can play multimedia data using an MCIWnd window, you can enhance and
adjust the window's appearance and behavior. This section describes how to perform the following
tasks:

· Specify time formats.
· Adjust speed, volume, and zoom.
· Provide controls for cropping and stretching images.
· Use palettes.
· Provide status updates.
· Use a multiple document interface.

 Time Formats

Multimedia data types typically can use time to identify significant positions within their content.
Common time formats are milliseconds, tracks, and frames; other less common time formats, such as
SMPTE 24, also exist. Time is the format and reference system for waveform-audio, MIDI, and CD
audio data. Video supports time even though it is recorded as a sequence of frames (stream) that is
normally played at a specific speed. Several macros are available for designating time format.

You can retrieve the current time format for a file or device by using the MCIWndGetTimeFormat
macro. You can change the current time format to any other time format supported by a device by
using the MCIWndSetTimeFormat macro. Or you can the set the time format to milliseconds or
frames by using the MCIWndUseTime or MCIWndUseFrames macros.

Note Noncontinuous formats, such as tracks and SMPTE (Society of Motion Picture and Television
Engineers), can cause the toolbar to behave erratically. For these time formats, you might want to turn
off the toolbar by specifying the MCIWNDF_NOPLAYBAR window style when creating an MCIWnd
window.

 Speed, Volume, and Zoom

The speed, volume, and zoom macros provide the functionality of the View, Volume, and Speed
commands of the MCIWnd menu. The macros in this section are generally used with video and other
devices that display images during playback.

Some devices support multiple playback speed changes. You can set the playback speed for these
devices by using the MCIWndSetSpeed macro. This macro defines the normal playback speed as
1000. Higher values indicate faster speeds. Lower values indicate slower speeds.

You can retrieve the current playback speed by using the MCIWndGetSpeed macro. This macro uses
the same numerical values and range as MCIWndSetSpeed.

Some devices support volume changes. You can adjust or set the volume by using the
MCIWndSetVolume macro. This macro defines the normal volume level as 1000. Higher values
indicate louder volumes. Lower values indicate quieter volumes.

You can retrieve the current volume level by using the MCIWndGetVolume macro. This macro uses
the same numerical values and range as MCIWndSetVolume.

For devices that use a playback window, MCIWnd supports a zoom feature that sets the size of the
playback image. You can set the playback image size by using the MCIWndSetZoom macro. The
macro redefines the playback image size while maintaining a constant aspect ratio for the image. The
zoom value is defined as a percentage of the original image size. Thus, 100 represents the original
image size, 50 indicates the image is shown half its original size, and 200 indicates the image is shown
twice its original size.

You can retrieve the current zoom value by using the MCIWndGetZoom macro. This macro uses the
same numerical values and range as MCIWndSetZoom.

Note The standard MCI CD audio and waveform-audio drivers do not support volume or speed
changes.

 Cropping and Stretching Images

MCIWnd allows you to crop and stretch images of a video clip. To understand these features, you need
to understand the relationships between frame size, source rectangle, destination rectangle, and
playback area.

A video clip consists of several frames, each containing one image. The frame size of a video clip is the
size of the image in the current frame. Typically, a video clip has one frame size because all the images
in the clip are the same size.

The source rectangle is a rectangular area that overlays the frames of a video clip. The source
rectangle defines the portion of each frame that is displayed during playback. When a video clip is
loaded with MCIWnd, the source rectangle is initialized to the same dimensions and position as the
initial frame of the video clip.

The destination rectangle is a rectangular area that defines a virtual playback window. The destination
rectangle receives the image data from the source rectangle for each frame of the video clip. When the
source and destination rectangle dimensions are different, MCIWnd adjusts the image data horizontally
and vertically as needed to fill the destination rectangle. When a video clip is loaded with MCIWnd, the
destination rectangle is initialized to the same dimensions and position as the initial frame of the video
clip.

The playback area is the portion of an MCIWnd window an application uses to display the video clip.
The playback area is the client area of an MCIWnd window or the portion of the client area that
excludes the MCIWnd toolbar. When a video clip is loaded with MCIWnd, the playback area is
initialized to the same dimensions and position as the initial frame of the video clip.

You can crop a video clip by using the MCIWndGetSource and MCIWndPutSource macros to alter
the source rectangle. Cropping an image determines only which portion of the frames are displayed
during playback; it does not alter the content of the file being played. Before you crop an image, you
can retrieve the current size of the source rectangle by using MCIWndGetSource. After the new size
and location of the source rectangle are calculated, you can set the cropping boundaries of the source
rectangle by using MCIWndPutSource.

You can stretch a video clip by using the MCIWndGetDest and MCIWndPutDest macros to alter the
destination rectangle. When you stretch a video clip, you lengthen or shorten the frame size of a video
clip vertically, horizontally, or in both directions. Before you stretch an image, you can retrieve the
current size and location of the destination rectangle by using MCIWndGetDest. MCIWndPutDest
allows you to redefine the destination rectangle. Stretching can distort the image during playback, but it
does not alter the content of the file being played.

If the size of the destination rectangle becomes larger than the playback area, you can specify which
portion of the playback area will display the video clip by using MCIWndPutDest.

Note MCIWndPutDest does not change the size of the playback area. To stretch the MCIWnd
window along with the destination rectangle, you need to know the current size of the MCIWnd window
and issue new window dimensions based on the destination rectangle. You can retrieve the MCIWnd
window dimensions by using the GetWindowRect function and resize the MCIWnd window by using
the SetWindowPos function.

 MCIWnd Palettes

Playing video clips or animations with 8-bit color depth (256-color capacity) requires a palette to define
the colors being used. Sometimes, the palette included with a video clip is not the most appropriate
palette to use during playback. In this case, MCIWnd provides three ways to manage palettes for
playback.

You can retrieve a handle to the palette associated with an MCIWnd window by using the
MCIWndGetPalette macro. The palette is not necessarily associated exclusively with the MCIWnd
window. Other applications can access, and even invalidate, the palette handle. Consequently, your
application should anticipate the global use of the palette and, when finished with the palette, should
not free it.

You can also specify a new palette to use with the video clip or animation associated with an MCIWnd
window by using the MCIWndSetPalette macro.

Finally, you can realize the palette associated with an MCIWnd window to the system palette by using
the MCIWndRealize macro. This macro calls the RealizePalette function with the palette associated
with the MCIWnd window. If your application message handlers for WM_PALETTECHANGED and
WM_QUERYNEWPALETTE call only RealizePalette or MCIWndRealize, you must forward these
messages to MCIWnd if you do not handle them.

Note When a video clip or animation with 8-bit color depth is loaded into the MCIWnd window, the
palette included with that clip replaces the palette associated with the MCIWnd window.

 Status Updates

MCIWnd uses timers to periodically update information in the window title bar and scroll bar, and to
send notification messages to the parent window. One timer controls the update period of the active
MCIWnd window, and a second timer controls the update period for MCIWnd windows that are
inactive. Your application can use the MCIWnd timer macros to retrieve the current timer settings and
to adjust the update periods.

You can set the update period used by the active window timer by using the MCIWndSetActiveTimer
macro. This macro sets the period used by MCIWnd to update the trackbar, to update the position
reported in the window title bar, and to notify the parent window that the media has changed. You can
retrieve the current update period used by the active window timer by using the
MCIWndGetActiveTimer macro. The default update period for the active window timer is 500
milliseconds.

You can set the update period used by the inactive window timer by using the
MCIWndSetInactiveTimer macro. This macro sets the period used by MCIWnd to update the trackbar,
to update the position reported in the window caption, and to notify the parent window that the media
has changed. You can retrieve the current update period used by the inactive window timer by using
the MCIWndGetInactiveTimer macro. The default update period for the inactive window timer is 2000
milliseconds.

Your application can simultaneously set the update period for both timers by using the
MCIWndSetTimers macro. This macro limits the size of each update period to 16 bits. If a larger
quantity for either update period is needed, set the timers individually.

 Multiple Document Interface Windows

Applications that use a multiple document interface (MDI) might need to specify window styles that are
not available through the MCIWndCreate function. For these applications, you can register and create
an MCIWnd window by using the MCIWndRegisterClass function with the CreateWindowEx function.
MCIWndRegisterClass registers the MCIWND_WINDOW_CLASS window class and then
CreateWindowEx creates an instance of an MCIWnd window.

 Error Messages and Notifications

MCIWnd uses MCI to control the devices that play and record multimedia data. In general, MCIWnd
displays MCI errors in an error dialog box. An MCI error is generated whenever an MCI command fails.
For example, if your application tries to resume paused playback by using the MCIWndResume macro
and the current device does not support resume, an error is reported to the user.

MCIWnd allows you two choices for handling error messages: you can prevent error messages from
reaching the user, or you can redirect them to your application for display. To prevent the display of MCI
error messages, specify the MCIWNDF_NOERRORDLG window style when you create an instance of
an MCIWnd window by using the MCIWndCreate or CreateWindowEx function. To redirect MCI error
messages to your application, specify the MCIWNDF_NOTIFYERROR window style when you create
an instance of an MCIWnd window by using MCIWndCreate or CreateWindowEx.

When error notification is enabled, MCIWnd sends each notification message
(MCIWNDM_NOTIFYERROR) to the main message handler of the parent of the MCIWnd window.
Your application must have a message handler to process the notification messages it receives.

You can obtain a textual description of the most recent MCI error message by using the
MCIWndGetError macro. This macro returns the text in an application-defined buffer. If the error string
is longer than the buffer, MCIWnd truncates the string.

You can route all notifications to another window by using the MCIWndSetOwner macro.

 Communicating with MCI Devices

The driver of each MCI device maintains a list of its current settings and capabilities, so it can issue an
accurate response when it is queried for information. When you want to communicate with an MCI
device, you can use MCIWnd macros and functions, or you can send MCI commands directly to the
device by using either the message or string form of the commands. For more information about MCI,
see Chapter 3, "MCI Overview."

Many of the most common MCI commands and queries are defined as macros; however, if the task
you want to perform is unavailable as a function or macro, you can issue MCI commands directly to the
device driver by using the MCIWndSendString macro. This macro is equivalent to using the
mciSendString function as follows:

mciSendString(sz, Null, 0, Null)

The parameters of MCIWndSendString include only the window handle and the string form of the
command. To retrieve the information returned by a string command, use the MCIWndReturnString
macro.

Note You must exclude the device alias from the MCI command when you use MCIWndSendString.
The MCIWnd library adds this alias when it sends the command to the MCI device.

 Communication with MCI Devices

Each MCI device can have several identifications associated with it that include the following: a device
identifier, a device name, an alias, and the filename of the currently loaded content. MCIWnd provides
macros you can use to retrieve this information. You can then use this information to communicate
through MCI directly with MCI devices associated with MCIWnd windows.

You can retrieve the identifier of the currently open MCI device by using the MCIWndGetDeviceID
macro. The MCI device identifier is a numerical value that identifies the instance of the MCI device your
application is using. Your application can use this identifier when communicating with an MCI device by
using the mciSendCommand function.

To retrieve the name of the currently open MCI device, use the MCIWndGetDevice macro. The MCI
device name is a null-terminated string that identifies the device type associated with an MCIWnd
window. Your application can use this name when communicating with an MCI device by using
mciSendCommand.

You can retrieve the alias of the currently open MCI device by using the MCIWndGetAlias macro. Your
application can use this alias when communicating with an MCI device by using the mciSendString
function.

Finally, you can retrieve the filename currently used by the MCI device by using the
MCIWndGetFileName macro. The filename identifies the content currently associated with an
MCIWnd window. Your application can use this filename when communicating with a MCI device by
using mciSendCommand or mciSendString.

 MCI Device Capabilities

Each MCI device has functions and features that identify how it can be useful. MCIWnd includes the
following macros to let you query MCI devices for these capabilities.

Macro Description
MCIWndCanPlay Determines whether a device can play the

existing content.
MCIWndCanRecord Determines whether a device can record.
MCIWndCanWindow Determines whether a device supports MCI

window commands (such as window, put
and where).

MCIWndCanSave Determines whether a device can store data.
MCIWndCanEject Determines whether a device has a

software-controlled eject function.
MCIWndCanConfig Determines whether a device has a

configuration dialog box to support multiple
configurations, such as the MCIAVI device.

These macros return TRUE if the device supports the specific capability or FALSE otherwise.

 Using the MCIWnd Window Class

This section contains examples demonstrating how to perform the following tasks:

· Create an MCIWnd window.
· Automate playback.
· Pause and resume playback.
· Limit the playback scope.
· Record with MCIWnd controls.
· Customize the recording process.
· Crop an image.
· Stretch an image.
· Stretch an image and window.

 Creating an MCIWnd Window

The MCIWndCreate function registers and creates an MCIWnd window. The window can be a parent,
child, or pop-up window. The following example creates an MCIWnd window as a child window and lets
the user control playback by providing access to the trackbar and the Play, Stop, and Menu buttons.
The example specifies a handle of a parent window and NULL for the window styles, so the default
window styles of WS_CHILD, WS_BORDER, and WS_VISIBLE are used to create the MCIWnd
window.

// Global variable and constants
// extern HINSTANCE g_hinst; instance handle
// extern HWND g_hwndMCIWnd; MCIWnd window handle

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 g_hwndMCIWnd = MCIWndCreate(hwnd, g_hinst, NULL,
 "sample.avi");
 break;
 }
 break;

Note You could also specify NULL for the parent window handle and for the window styles, in which
case the default window styles would be WS_OVERLAPPED and WS_VISIBLE.

 Automating Playback

You can automate playback for MCIWnd by specifying a few window styles in the MCIWndCreate
function. To play the device, the window needs a parent window to process notification messages, a
playback area to play AVI files, and notification of device mode changes to identify when playback
stops. The window does not need a toolbar. You can set these characteristics by specifying the
appropriate styles in MCIWndCreate.

The following example uses menu commands to create an MCIWnd window to play content from
several different types of devices. MCIWndCreate creates the MCIWnd window, and devices and files
are loaded by using the MCIWndOpen macro in the device-specific commands. When a device
finishes playing, it is closed by trapping the MCIWNDM_NOTIFYMODE message and issuing the
MCIWndClose macro.

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 dwMCIWndStyle = WS_CHILD | // child window
 WS_VISIBLE | // visible
 MCIWNDF_NOTIFYMODE | // notifies of mode
changes
 MCIWNDF_NOPLAYBAR; // hides toolbar
 g_hwndMCIWnd = MCIWndCreate(hwnd,
 g_hinst, dwMCIWndStyle, NULL);
 break;
 case IDM_PLAYCDA:
 LoadNGoMCIWnd(hwnd, "CDAudio");
 break;
 case IDM_PLAYWAVE:
 LoadNGoMCIWnd(hwnd, "SoundWave.WAV");
 break;
 case IDM_PLAYMIDI:
 LoadNGoMCIWnd(hwnd, "MIDIFile.MID");
 break;
 case IDM_PLAYAVI:
 LoadNGoMCIWnd(hwnd, "AVIFile.AVI");
 break;
 case IDM_EXIT:
 MCIWndDestroy(g_hwndMCIWnd);
 DestroyWindow(hwnd);
 break;

}
 break;

case MCIWNDM_NOTIFYMODE:
 if (lParam == MCI_MODE_STOP){ // device stopped
 MessageBox(hwnd,"","Closing Device",MB_OK);
 MCIWndClose(g_hwndMCIWnd);
 }
 break;
.
. // Handle other messages here.
.

// LoadNGoMCIWnd - Automatically loads and plays a multimedia device.

//
// hwnd - handle to the parent window
// lpstr - pointer to device or filename played by device
//
// Global variable
// extern HINSTANCE g_hwndMCIWnd; instance handle to MCIWnd window

VOID LoadNGoMCIWnd(HWND hwnd, LPSTR lpstr)
{
 MessageBox(hwnd, lpstr, "Loading Device", MB_OK);
 MCIWndOpen(g_hwndMCIWnd, lpstr, NULL); // new device in window
 MCIWndPlay(g_hwndMCIWnd); // plays device
}

 Pausing and Resuming Playback

You can interrupt playback of a device or file associated with an MCIWnd window by using the
MCIWndPause macro. You can then restart playback by using the MCIWndResume macro. If the
device does not support resume or an error occurs, you can use the MCIWndPlay macro to restart
playback.

The following example creates an MCIWnd window and plays an AVI file. Pause and resume menu
commands are available to the user to interrupt and restart playback.

MCIWnd window styles are changed temporarily by using the MCIWndChangeStyles macro to inhibit
an MCI error dialog box from being displayed if MCIWndResume fails.

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND: // creates and plays clip
 g_hwndMCIWnd = MCIWndCreate(hwnd,
 g_hinst,
 WS_CHILD | WS_VISIBLE | // standard styles
 MCIWNDF_NOPLAYBAR | // hides toolbar
 MCIWNDF_NOTIFYMODE, // notifies of mode changes
 "sample.avi");

 MCIWndPlay(g_hwndMCIWnd);
 break;
 case IDM_PAUSEMCIWND: // pauses playback
 MCIWndPause(g_hwndMCIWnd);
 MessageBox(hwnd, "MCIWnd", "Pausing Playback", MB_OK);
 break;
 case IDM_RESUMEMCIWND: // resumes playback
 MCIWndChangeStyles(// hides error dialog
messages
 g_hwndMCIWnd, // MCIWnd window
 MCIWNDF_NOERRORDLG, // mask of style to change
 MCIWNDF_NOERRORDLG); // suppresses MCI error
dialogs

 lResult = MCIWndResume(g_hwndMCIWnd);

 if(lResult){ // device doesn't resume
 MessageBox(hwnd, "MCIWnd",
 "Resume with Stop and Play", MB_OK);
 MCIWndStop(g_hwndMCIWnd);
 MCIWndPlay(g_hwndMCIWnd);

 MCIWndChangeStyles(// resumes original styles
 g_hwndMCIWnd,
 MCIWNDF_NOERRORDLG,
 NULL);
 }
 break;
 }
break;
.
. // Handle other messages here.
.

 Limiting the Playback Scope

Controlling playback begins with the MCIWndPlay macro, which plays the content or file associated
with an MCIWnd window from the current position to the end of the content. If you want to limit
playback to a specific portion of the content or file, you can choose from the other playback MCIWnd
macros: MCIWndPlayFrom, MCIWndPlayTo, and MCIWndPlayFromTo.

You also need to set an appropriate time format. The time format determines whether the content is
measured in frames, milliseconds, tracks, or some other units.

The following example creates an MCIWnd window and provides menu commands to play the last
third, first third, or middle third of the content. These menu commands use MCIWndPlayFrom,
MCIWndPlayTo, and MCIWndPlayFromTo to play the content segments. The example also uses the
MCIWndGetStart and MCIWndGetEnd macros to identify the beginning and end of the content, and
the MCIWndHome macro to move the playback position to the beginning of the content.

The MCIWndCreate function uses the WS_CAPTION and MCIWNDF_SHOWALL styles in addition to
the standard window styles to display the filename, mode, and current position in the title bar of the
MCIWnd window.

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 g_hwndMCIWnd = MCIWndCreate(hwnd,
 g_hinst,
 WS_CHILD | WS_VISIBLE | WS_CAPTION |
 MCIWNDF_SHOWALL,
 "sample.avi");
 break;
 case IDM_PLAYFROM: // plays last third of clip
 MCIWndUseTime(g_hwndMCIWnd); // millisecond format

 // Get media start and end positions.
 lStart = MCIWndGetStart(g_hwndMCIWnd);
 lEnd = MCIWndGetEnd(g_hwndMCIWnd);

 // Determine playback end position.
 lPlayStart = 2 * (lEnd - lStart) / 3 + lStart;

 MCIWndPlayFrom(g_hwndMCIWnd, lPlayStart);
 break;
 case IDM_PLAYTO: // plays first third of clip
 MCIWndUseTime(g_hwndMCIWnd); // millisecond format

 // Get media start and end positions.
 lStart = MCIWndGetStart(g_hwndMCIWnd);
 lEnd = MCIWndGetEnd(g_hwndMCIWnd);

 // Determine playback start position.
 lPlayEnd = (lEnd - lStart) / 3 + lStart;

 MCIWndHome(g_hwndMCIWnd);
 MCIWndPlayTo(g_hwndMCIWnd, lPlayEnd);
 break;
 case IDM_PLAYSOME: // plays middle third of clip
 MCIWndUseTime(g_hwndMCIWnd); // millisecond format

 // Get media start and end positions.
 lStart = MCIWndGetStart(g_hwndMCIWnd);
 lEnd = MCIWndGetEnd(g_hwndMCIWnd);

 // Determine playback start and end positions.
 lPlayStart = (lEnd - lStart) / 3 + lStart;
 lPlayEnd = 2 * (lEnd - lStart) / 3 + lStart;

 MCIWndPlayFromTo(g_hwndMCIWnd, lPlayStart, lPlayEnd);
 break;
 .
 . // Handle other commands here.
 .
 }

 Recording with MCIWnd Controls

The following example records waveform audio using the built-in controls of the MCIWnd window. The
example creates an MCIWnd window by using the MCIWNDF_RECORD window style with the
MCIWndCreate function to add a Record button to the toolbar. The MCIWndNew macro indicates a
new file is associated with the MCIWnd window and that a waveform-audio device will provide its
content. A second menu command, IDM_SAVEMCIWND, lets the user save the recording and select a
filename by using the MCIWndSaveDialog macro.

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 g_hwndMCIWnd = MCIWndCreate(hwnd, g_hinst,
 WS_VISIBLE | MCIWNDF_RECORD, NULL);
 MCIWndNew(g_hwndMCIWnd, "waveaudio");
 break;
 case IDM_SAVEMCIWND:
 MCIWndSaveDialog(g_hwndMCIWnd);
 break;
 }

 Customizing the Recording Process

You can customize the recording process, taking complete control of most everything ¾ from creating
the MCIWnd window to saving the recorded information in a file. The following example provides a
more general case than "Recording with MCIWnd Controls" earlier in this chapter in adding the
recording feature to an application. It queries the MCI device for recording and saving capabilities, and
includes menu commands to record at the beginning or end of the content.

The following example uses the MCIWndCreate function to create a new window and allows you to
specify an existing file to store the recorded data, or it allows you to use an existing window and uses
the MCIWndNew, MCIWndOpen, or MCIWndOpenDialog macros to specify a file. Then it uses the
MCIWndCanRecord and MCIWndCanSave macros to verify that the device can record and save
information. The example then sets the current position by using the MCIWndHome, MCIWndEnd,
and MCIWndSeek macros. The MCIWndRecord macro is used to start recording, and the
MCIWndStop or the MCIWndPause macro stops recording. After the information is recorded, it is
saved by using the MCIWndSave or MCIWndSaveDialog macros.

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 g_hwndMCIWnd = MCIWndCreate(hwnd, g_hinst,
 WS_VISIBLE | WS_CHILD |
 MCIWNDF_RECORD, // adds Record button
 NULL);

 MCIWndNew(g_hwndMCIWnd, "waveaudio"); // new file

 if (MCIWndCanRecord(g_hwndMCIWnd)) {
 MessageBox(hwnd,
 "Press the red button on the toolbar to start recording.",
 "MCIWnd Record",
 MB_OK);
 }
 else {
 MessageBox(hwnd,
 "This device doesn't record.",
 "MCIWnd Record",
 MB_OK);
 }
 break;
 case IDM_RECORDATSTART:
 if (MCIWndCanRecord(g_hwndMCIWnd)) {
 MCIWndHome(g_hwndMCIWnd);
 MCIWndRecord(g_hwndMCIWnd);
 }
 else {
 MessageBox(hwnd,
 "This device doesn't record.",
 "MCIWnd Record",
 MB_OK);
 }
 break;
 case IDM_RECORDATEND:
 if (MCIWndCanRecord(g_hwndMCIWnd)) {
 MCIWndEnd(g_hwndMCIWnd);

 MCIWndRecord(g_hwndMCIWnd);
 }
 else {
 MessageBox(hwnd,
 "This device doesn't record.",
 "MCIWnd Record",
 MB_OK);
 }
 break;
 case IDM_SAVEMCIWND:
 if (MCIWndCanSave(g_hwndMCIWnd))
 MCIWndSaveDialog(g_hwndMCIWnd);
 }
 break;
 .
 . // Handle other messages here.
 .

 Cropping an Image

When you crop an image, you trim one or more edges of the video content from view during playback.
Cropping allows you to choose which portions of the content to view without changing the content of
the clip.

You can crop one or more edges from a video clip by redefining the dimensions of the source
rectangle. The source rectangle overlays each frame in a video clip, encompassing the portion of each
image used during playback. Initially, the source rectangle is as large as the video frame size.

The following example creates an MCIWnd window and loads an AVI file. The window includes a crop
command in the menu, which crops one-quarter of the height or width off each of the four sides of the
frame. The example retrieves the current (initial) dimensions of the source rectangle by using the
MCIWndGetSource macro. The modified source rectangle is one-half the original height and width
and centered in the original frame. The call to the MCIWndPutSource macro redefines the coordinates
of the source rectangle.

// extern RECT rSource, rDest;

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 g_hwndMCIWnd = MCIWndCreate(hwnd,
 g_hinst,
 WS_CHILD | WS_VISIBLE,
 "sample.avi");
 break;
 case IDM_CROPIMAGE: // crops image
 MCIWndGetSource(g_hwndMCIWnd, &rSource); // source rectangle
 rDest.left = rSource.left + // new boundaries
 ((rSource.right - rSource.left) / 4);
 rDest.right = rSource.right -
 ((rSource.right - rSource.left) / 4);
 rDest.top = rSource.top +
 ((rSource.bottom - rSource.top) / 4);
 rDest.bottom = rSource.bottom -
 ((rSource.bottom - rSource.top) / 4);

 MCIWndPutSource(g_hwndMCIWnd, &rDest); // new source rectangle
 }
break;
.
. // Handle other messages here.
.

 Stretching an Image

The following example stretches the images of a video clip. It increases the dimensions of the
destination rectangle by using the MCIWndPutDest macro. The size of the playback area remains
unchanged, so the result is a distorted, zoomed image. MCIWndPutDest is also used to reposition the
destination rectangle with respect to the playback area, providing a way to view different portions of the
stretched image.

// extern RECT rCurrent, rDest;

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 g_hwndMCIWnd = MCIWndCreate(hwnd,

 g_hinst,
 WS_CHILD | WS_VISIBLE,
 "sample.avi");

 break;

 case IDM_STRETCHIMAGE: // stretches dest. rectangle 3:2
 // leaves playback area same size
 MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // dest. rectangle
 rDest.top = rCurrent.top; // new boundaries
 rDest.right = rCurrent.right;
 rDest.left = rCurrent.left +
 ((rCurrent.left - rCurrent.right) * 3);
 rDest.bottom = rCurrent.top +
 ((rCurrent.bottom - rCurrent.top) * 2);
 MCIWndPutDest(g_hwndMCIWnd, &rDest); // new dest. rectangle
 break;
 case IDM_MOVEDOWN: // moves toward bottom of image
 MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // dest. rectangle
 rCurrent.top -= 100; // new boundaries
 rCurrent.bottom -= 100;
 MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new dest. rectangle
 break;
 case IDM_MOVEUP: // moves toward top of image
 MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // dest. rectangle
 rCurrent.top += 100; // new boundaries
 rCurrent.bottom += 100;
 MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new dest. rectangle
 break;
 case IDM_MOVELEFT: // moves toward image left edge
 MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // dest. rectangle
 rCurrent.right += 100; // new boundaries
 rCurrent.left += 100;
 MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new dest. rectangle
 break;
 case IDM_MOVERIGHT: // moves toward image right edge
 MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // dest. rectangle
 rCurrent.right -= 100; // new boundaries
 rCurrent.left -= 100;
 MCIWndPutDest(g_hwndMCIWnd, &rCurrent); // new dest. rectangle
 break;
 }

break;
.
. // Handle other messages here.
.

 Stretching an Image and Window

The following example stretches the images of a video clip and changes the aspect ratio of the
displayed frames. The frames displayed in the MCIWnd window are twice the height and three times
the width of the original frame. The MCIWndGetDest and MCIWndPutDest macros retrieve and
redefine the destination rectangle coordinates. The GetWindowRect and SetWindowPos functions
manage changes to the MCIWnd window dimensions.

// extern RECT rCurrent, rDest;

case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_CREATEMCIWND:
 g_hwndMCIWnd = MCIWndCreate(hwnd,

 g_hinst,
 WS_CHILD | WS_VISIBLE,
 "sample.avi");

 break;

 case IDM_RESIZEWINDOW: // stretches dest. rectangle
 // and playback area 3:2
 GetWindowRect(g_hwndMCIWnd, &rWin); // window size
 MCIWndGetDest(g_hwndMCIWnd, &rCurrent); // dest. rectangle
 rDest.top = rCurrent.top; // new boundaries
 rDest.right = rCurrent.right;
 rDest.left = rCurrent.left +
 ((rCurrent.left - rCurrent.right) * 3);
 rDest.bottom = rCurrent.top +
 ((rCurrent.bottom - rCurrent.top) * 2);
 MCIWndPutDest(g_hwndMCIWnd, &rDest); // new dest. rectangle
 SetWindowPos(g_hwndMCIWnd, // window being resized
 NULL, // z-order: don't care
 0, 0, // position: don't care
 rDest.right - rDest.left, // width
 (rWin.bottom - rWin.top + // height (window -
 (rCurrent.bottom - rCurrent.top) + // orig dest. rect. +
 (rDest.bottom - rDest.top)), // new dest. rect.)
 SWP_NOMOVE | SWP_NOZORDER | SWP_NOACTIVATE);
 break;
 }
 break;
 .
 . // Handle other messages here.
 .

 MCIWnd Reference

This section describes the functions, messages, macros, and notifications associated with the MCIWnd
window class. These elements are grouped as follows.

Window Management

MCIWndChangeStyles
MCIWndCreate
MCIWndGetStyles
MCIWndRegisterClass
File and Device Management

MCIWndClose
MCIWndDestroy
MCIWndEject
MCIWndNew
MCIWndOpen
MCIWndOpenDialog
MCIWndSave
MCIWndSaveDialog
Playback Options

MCIWndGetRepeat
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat
Recording

MCIWndRecord
Positioning

MCIWndEnd
MCIWndGetEnd
MCIWndGetLength
MCIWndGetPosition
MCIWndGetPositionString
MCIWndGetStart
MCIWndHome
MCIWndSeek
MCIWndStep
Pause and Resume Playback

MCIWndGetRepeat
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat
Performance Tuning

MCIWndGetSpeed
MCIWndGetVolume

MCIWndGetZoom
MCIWndSetSpeed
MCIWndSetVolume
MCIWndSetZoom
Image and Palette Adjustments

MCIWndGetDest
MCIWndGetPalette
MCIWndGetSource
MCIWndPutDest
MCIWndPutSource
MCIWndRealize
MCIWndSetPalette
Event and Error Notification

MCIWndGetError
MCIWNDM_NOTIFYERROR
MCIWNDM_NOTIFYMEDIA
MCIWNDM_NOTIFYMODE
MCIWNDM_NOTIFYPOS
MCIWNDM_NOTIFYSIZE
Time Formats

MCIWndGetTimeFormat
MCIWndSetTimeFormat
MCIWndUseFrames
MCIWndUseTime
MCIWndValidateMedia
Status Updates

MCIWndGetActiveTimer
MCIWndGetInactiveTimer
MCIWndSetActiveTimer
MCIWndSetInactiveTimer
MCIWndSetTimers
Device Capabilities

MCIWndCanConfig
MCIWndCanEject
MCIWndCanPlay
MCIWndCanRecord
MCIWndCanSave
MCIWndCanWindow
MCI Device Settings

MCIWndGetAlias
MCIWndGetDevice
MCIWndGetDeviceID
MCIWndGetFileName
MCIWndGetMode
MCI Command-String Interface

MCIWndReturnString
MCIWndSendString

 MCIWnd Functions

An application uses the MCIWnd functions to register the MCIWnd window class or to register and
create an MCIWnd window. An MCIWnd window can use standard window styles as well as a set of
MCIWnd-specific styles.

 GetOpenFileNamePreview

BOOL GetOpenFileNamePreview(LPOPENFILENAME lpofn);

Selects a file by using the Open dialog box. The dialog box also allows the user to preview the
currently specified AVI file. This function augments the capability found in the GetOpenFileName
function.

· Returns a handle of the selected file.
lpofn

Address of an OPENFILENAME structure used to initialize the dialog box. On return, the structure
contains information about the user's file selection.

 GetSaveFileNamePreview

BOOL GetSaveFileNamePreview(LPOPENFILENAME lpofn);

Selects a file by using the SaveAs dialog box. The dialog box also allows the user to preview the
currently specified file. This function augments the capability found in the GetSaveFileName function.

· Returns a handle of the selected file.
lpofn

Address of an OPENFILENAME structure used to initialize the dialog box. On return, the structure
contains information about the user's file selection.

 MCIWndCreate

HWND MCIWndCreate(HWND hwndParent, HINSTANCE hInstance, DWORD dwStyle,
 LPSTR szFile);

Registers the MCIWnd window class and creates an MCIWnd window for using MCI services.
MCIWndCreate can also open an MCI device or file (such as an AVI file) and associate it with the
MCIWnd window.

· Returns a handle of an MCIWnd window if successful or zero otherwise.
hwndParent

Handle of the parent window.
hInstance

Handle of the module instance to associate with the MCIWnd window.
dwStyle

Flags defining the window style. In addition to specifying the window styles used with the
CreateWindowEx function, you can specify the following styles to use with MCIWnd windows:
MCIWNDF_NOAUTOSIZEWINDOW

Will not change the dimensions of an MCIWnd window when the image size changes.
MCIWNDF_NOAUTOSIZEMOVIE

Will not change the dimensions of the destination rectangle when an MCIWnd window size
changes.

MCIWNDF_NOERRORDLG
Inhibits display of MCI errors to users.

MCIWNDF_NOMENU
Hides the Menu button from view on the toolbar and prohibits users from accessing its pop-up
menu.

MCIWNDF_NOOPEN
Hides the open and close commands from the MCIWnd menu and prohibits users from accessing
these choices in the pop-up menu.

MCIWNDF_NOPLAYBAR
Hides the toolbar from view and prohibits users from accessing it.

MCIWNDF_NOTIFYANSI
Causes MCIWnd to use an ANSI string instead of a Unicode string when notifying the parent
window of device mode changes. This flag is used in combination with
MCIWNDF_NOTIFYMODE and is exclusive to Windows NT.

MCIWNDF_NOTIFYMODE
Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYMODE message
whenever the device changes operating modes. The lParam parameter of this message identifies
the new mode, such as MCI_MODE_STOP.

MCIWNDF_NOTIFYPOS
Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYPOS message
whenever a change in the playback or record position within the content occurs. The lParam
parameter of this message contains the new position in the content.

MCIWNDF_NOTIFYMEDIA
Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYMEDIA message
whenever a new device is used or a data file is opened or closed. The lParam parameter of this
message contains a pointer to the new filename.

MCIWNDF_NOTIFYSIZE
Causes MCIWnd to notify the parent window when the MCIWnd window size changes.

MCIWNDF_NOTIFYERROR

Causes MCIWnd to notify the parent window when an MCI error occurs.
MCIWNDF_NOTIFYALL

Causes all MCIWNDF window notification styles to be used.
MCIWNDF_RECORD

Adds a Record button to the toolbar and adds a new file command to the menu if the MCI device
has recording capability.

MCIWNDF_SHOWALL
Causes all MCIWNDF_SHOW styles to be used.

MCIWNDF_SHOWMODE
Displays the current mode of the MCI device in the window title bar. For a list of device modes,
see the MCIWndGetMode macro.

MCIWNDF_SHOWNAME
Displays the name of the open MCI device or data file in the MCIWnd window title bar.

MCIWNDF_SHOWPOS
Displays the current position within the content of the MCI device in the window title bar.

szFile
Null-terminated string indicating the name of an MCI device or data file to open.

Default window styles for a child window are WS_CHILD, WS_BORDER, and WS_VISIBLE.
MCIWndCreate assumes a child window when a non-NULL handle of a parent window is specified.

Default window styles for a parent window are WS_OVERLAPPEDWINDOW and WS_VISIBLE.
MCIWndCreate assumes a parent window when a NULL handle of a parent window is specified.

Use the window handle returned by this function for the window handle in the MCIWnd macros. If your
application uses this function, it does not need to use the MCIWndRegisterClass function.

 MCIWndRegisterClass

BOOL MCIWndRegisterClass(HINSTANCE hInstance);

Registers the MCI window class MCIWND_WINDOW_CLASS.

· Returns zero if successful.
hInstance

Handle of the device instance.

After registering the MCI window class, use the CreateWindow or CreateWindowEx functions to
create an MCIWnd window. If your application uses this function, it does not need to use the
MCIWndCreate function.

 MCIWnd Macros and Messages

Applications use messages to communicate with MCIWnd windows and MCI devices associated with
these windows. MCIWnd macros provide a shorthand method of sending these messages. The macros
are based on the SendMessage function. Definitions of the macros identify the corresponding
messages that are sent to MCIWnd windows.

You can control properties and behavior of MCIWnd windows by using the following macros and
messages.

 MCIWndCanConfig

BOOL MCIWndCanConfig(hwnd)

// Corresponding message
MCIWNDM_CAN_CONFIG
wParam = 0;
lParam = 0;

Determines if an MCI device can display a configuration dialog box.

· Returns TRUE if the device supports configuration or FALSE otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndCanEject

BOOL MCIWndCanEject(hwnd)

// Corresponding message
MCIWNDM_CAN_EJECT
wParam = 0;
lParam = 0;

Determines if an MCI device can eject its media.

· Returns TRUE if the device can eject its media or FALSE otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndCanPlay

BOOL MCIWndCanPlay(hwnd)

// Corresponding message
MCIWNDM_CAN_PLAY
wParam = 0;
lParam = 0;

Determines if an MCI device can play a data file or content of some other kind.

· Returns TRUE if the device supports playing the data or FALSE otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndCanRecord

BOOL MCIWndCanRecord(hwnd)

// Corresponding message
MCIWNDM_CAN_RECORD
wParam = 0;
lParam = 0;

Determines if an MCI device supports recording.

· Returns TRUE if the device supports recording or FALSE otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndCanSave

BOOL MCIWndCanSave(hwnd)

// Corresponding message
MCIWNDM_CAN_SAVE
wParam = 0;
lParam = 0;

Determines if an MCI device can save data.

· Returns TRUE if the device supports saving data or FALSE otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndCanWindow

BOOL MCIWndCanWindow(hwnd)

// Corresponding message
MCIWNDM_CAN_WINDOW
wParam = 0;
lParam = 0;

Determines if an MCI device supports window-oriented MCI commands.

· Returns TRUE if the device supports window-oriented MCI commands or FALSE otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndChangeStyles

LONG MCIWndChangeStyles(hwnd, mask, value)

// Corresponding message
MCIWNDM_CHANGESTYLES
wParam = (WPARAM) (UINT) mask;
lParam = (LPARAM) (LONG) value;

Changes the styles used by the MCIWnd window.

· Returns zero.
hwnd

Handle of the MCIWnd window.
mask

Mask that identifies the styles that can change. This mask is the bitwise OR operator of all styles
that will be permitted to change.

value
New style settings for the window. Specify zero for this parameter to turn off all styles identified in
the mask. For a list of the available styles, see the MCIWndCreate function.

For an example of using MCIWndChangeStyles, see "Pausing and Resuming Playback" earlier in this
chapter.

 MCIWndClose

LONG MCIWndClose(hwnd)

// Corresponding command
MCI_CLOSE
wParam = 0;
lParam = 0;

Closes an MCI device or file associated with an MCIWnd window. Although the MCI device closes, the
MCIWnd window is still open and can be associated with another MCI device.

· Returns zero.
hwnd

Handle of the MCIWnd window.

 MCIWndDestroy

VOID MCIWndDestroy(hwnd)

// Corresponding message
WM_CLOSE
wParam = 0;
lParam = 0;

Closes an MCI device or file associated with an MCIWnd window and destroys the window.

· No return value.
hwnd

Handle of the MCIWnd window.

 MCIWndEject

LONG MCIWndEject(hwnd)

// Corresponding message
MCIWNDM_EJECT
wParam = 0;
lParam = 0;

Sends a command to an MCI device to eject its media.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndEnd

LONG MCIWndEnd(hwnd)

// Corresponding command
MCI_SEEK
wParam = 0;
lParam = (LPARAM) (LONG) MCIWND_END;

Moves the current position to the end of the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndGetActiveTimer

UINT MCIWndGetActiveTimer(hwnd)

// Corresponding message
MCIWNDM_GETACTIVETIMER
wParam = 0;
lParam = 0L;

Retrieves the update period used when the MCIWnd window is the active window.

· Returns the update period in milliseconds. The default is 500 milliseconds.
hwnd

Handle of the MCIWnd window.

 MCIWndGetAlias

UINT MCIWndGetAlias(hwnd)

// Corresponding message
MCIWNDM_GETALIAS
wParam = 0;
lParam = 0;

Retrieves the alias used to open an MCI device or file with the mciSendString function.

· Returns the device alias.
hwnd

Handle of the MCIWnd window.

 MCIWndGetDest

LONG MCIWndGetDest(hwnd, prc)

// Corresponding message
MCIWNDM_GET_DEST
wParam = 0;
lParam = (LPARAM) (LPRECT) prc;

Retrieves the coordinates of the destination rectangle used for zooming or stretching the images of an
AVI file during playback.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
prc

Address of a RECT structure to return the coordinates of the destination rectangle.

 MCIWndGetDevice

LONG MCIWndGetDevice(hwnd, lp, len)

// Corresponding message
MCIWNDM_GETDEVICE
wParam = (WPARAM) (UINT) len;
lParam = (LPARAM) (LPVOID) lp;

Retrieves the name of the currently open MCI device.

· Returns zero if successful or a nonzero value otherwise.
hwnd

Handle of the MCIWnd window.
lp

Address of an application-defined buffer to return the device name.
len

Size, in bytes, of the buffer.
If the null-terminated string containing the device name is longer than the buffer, MCIWnd truncates it.

 MCIWndGetDeviceID

UINT MCIWndGetDeviceID(hwnd)

// Corresponding message
MCIWNDM_GETDEVICEID
wParam = 0;
lParam = 0;

Retrieves the identifier of the currently open MCI device to use with the mciSendCommand function.

· Returns the device identifier.
hwnd

Handle of the MCIWnd window.

 MCIWndGetEnd

LONG MCIWndGetEnd(hwnd)

// Corresponding message
MCIWNDM_GETEND
wParam = 0;
lParam = 0;

Retrieves the location of the end of the content of an MCI device or file.

· Returns the location in the current time format.
hwnd

Handle of the MCIWnd window.

 MCIWndGetError

LONG MCIWndGetError(hwnd, lp, len)

// Corresponding message
MCIWNDM_GETERROR
wParam = (WPARAM) (UINT) len;
lParam = (LPARAM) (LPVOID) lp;

Retrieves the last MCI error encountered.

· Returns the integer error value if successful.
hwnd

Handle of the MCIWnd window.
lp

Address of an application-defined buffer used to return the error string.
len

Size, in bytes, of the error buffer.
If lp is a valid pointer, a null-terminated string corresponding to the error is returned in its buffer. If the
error string is longer than the buffer, MCIWnd truncates it.

 MCIWndGetFileName

LONG MCIWndGetFileName(hwnd, lp, len)

// Corresponding message
MCIWNDM_GETFILENAME
wParam = (WPARAM) (UINT) len;
lParam = (LPARAM) (LPVOID) lp;

Retrieves the filename currently used by an MCI device.

· Returns 0 if successful or 1 otherwise.
hwnd

Handle of the MCIWnd window.
lp

Address of an application-defined buffer to return the filename.
len

Size, in bytes, of the buffer.
If the null-terminated string containing the filename is longer than the buffer, MCIWnd truncates the
filename.

 MCIWndGetInactiveTimer

UINT MCIWndGetInactiveTimer(hwnd)

// Corresponding message
MCIWNDM_GETINACTIVETIMER
wParam = 0;
lParam = 0L;

Retrieves the update period used when the MCIWnd window is the inactive window.

· Returns the update period, in milliseconds. The default value is 2000 milliseconds.
hwnd

Handle of the MCIWnd window.

 MCIWndGetLength

LONG MCIWndGetLength(hwnd)

// Corresponding message
MCIWNDM_GETLENGTH
wParam = 0;
lParam = 0;

Retrieves the length of the content or file currently used by an MCI device.

· Returns the length. The units for the length depend on the current time format.
hwnd

Handle of the MCIWnd window.
This value added to the value returned for the MCIWndGetStart macro equals the end of the content.

 MCIWndGetMode

LONG MCIWndGetMode(hwnd, lp, len)

// Corresponding message
MCIWNDM_GETMODE
wParam = (WPARAM) (UINT) len;
lParam = (LPARAM) (LPSTR) lp;

Retrieves the current operating mode of an MCI device. MCI devices have several operating modes,
which are designated by constants.

· Returns an integer corresponding to the MCI constant defining the mode.
hwnd

Handle of the MCIWnd window.
lp

Address of the application-defined buffer used to return the mode.
len

Size, in bytes, of the buffer.
If the null-terminated string describing the mode is longer than the buffer, it is truncated.

Not all devices can operate in every mode. For example, the MCIAVI device is a playback device; it
doesn't support the recording mode. The following modes can be retrieved by using
MCIWNDM_GETMODE:

Operating mode MCI constant
not ready MCI_MODE_NOT_READY
open MCI_MODE_OPEN
paused MCI_MODE_PAUSE
playing MCI_MODE_PLAY
recording MCI_MODE_RECORD
seeking MCI_MODE_SEEK
stopped MCI_MODE_STOP

 MCIWndGetPalette

HPALETTE MCIWndGetPalette(hwnd)

// Corresponding message
MCIWNDM_GETPALETTE
wParam = 0;
lParam = 0;

Retrieves a handle of the palette used by an MCI device.

· Returns the handle of the palette if successful.
hwnd

Handle of the MCIWnd window.

 MCIWndGetPosition

LONG MCIWndGetPosition(hwnd)

// Corresponding messages
MCIWNDM_GETPOSITION
wParam = 0;
lParam = 0;

Retrieves the numerical value of the current position within the content of the MCI device.

· Returns an integer corresponding to the current position. The units for the position value depend on
the current time format.

hwnd
Handle of the MCIWnd window.

 MCIWndGetPositionString

LONG MCIWndGetPositionString(hwnd, lp, len)

// Corresponding messages
MCIWNDM_GETPOSITION
wParam = (WPARAM) (UINT) len;
lParam = (LPARAM) (LPTSTR) lp;

Retrieves the numerical value of the current position within the content of the MCI device. This macro
also provides the current position in string form in an application-defined buffer.

· Returns an integer corresponding to the current position. The units for the position value depend on
the current time format.

hwnd
Handle of the MCIWnd window.

lp
Address of an application-defined buffer used to return the position. Use zero to inhibit retrieval of
the position as a string.
If the device supports tracks, the string position information is returned in the form TT:MM:SS:FF
where TT corresponds to tracks, MM and SS correspond to minutes and seconds, and FF
corresponds to frames.

len
Size, in bytes, of the buffer. If the null-terminated string is longer than the buffer, it is truncated. Use
zero to inhibit retrieval of the position as a string.

 MCIWndGetRepeat

BOOL MCIWndGetRepeat(hwnd)

// Corresponding message
MCIWNDM_GETREPEAT
wParam = 0;
lParam = 0;

Determines if continuous playback has been activated.

· Returns TRUE if continuous playback is activated or FALSE otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndGetSource

LONG MCIWndGetSource(hwnd, prc)

// Corresponding message
MCIWNDM_GET_SOURCE
wParam = 0;
lParam = (LPARAM) (LPRECT) prc;

Retrieves the coordinates of the source rectangle used for cropping the images of an AVI file during
playback.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
prc

Address of a RECT structure to contain the coordinates of the source rectangle.

 MCIWndGetSpeed

LONG MCIWndGetSpeed(hwnd)

// Corresponding message
MCIWNDM_GETSPEED
wParam = 0;
lParam = 0;

Retrieves the playback speed of an MCI device.

· Returns the playback speed if successful. The value for normal speed is 1000. Larger values
indicate faster speeds; smaller values indicate slower speeds.

hwnd
Handle of the MCIWnd window.

 MCIWndGetStart

LONG MCIWndGetStart(hwnd)

// Corresponding message
MCIWNDM_GETSTART
wParam = 0;
lParam = 0;

Retrieves the location of the beginning of the content of an MCI device or file.

· Returns the location in the current time format.
hwnd

Handle of the MCIWnd window.
Typically, the return value is zero; but some devices use a nonzero starting location. Seeking to this
location sets the device to the start of the media.

 MCIWndGetStyles

UINT MCIWndGetStyles(hwnd)

// Corresponding message
MCIWNDM_GETSTYLES
wParam = 0;
lParam = 0;

Retrieves the flags specifying the current MCIWnd window styles used by a window.

· Returns a value representing the current styles of the MCIWnd window. The return value is the
bitwise OR operator of the MCIWnd window styles (MCIWNDF flags).

hwnd
Handle of the MCIWnd window.

 MCIWndGetTimeFormat

LONG MCIWndGetTimeFormat(hwnd, lp, len)

// Corresponding message
MCIWNDM_GETTIMEFORMAT
wParam = (WPARAM) (UINT) len;
lParam = (LPARAM) (LPSTR) lp;

Retrieves the current time format of an MCI device in two forms: as a numerical value and as a string.

· Returns an integer corresponding to the MCI constant defining the time format.
hwnd

Handle of the MCIWnd window.
lp

Address of a buffer to contain the null-terminated string form of the time format.
len

Size, in bytes, of the buffer.
If the time format string is longer than the return buffer, MCIWnd truncates the string.

An MCI device can support one or more of the following time formats:

Time format MCI constant
Bytes MCI_FORMAT_BYTES
Frames MCI_FORMAT_FRAMES
Hours, minutes, seconds MCI_FORMAT_HMS
Milliseconds MCI_FORMAT_MILLISECONDS
Minutes, seconds, frames MCI_FORMAT_MSF
Samples MCI_FORMAT_SAMPLES
SMPTE 24 MCI_FORMAT_SMPTE_24
SMPTE 25 MCI_FORMAT_SMPTE_25
SMPTE 30 drop MCI_FORMAT_SMPTE_30DROP
SMPTE 30 (non-drop) MCI_FORMAT_SMPTE_30
Tracks, minutes, seconds, frames MCI_FORMAT_TMSF

 MCIWndGetVolume

LONG MCIWndGetVolume(hwnd)

// Corresponding message
MCIWNDM_GETVOLUME
wParam = 0;
lParam = 0;

Retrieves the current volume setting of an MCI device.

· Returns the current volume setting. The default value is 1000. Higher values indicate louder
volumes; lower values indicate quieter volumes.

hwnd
Handle of the MCIWnd window.

 MCIWndGetZoom

UINT MCIWndGetZoom(hwnd)

// Corresponding message
MCIWNDM_GETZOOM
wParam = 0;
lParam = 0;

Retrieves the current zoom value used by an MCI device.

· Returns the most recent values used with MCIWndSetZoom.
hwnd

Handle of the MCIWnd window.

A return value of 100 indicates the image is not zoomed. A value of 200 indicates the image is enlarged
to twice its original size. A value of 50 indicates the image is reduced to half its original size.

 MCIWndHome

LONG MCIWndHome(hwnd)

// Corresponding command
MCI_SEEK
wParam = 0;
lParam = (LPARAM) (LONG) MCIWND_START;

Moves the current position to the beginning of the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndNew

LONG MCIWndNew(hwnd, lp)

// Corresponding message
MCIWNDM_NEW
wParam = 0;
lParam = (LPARAM) (LPVOID) lp;

Creates a new file for the current MCI device.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
lp

Address of a buffer containing the name of the MCI device that will use the file.

 MCIWndOpen

LONG MCIWndOpen(hwnd, szFile, wFlags)

// Corresponding message
MCIWNDM_OPEN
wParam = (WPARAM) (UINT) wFlags;
lParam = (LPARAM) (LPVOID) szFile;

Opens an MCI device and associates it with an MCIWnd window. For MCI devices that use data files,
this macro can also open a specified data file, name a new file to be created, or display a dialog box to
let the user select a file to open.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
szFile

Address of a null-terminated string identifying the filename or MCI device name to open. Specify -1
for this parameter to display the Open dialog box.

wFlags
Flags associated with the device or file to open. The MCIWNDOPENF_NEW flag specifies a new file
is to be created with the name specified in szFile.

 MCIWndOpenDialog

LONG MCIWndOpenDialog(hwnd)

// Corresponding command
MCI_OPEN
wParam = -1;
lParam = 0;

Opens a user-specified data file and corresponding type of MCI device, and associates them with an
MCIWnd window. This macro displays the Open dialog box for the user to select the data file to
associate with an MCI window.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndOpenInterface

MCIWndOpenInterface(hwnd, pUnk)

// Corresponding message
MCIWNDM_OPENINTERFACE
wParam = 0;
lParam = (LPARAM) (LPUNKNOWN) pUnk;

Attaches the data stream or file associated with the specified interface to an MCIWnd window.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
pUnk

Address of an IAVI interface that points to a file or a data stream in a file.
For information about IAVI interfaces, see Chapter 6, "AVIFile Functions and Macros ."

 MCIWndPause

LONG MCIWndPause(hwnd)

// Corresponding command
MCI_PAUSE
wParam = 0;
lParam = 0;

Sends a command to an MCI device to pause playing or recording.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndPlay

LONG MCIWndPlay(hwnd)

// Corresponding command
MCI_PLAY
wParam = 0;
lParam = 0;

Sends a command to an MCI device to start playing from the current position in the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndPlayFrom

LONG MCIWndPlayFrom(hwnd, lPos)

// Corresponding message
MCIWNDM_PLAYFROM
wParam = 0;
lParam = (LPARAM) (LONG) lPos;

Plays the content of an MCI device from the specified location to the end of the content or until another
command stops playback.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
lPos

Starting location. The units for the starting location depend on the current time format.
You can also specify both a starting and ending location for playback by using the
MCIWndPlayFromTo macro.

 MCIWndPlayFromTo

LONG MCIWndPlayFromTo(hwnd, lStart, lEnd)

// Corresponding command and message
MCI_SEEK
wParam = 0;
lParam = (LPARAM) (LONG) lStart;

MCIWNDM_PLAYTO
wParam = 0;
lParam = (LPARAM) (LONG) lEnd;

Plays a portion of content between specified starting and ending locations. This macro seeks to the
specified point to begin playback, then plays the content to the specified ending location. This macro is
defined using the MCIWndSeek and MCIWndPlayTo macros, which in turn use the MCI_SEEK
command and the MCIWNDM_PLAYTO message.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
lStart

Position to seek; it is also the starting location.
lEnd

Ending location.
The units for the seek position depend on the current time format.

 MCIWndPlayReverse

LONG MCIWndPlayReverse(hwnd)

// Corresponding message
MCIWNDM_PLAYREVERSE
wParam = 0;
lParam = 0;

Plays the current content in the reverse direction, beginning at the current position and ending at the
beginning of the content or until another command stops playback.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndPlayTo

LONG MCIWndPlayTo(hwnd, lPos)

// Corresponding message
MCIWNDM_PLAYTO
wParam = 0;
lParam = (LPARAM) (LONG) lPos;

Plays the content of an MCI device from the current position to the specified ending location or until
another command stops playback. If the specified ending location is beyond the end of the content,
playback stops at the end of the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
lPos

Ending location. The units for the ending location depend on the current time format.
You can also specify both a starting and ending location for playback by using the
MCIWndPlayFromTo macro.

 MCIWndPutDest

LONG MCIWndPutDest(hwnd, prc)

// Corresponding message
MCIWNDM_PUT_DEST
wParam = 0;
lParam = (LPARAM) (LPRECT) prc;

Redefines the coordinates of the destination rectangle used for zooming or stretching the images of an
AVI file during playback.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
prc

Address of a RECT structure containing the coordinates of the destination rectangle.

 MCIWndPutSource

LONG MCIWndPutSource(hwnd, prc)

// Corresponding message
MCIWNDM_PUT_SOURCE
wParam = 0;
lParam = (LPARAM) (LPRECT) prc;

Redefines the coordinates of the source rectangle used for cropping the images of an AVI file during
playback.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
prc

Address of a RECT structure containing the coordinates of the source rectangle.

 MCIWndRealize

LONG MCIWndRealize(hwnd, fBkgnd)

// Corresponding message
MCIWNDM_REALIZE
wParam = (WPARAM) (BOOL) fBkgnd;
lParam = 0;

Realizes the palette currently used by the MCI device in an MCIWnd window. This macro is defined
with the MCIWNDM_REALIZE message.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
fBkgnd

Background flag. Specify TRUE for this parameter if the window is a background application.
MCIWNDM_REALIZE uses the palette of the MCI device and calls the RealizePalette function. If your
application explicitly handles the WM_PALETTECHANGED and WM_QUERYNEWPALETTE
messages, you should use this message in your application instead of using RealizePalette. If the
body of one of these message handlers contains only RealizePalette, forward the message to the
MCIWnd window, which will automatically realize the palette.

 MCIWndRecord

LONG MCIWndRecord(hwnd)

// Corresponding command
MCI_RECORD
wParam = 0;
lParam = 0;

Begins recording content using the MCI device. The recording process begins at the current position in
the content and will overwrite existing data for the duration of the recording.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
The function that an MCI device performs during recording depends on the characteristics of the
device. An MCI device that uses files, such as a waveform-audio device, sends data to the file during
recording. An MCI device that does not use files, such as a video-cassette recorder, receives and
externally records data on another medium.

 MCIWndResume

LONG MCIWndResume(hwnd)

// Corresponding command
MCI_RESUME
wParam = 0;
lParam = 0;

Resumes playback or recording content from the paused mode. This macro restarts playback or
recording from the current position in the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndReturnString

LONG MCIWndReturnString(hwnd, lp, len)

// Corresponding message
MCIWNDM_RETURNSTRING
wParam = (WPARAM) (UINT) len;
lParam = (LPARAM) (LPVOID) lp;

Retrieves the reply to the most recent MCI string command sent to an MCI device. Information in the
reply is supplied as a null-terminated string.

· Returns an integer corresponding to the MCI string.
hwnd

Handle of the MCIWnd window.
lp

Address of an application-defined buffer to contain the null-terminated string.
len

Size, in bytes, of the buffer.
If the null-terminated string is longer than the buffer, the string is truncated.

 MCIWndSave

LONG MCIWndSave(hwnd, szFile)

// Corresponding command
MCI_SAVE
wParam = 0;
lParam = (LPARAM) (LPVOID) szFile;

Saves the content currently used by an MCI device. This macro can save the content to a specified
data file or display the Save dialog box to let the user select a filename to store the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
szFile

Null-terminated string containing the name and path of the destination file. Specify - 1 for this
parameter to display the Save dialog box.

 MCIWndSaveDialog

LONG MCIWndSaveDialog(hwnd)

// Corresponding command
MCI_SAVE
wParam = 0;
lParam = -1;

Saves the content currently used by an MCI device. This macro displays the Save dialog box to let the
user select a filename to store the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndSeek

LONG MCIWndSeek(hwnd, lPos)

// Corresponding command
MCI_SEEK
wParam = 0;
lParam = (LPARAM) (LONG) lPos;

Moves the playback position to the specified location in the content.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
lPos

Position to seek. You can specify a position using the current time format, the MCIWND_START
constant to designate the beginning of the content, or the MCIWND_END constant to designate the
end of the content.

 MCIWndSendString

LONG MCIWndSendString(hwnd, sz)

// Corresponding message
MCIWNDM_SENDSTRING
wParam = 0;
lParam = (LPARAM) (LPSTR) sz;

Sends an MCI command in string form to the device associated with the MCIWnd window.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
sz

String command to send to the MCI device.
The message handler for MCIWndSendString (and MCIWNDM_SENDSTRING) appends a device
alias to the MCI command you send to the device. Therefore, you should not use any alias in an MCI
command that you issue with MCIWndSendString.

For more information about MCI string commands, see Chapter 4, "MCI Command Strings."

 MCIWndSetActiveTimer

VOID MCIWndSetActiveTimer(hwnd, active)

// Corresponding message
MCIWNDM_SETACTIVETIMER
wParam = (WPARAM) (UINT) active;
lParam = 0L;

Sets the update period used by MCIWnd to update the trackbar in the MCIWnd window, update
position information displayed in the window title bar, and send notification messages to the parent
window when the MCIWnd window is active.

· No return value.
hwnd

Handle of the MCIWnd window.
active

Update period, in milliseconds. The default is 500 milliseconds.

 MCIWndSetInactiveTimer

VOID MCIWndSetInactiveTimer(hwnd, inactive)

// Corresponding message
MCIWNDM_SETINACTIVETIMER
wParam = (WPARAM) (UINT) inactive;
lParam = 0;

Sets the update period used by MCIWnd to update the trackbar in the MCIWnd window, update
position information displayed in the window title bar, and send notification messages to the parent
window when the MCIWnd window is inactive.

· No return value.
hwnd

Handle of the MCIWnd window.
inactive

Update period, in milliseconds. The default is 2000 milliseconds.

 MCIWndSetOwner

LONG MCIWndSetOwner(hwnd, hwndP)

// Corresponding message
MCIWNDM_SETOWNER
wParam = (WPARAM) hwndP;
lParam = 0;

Sets the window to receive notification messages associated with the MCIWnd window.

· Returns zero.
hwnd

Handle of the MCIWnd window.
hwndP

Handle of the window to receive the notification messages.

 MCIWndSetPalette

MCIWndSetPalette(hwnd, hpal)

// Corresponding message
MCIWNDM_SETPALETTE
wParam = (WPARAM) (HPALETTE) hpal;
lParam = 0;

Sends a palette handle to the MCI device associated with the MCIWnd window.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
hpal

Palette handle.

 MCIWndSetRepeat

VOID MCIWndSetRepeat(hwnd, f)

// Corresponding message
MCIWNDM_SETREPEAT
wParam = 0;
lParam = (LPARAM) (BOOL) f;

Sets the repeat flag associated with continuous playback. The MCIWNDM_SETREPEAT message
works in conjunction with the MCI_PLAY command to provide a continuous playback loop.

· Returns zero.
hwnd

Handle of the MCIWnd window.
f

New state of the repeat flag. Specify TRUE to turn on continuous playback.
Currently, MCIAVI is the only device that supports continuous playback.

 MCIWndSetSpeed

LONG MCIWndSetSpeed(hwnd,iSpeed)

// Corresponding message
MCIWNDM_SETSPEED
wParam = 0;
lParam = (LPARAM) (UINT) iSpeed;

Sets the playback speed of an MCI device.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
iSpeed

Playback speed. Specify 1000 for normal speed, larger values for faster speeds, and smaller values
for slower speeds.

 MCIWndSetTimeFormat

LONG MCIWndSetTimeFormat(hwnd, lp)

// Corresponding message
MCIWNDM_SETTIMEFORMAT
wParam = 0;
lParam = (LPARAM) (LPSTR) lp;

Sets the time format of an MCI device.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
lp

Address of a buffer containing the null-terminated string indicating the time format. Specify "frames"
to set the time format to frames, or "ms" to set the time format to milliseconds.

An application can specify time formats other than frames or milliseconds as long as the formats are
supported by the MCI device. Noncontinuous formats, such as tracks and SMPTE, can cause the
trackbar to behave erratically. For these time formats, you might want to turn off the toolbar by using
the MCIWndChangeStyles macro and specifying the MCIWNDF_NOPLAYBAR window style.

If you want to set the time format to frames or milliseconds, you can also use the MCIWndUseFrames
or MCIWndUseTime macro. For a list of time formats, see the MCIWndGetTimeFormat macro.

 MCIWndSetTimers

VOID MCIWndSetTimers(hwnd, active, inactive)

// Corresponding message
MCIWNDM_SETTIMERS
wParam = (WPARAM) (UINT) active;
lParam = (LPARAM) (UINT) inactive;

Sets the update periods used by MCIWnd to update the trackbar in the MCIWnd window, update the
position information displayed in the window title bar, and send notification messages to the parent
window.

· No return value.
hwnd

Handle of the MCIWnd window.
active

Update period used by MCIWnd when it is the active window. The default value is 500 milliseconds.
Storage for this value is limited to 16 bits.

inactive
Update period used by MCIWnd when it is the inactive window. The default value is 2000
milliseconds. Storage for this value is limited to 16 bits.

 MCIWndSetVolume

LONG MCIWndSetVolume(hwnd, iVol)

// Corresponding message
MCIWNDM_SETVOLUME
wParam = 0;
lParam = (LPARAM) (UINT) iVol;

Sets the volume level of an MCI device.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
iVol

New volume level. Specify 1000 for normal volume level. Specify a higher value for a louder volume
or a lower value for a quieter volume.

 MCIWndSetZoom

VOID MCIWndSetZoom(hwnd, iZoom)

// Corresponding message
MCIWNDM_SETZOOM
wParam = 0;
lParam = (LPARAM) (UINT) iZoom;

Resizes a video image according to a zoom factor. This marco adjusts the size of an MCIWnd window
while maintaining a constant aspect ratio.

· No return value.
hwnd

Handle of the MCIWnd window.
iZoom

Zoom factor expressed as a percentage of the original image. Specify 100 to display the image at its
authored size, 200 to display the image at twice its normal size, or 50 to display the image at half its
normal size.

 MCIWndStep

LONG MCIWndStep(hwnd, n)

// Corresponding command
MCI_STEP
wParam = 0;
lParam = (LPARAM) (long) n;

Moves the current position in the content forward or backward by a specified increment.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
n

Step value. Negative values step the device through the content in reverse. The units for the step
value depend on the current time format.

 MCIWndStop

LONG MCIWndStop(hwnd)

// Corresponding command
MCI_STOP
wParam = 0;
lParam = 0;

Stops playing or recording the content of the MCI device associated with the MCIWnd window.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndUseFrames

LONG MCIWndUseFrames(hwnd)

// Corresponding message
MCIWNDM_SETTIMEFORMAT
wParam = 0;
lParam = TEXT ("frames");

Sets the time format of an MCI device to frames.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndUseTime

LONG MCIWndUseTime(hwnd)

// Corresponding message
MCIWNDM_SETTIMEFORMAT
wParam = 0;
lParam = TEXT ("ms");

Sets the time format of an MCI device to milliseconds.

· Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.

 MCIWndValidateMedia

VOID MCIWndValidateMedia(hwnd)

// Corresponding message
MCIWNDM_VALIDATEMEDIA
wParam = 0;
lParam = 0;

Updates the starting and ending locations of the content, the current position in the content, and the
trackbar according to the current time format.

· No return value.
hwnd

Handle of the MCIWnd window.
Typically, you should not need to use this macro; however, if your application changes the time format
of a device without using MCIWnd; the starting and ending locations of the content, as well as the
trackbar, continue to use the old format. You can use this macro to update these values.

 MCIWnd Notifications

The MCIWnd message handler can send event notifications to the parent of an MCIWnd window in the
form of MCIWNDM_NOTIFY messages. You can enable notification for an event type by specifying an
appropriate style for an MCIWnd window when the window is created or its styles are updated. The
following notifications are specific to MCIWnd windows.

 MCIWNDM_NOTIFYERROR

MCIWNDM_NOTIFYERROR
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LONG) errorCode;

Notifies the parent window of an application that an MCI error occurred.

hwnd
Handle of the MCIWnd window.

errorCode
Numerical code for the MCI error.

You can enable MCI error notification by specifying the MCIWNDF_NOTIFYERROR window style.

 MCIWNDM_NOTIFYMEDIA

MCIWNDM_NOTIFYMEDIA
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LPSTR) lp;

Notifies the parent window of an application that the media has changed.

hwnd
Handle of the MCIWnd window.

lp
Address of a null-terminated string containing the new filename. If the media is closing, it specifies a
null string.

You can enable notification of media changes by specifying the MCIWNDF_NOTIFYMEDIA window
style.

 MCIWNDM_NOTIFYMODE

MCIWNDM_NOTIFYMODE
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LONG) mode;

Notifies the parent window of an application that the operating mode of the MCI device has changed.

hwnd
Handle of the MCIWnd window.

mode
Integer corresponding to the MCI mode.

You can enable notification of mode changes of an MCI device by specifying the
MCIWNDF_NOTIFYMODE window style.

 MCIWNDM_NOTIFYPOS

MCIWNDM_NOTIFYPOS
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LONG) pos;

Notifies the parent window of an application that the window position has changed.

hwnd
Handle of the MCIWnd window.

pos
Describes the new position.

You can enable notification of changes in the position of an MCIWnd window by specifying the
MCIWNDF_NOTIFYPOS window style.

 MCIWNDM_NOTIFYSIZE

MCIWNDM_NOTIFYSIZE
wParam = (WPARAM) (HWND) hwnd;
lParam = 0;

Notifies the parent window of an application that the window size has changed.

hwnd
Handle of the MCIWnd window.

You can enable notification of changes in the size of an MCIWnd window by specifying the
MCIWNDF_NOTIFYSIZE window style.

 Multimedia Possibilities

A multimedia application delivers information in ways that can be more powerful than printed material
or standard video and sound. Unlike printed material, a multimedia application communicates using
more than a series of static images or text. Unlike standard video or sound presentations, a multimedia
application allows the user to navigate through media and interact with information quickly and easily.
The new information media that typically define a multimedia application are sound and video. An
application that incorporates sound, video, or both is a multimedia application.

For many years, computers were expected to arrange data, but not to deliver it. The result of the user's
work was typically printed on paper. Today, however, inexpensive computers are capable of
overcoming many of the inherent limitations of printed material. Practically any computer that uses the
Microsoft® Windows® operating system and has a VGA monitor and a sound card can exploit many of
the features of a multimedia application. Millions of computer users already own equipment like this,
and many also have more powerful multimedia computers with monitors that can display 256 colors or
more and compact disc (CD) players. More and more, these computers are becoming the final delivery
system for information. People are sending electronic mail instead of letters. Instead of reaching for a
bulky printed encyclopedia, they are enjoying the full-color graphics, sound, and animation of a CD-
based encyclopedia.

A multimedia application written for the Microsoft Win32® application programming interface (API)
delivers information in ways that a printed page cannot. Even when the focus of the application is to
help a user produce a printed document or perform calculations, the application can use sound, video,
or both to enrich the user's experience.

The definition of a multimedia computer has been established by an industry-wide group, the
Multimedia PC Marketing Council. This council has defined two sets of minimum specifications for
multimedia computers. For a description of these specifications, see Multimedia PC Specifications. An
application does not need to take full advantage of all of this hardware to qualify as a multimedia
application.

Developing multimedia applications can be as simple as adding an existing sound or video recording to
an application or as complex as building an editing tool for customizing multimedia presentations. No
matter how complex your goal, this volume will help you achieve it.

The intended audience for this book is programmers who already have some background in the
opportunities presented by multimedia computing. It focuses strictly on helping readers implement the
multimedia features of the Win32 API. This book will help programmers who want to incorporate
multimedia capabilities into their applications, create multimedia-based applications, or create tools for
writing or editing multimedia publications.

 What You Can Do with Multimedia

If you think about it for a few minutes, you are sure to come up with a number of applications that could
use sound and video in new and exciting ways. For example, real estate agents have long organized
descriptions and photographs of homes in large catalogs. Because these catalogs are printed on
paper, the presentation of the homes is limited to a small picture and a paragraph or two of text. If the
catalog were produced as a multimedia application, on the other hand, it could display a guided audio
and visual tour of the inside and outside of these homes. Having potential buyers view these listings
could be a powerful sales tool and could prevent wasted trips to unsuitable locations.

This real estate application is just one example of what you can do with multimedia. You can use
multimedia to create applications that play, edit, and capture sounds and images. You can also create
applications that can control multimedia hardware, such as CD players, video-cassette recorders, and
MIDI (Musical Instrument Digital Interface) devices. For entertainment applications, the Win32 API also
supports the use of joysticks and provides a timer mechanism that is more accurate than the standard
Win32 timers.

Many developers use multimedia to improve applications that did not use sound and video when they
were first designed and written. For example, developers are adding voice-annotation capabilities to
word-processing applications, or video clips to presentation-graphics applications. More generally,
developers are adding sounds to all types of applications; for example, to request input from the user
(such as a password) or to signify an action (such as opening or closing a file).

Some applications integrate multimedia features more completely. Software developers are creating
hundreds of such applications, such as entertainment programs, computerized reference works, and
educational programs. Because extensive use of sound or video requires a great deal of data-storage
space, these applications are often distributed on CDs.

You can create multimedia applications for anyone who routinely needs fast access to large amounts of
data. These applications are often written for niche markets; the multimedia real estate catalogue
discussed earlier is a good example. The possible variety and uses of such applications are almost
limitless:

· Doctors could consolidate their records about a case on a CD, including not only all the relevant
reports and histories but also such items as videotapes of surgical procedures and consultations
with the client.

· Telephone directories for businesses could include full-color graphics, sophisticated search
capabilities, audio clips, and detailed maps.

· A voicemail system could be integrated into an electronic mail application. It is feasible that a
combination of multimedia software and hardware could be used to integrate the functions currently
performed by telephones, modems, faxes, voicemail systems, and electronic mail applications.

 Multimedia Playback with One Function Call

You can play waveform-audio files, CDs, video clips, or MIDI files in your application with a call to a
single function: MCIWndCreate. This function creates a button that the user can use to play or stop the
playback, a trackbar that displays the current position in the file, and, in the case of a video clip, a
window in which the video is displayed. The following call to MCIWndCreate plays the video clip
SAMPLE.AVI:

MCIWndCreate(hwndParent, // parent window handle
 g_hinst, // instance handle
 WS_VISIBLE | WS_CHILD | MCIWNDF_SHOWALL, // window styles
 "sample.avi"); // filename

Another function, PlaySound, also enables you to implement multimedia playback with a single
function call. You can use this function to play a waveform-audio file. For example, the following line of
code plays the sound stored in the file CHIMES.WAV:

PlaySound("chimes.wav", NULL, SND_SYNC);

Note PlaySound cannot play a waveform-audio file larger than will fit in available memory. To play
larger files, you should use either the MCIWnd window class or the high-level audio interface. For more
information about the MCIWnd window class than is presented in this section, see Getting Started
Using MCIWnd. For more information about PlaySound, see Waveform Audio.

 Multimedia Data Formats

Windows supports three distinct types of multimedia data: waveform audio, MIDI sound, and video.

Waveform audio is a digitized recording of a sound. You can typically edit waveform audio using
insertions and deletions, or you can modify it using filters. This sound format can store voice, music,
and sound effects exactly as they should be heard by the user. Compared to MIDI sound, however,
editing waveform audio is difficult and the storage requirements are high. In Windows, waveform-audio
files typically have a .WAV filename extension.

MIDI sounds are stored as a series of instructions, rather than as a waveform. A synthesizer (often part
of the computer's sound card) interprets the instructions to produce the sound. Because different
synthesizers interpret MIDI instructions with greatly varying quality, the sound heard by the user cannot
be guaranteed. This sound format can store music, and sometimes sound effects, but voice is not a
practical option. Compared to waveform audio, however, MIDI is easy to edit and the storage
requirements are low. In Windows, MIDI sound files typically have a .MID filename extension.

Video is a multiple-track recording that includes waveform audio and moving images. The moving
images are recorded as a series of still images. In Windows, video files typically have an .AVI filename
extension.

 Version Checking

You may need to check the installed version of the multimedia system, particularly if your application
takes advantage of features that were not available in previous releases. Although the multimedia
header files contain two version-checking functions, they are obsolete. These obsolete functions are
mmsystemGetVersion and VideoForWindowsVersion. Your application should rely on the standard
Windows functions, GetVersion or GetVersionEx, instead.

 The Multimedia Documentation

Unless you are developing a very complex multimedia application, you need not read all of the
multimedia documentation. This volume is divided into five parts; the parts you need to read depend on
the type of application you are writing. Your application can interact with a multimedia device using a
high-level, mid-level, or low-level interface. The parts of this volume mirror this hierarchy of
implementation levels.

Part 1 discusses how to design applications that use high-level interfaces based on window classes.
Read this part if you want to add sound or video to an application and you do not need to implement
complicated editing or recording functionality.

Part 2 discusses how to design applications that use a mid-level interface ¾ called the Media Control
Interface (MCI) ¾ which offers applications a standard set of commands to use when communicating
with a multimedia device. Read this part if you want to implement a customized user interface for your
video or sound files but you do not need to take full advantage of the capabilities of a particular device.

Parts 3, 4, and 5 discuss how to design applications that use a set of low-level multimedia interfaces.
These interfaces allow applications to achieve nearly complete control over an audio or video
presentation. Read these parts if your application needs to take full advantage of one or more
multimedia devices, if you plan to implement recording or editing features, or if you need a custom
format for your data.

 High-Level Interfaces

An application can use the MCIWnd window class to play a video, MIDI, or waveform-audio file.
Several functions that play only waveform audio are also available. Part 1 of this volume describes the
most widely used parts of this high-level multimedia interface. In addition, Multimedia Playback with
One Function Call earlier shows you how to use this high-level interface to play a video or sound file
very easily.

Another window class, AVICap, makes it easy to develop an interface for capturing video clips. For
more information about AVICap, see Video Capture.

 Mid-Level Interface

MCI is a device-independent interface for controlling virtually any multimedia device. Although many
MCI commands are appropriate for any multimedia device, some commands exploit the features of a
particular device or class of devices. You can use this mid-level interface to implement a customized
user interface and achieve greater control over a multimedia device while still developing applications
simply and quickly. Part 2 of this topic describes MCI.

 Low-Level Interfaces

Part 3 of this topic describes advanced video techniques, including how to work with video files, and
how to work with the compression management component that provides compression and
decompression services for these files.

Part 4 describes advanced audio techniques (including MIDI services that are not available through the
MCI interface documented in Part 2), advanced waveform-audio techniques, audio mixers, and the
component for managing audio compression.

Other parts of the low-level interface to multimedia are discussed in Part 5 and the appendixes. These
subjects include joysticks and multimedia timers, the file input and output services for multimedia files,
and file formats for multimedia data files.

 MCI Command Messages

The Media Control Interface (MCI) is a high-level command interface to multimedia devices and
resource files. MCI provides standard commands for playing multimedia devices and recording
multimedia resource files. MCI commands are a generic interface to multimedia devices.

There are two forms of MCI commands: strings and messages. You can use either or both forms in
your MCI application. This chapter documents the command-message interface to MCI. For
information about the command-string interface, see Chapter 4, "MCI Command Strings." For an
overview of MCI, including information about whether you should use the string interface or the
message interface in your application, see Chapter 3, "MCI Overview."

The command-message interface is designed to be used by applications requiring a C-language
interface to control multimedia devices. It uses a message-passing paradigm to communicate with MCI
devices. You can send a command by using the mciSendCommand function.

 Syntax of Command Messages

MCI command messages consist of the following three elements:

· A constant message value
· A structure containing parameters for the command
· A set of flags specifying options for the command and validating fields in the parameter block

The following example sends the MCI_PLAY command to the device identified by a device identifier:

mciSendCommand(wDeviceID, // device identifier
 MCI_PLAY, // command message
 0, // flags
 (DWORD)(LPVOID) &mciPlayParms); // parameter block

The device identifier given in the first parameter is retrieved when the device is opened using the
MCI_OPEN command. The last parameter is the address of an MCI_PLAY_PARMS structure, which
might contain information about where to begin and end playback. Many MCI command messages use
a structure to contain parameters of this kind. The first member of each of these structures identifies
the window that receives an MM_MCINOTIFY message when the operation finishes.

 Sending Command Messages

The Microsoft Windows operating system provides two functions for sending command messages to
devices and to query devices for error information: mciSendCommand and mciGetErrorString. The
mciSendCommand function sends a command message to an MCI device. The mciGetErrorString
function returns the error string corresponding to an error number.

The mciSendCommand function returns zero if successful. If the function fails, the low-order word of
the return value contains an error code. You can pass this error code to mciGetErrorString to get a
text description of it.

 Using MCI Command Messages

This section contains examples demonstrating how to perform the following tasks:

· Close all MCI devices used by an application.
· Open a simple device by using the device name.
· Open a simple device by using the device-type constant.
· Open a compound device by using a filename.
· Verify the output device.
· Select the MIDI mapper as the output device.
· Handle MCI errors.
· Play a waveform-audio file.
· Play a MIDI file.
· Play a compact disc (CD) track.
· Play a movie.
· Use the MCI_NOTIFY flag.
· Retrieve information about a movie.
· Retrieve CD track-specific information.
· Record with a waveform-audio device.

 Closing All MCI Devices Used by an Application

The following example closes all of the MCI devices that are opened by an application:

UINT wDeviceID;
DWORD dwReturn;

// Closes all MCI devices opened by this application.
// Waits until devices are closed before returning.
if (dwReturn = mciSendCommand(MCI_ALL_DEVICE_ID, MCI_CLOSE, MCI_WAIT,
 NULL))
 .
 . // Error, unable to close all devices.
 .

 Opening a Simple Device by Using the Device Name

The following example opens a CD audio device by specifying the device name:

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;

// Opens a CD audio device by specifying the device name.
mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand(NULL, MCI_OPEN, MCI_OPEN_TYPE,
 (DWORD)(LPVOID) &mciOpenParms))
 .
 . // Error, unable to open device.
 .
// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDeviceID;

 Opening a Simple Device by Using the Device-Type Constant

The following example opens a CD audio device by specifying a device-type constant:

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;

// Opens a CD audio device by specifying a device-type constant.
mciOpenParms.lpstrDeviceType = (LPCSTR) MCI_DEVTYPE_CD_AUDIO;
if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
 MCI_OPEN_TYPE | MCI_OPEN_TYPE_ID, (DWORD)(LPVOID) &mciOpenParms))
 .
 . // Error, unable to open device.
 .
// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDeviceID;

 Opening a Compound Device by Using the Filename

The following example opens the waveform-audio device by specifying a waveform-audio file named
"TIMPANI.WAV":

UINT wDeviceID;
DWORD dwReturn;
MCI_OPEN_PARMS mciOpenParms;

// Opens a waveform-audio device by specifying the device and filename.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "timpani.wav";
if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
 MCI_OPEN_TYPE | MCI_OPEN_ELEMENT, (DWORD)(LPVOID) &mciOpenParms))
 .
 . // Error, unable to open device.
 .
// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDeviceID;

 Verifying the Output Device

After opening the sequencer, you should check whether the MIDI mapper was available and selected
as the output device. The following example uses the MCI_STATUS command to verify that the MIDI
mapper is the output device for the MCI sequencer:

UINT wDeviceID; // valid MCI sequencer ID
DWORD dwReturn;
MCI_STATUS_PARMS mciStatusParms;
.
. // Make sure the opened device is the MIDI mapper.
.
mciStatusParms.dwItem = MCI_SEQ_STATUS_PORT;
if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM,
 (DWORD)(LPVOID) &mciStatusParms))
{
 .
 . // Error sending MCI_STATUS command.
 .
 return;
}
if (LOWORD(mciStatusParms.dwReturn) == MIDI_MAPPER)
 .
 . // The MIDI mapper is the output device.
 .
else
 .
 . // The MIDI mapper is not the output device.
 .

 Handling MCI Errors

You should always check the return value of the mciSendCommand function. If it indicates an error,
you can use mciGetErrorString to get a textual description of the error.

The following example passes the MCI error code specified by dwError to mciGetErrorString, and
then displays the resulting textual error description using the MessageBox function.

// Uses mciGetErrorString to get a textual description of an MCI error.
// Displays the error description using MessageBox.
void showError(DWORD dwError)
{
 char szErrorBuf[MAXERRORLENGTH];
 MessageBeep(MB_ICONEXCLAMATION);
 if(mciGetErrorString(dwError, (LPSTR) szErrorBuf, MAXERRORLENGTH))
 MessageBox(hMainWnd, szErrorBuf, "MCI Error",
 MB_ICONEXCLAMATION);
 else
 MessageBox(hMainWnd, "Unknown Error", "MCI Error",
 MB_ICONEXCLAMATION);
}

Note To interpret an mciSendCommand error return value yourself, mask the high-order word (the
low-order word contains the error code). If you pass the error return value to mciGetErrorString,
however, you must pass the entire doubleword value.

 Playing a Waveform-Audio File

The following example opens a waveform-audio device and plays the waveform-audio file specified by
the lpszWAVEFileName parameter:

// Plays a given waveform-audio file using MCI_OPEN and MCI_PLAY.
// Returns when playback begins. Returns 0L on success, otherwise
// returns an MCI error code.
DWORD playWAVEFile(HWND hWndNotify, LPSTR lpszWAVEFileName)
{
 UINT wDeviceID;
 DWORD dwReturn;
 MCI_OPEN_PARMS mciOpenParms;
 MCI_PLAY_PARMS mciPlayParms;

 // Open the device by specifying the device and filename.
 // MCI will choose a device capable of playing the given file.
 mciOpenParms.lpstrDeviceType = "waveaudio";
 mciOpenParms.lpstrElementName = lpszWAVEFileName;
 if (dwReturn = mciSendCommand(0, MCI_OPEN,
 MCI_OPEN_TYPE | MCI_OPEN_ELEMENT, (DWORD)(LPVOID) &mciOpenParms))
 {
 // Failed to open device. Don't close it; just return error.
 return (dwReturn);
 }

 // The device opened successfully; get the device ID.
 wDeviceID = mciOpenParms.wDeviceID;

 // Begin playback. The window procedure function for the parent
 // window will be notified with an MM_MCINOTIFY message when
 // playback is complete. At this time, the window procedure closes
 // the device.
 mciPlayParms.dwCallback = (DWORD) hWndNotify;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY, MCI_NOTIFY,
 (DWORD)(LPVOID) &mciPlayParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 return (0L);
}

 Playing a MIDI File

The following example opens a MIDI sequencer device, verifies that the MIDI mapper was selected as
the output port, plays the MIDI file specified by the lpszMIDIFileName parameter, and closes the device
after playback is complete:

// Plays a specified MIDI file by using MCI_OPEN and MCI_PLAY. Returns
// as soon as playback begins. The window procedure function for the
// given window will be notified when playback is complete. Returns 0L
// on success; otherwise, it returns an MCI error code.
DWORD playMIDIFile(HWND hWndNotify, LPSTR lpszMIDIFileName)
{
 UINT wDeviceID;
 DWORD dwReturn;
 MCI_OPEN_PARMS mciOpenParms;
 MCI_PLAY_PARMS mciPlayParms;
 MCI_STATUS_PARMS mciStatusParms;
 MCI_SEQ_SET_PARMS mciSeqSetParms;

 // Open the device by specifying the device and filename.
 // MCI will attempt to choose the MIDI mapper as the output port.
 mciOpenParms.lpstrDeviceType = "sequencer";
 mciOpenParms.lpstrElementName = lpszMIDIFileName;
 if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
 MCI_OPEN_TYPE | MCI_OPEN_ELEMENT,
 (DWORD)(LPVOID) &mciOpenParms))
 {
 // Failed to open device. Don't close it; just return error.
 return (dwReturn);
 }

 // The device opened successfully; get the device ID.
 wDeviceID = mciOpenParms.wDeviceID;

 // Check if the output port is the MIDI mapper.
 mciStatusParms.dwItem = MCI_SEQ_STATUS_PORT;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS,
 MCI_STATUS_ITEM, (DWORD)(LPVOID) &mciStatusParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 // The output port is not the MIDI mapper.
 // Ask if the user wants to continue.
 if (LOWORD(mciStatusParms.dwReturn) != MIDI_MAPPER)
 {
 if (MessageBox(hMainWnd,
 "The MIDI mapper is not available. Continue?",
 "", MB_YESNO) == IDNO)
 {
 // User does not want to continue. Not an error;
 // just close the device and return.
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (0L);
 }
 }

 // Begin playback. The window procedure function for the parent
 // window will be notified with an MM_MCINOTIFY message when
 // playback is complete. At this time, the window procedure closes

 // the device.
 mciPlayParms.dwCallback = (DWORD) hWndNotify;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY, MCI_NOTIFY,
 (DWORD)(LPVOID) &mciPlayParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 return (0L);
}

 Playing a Compact Disc Track

The following example opens a CD audio device, plays the track specified by the bTrack parameter,
and closes the device after playback is complete:

// Plays a given CD audio track using MCI_OPEN, MCI_PLAY. Returns as
// soon as playback begins. The window procedure function for the given
// window will be notified when playback is complete. Returns 0L on
// success; otherwise, returns an MCI error code.
DWORD playCDTrack(HWND hWndNotify, BYTE bTrack)
{
 UINT wDeviceID;
 DWORD dwReturn;
 MCI_OPEN_PARMS mciOpenParms;
 MCI_SET_PARMS mciSetParms;
 MCI_PLAY_PARMS mciPlayParms;

 // Open the CD audio device by specifying the device name.
 mciOpenParms.lpstrDeviceType = "cdaudio";
 if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
 MCI_OPEN_TYPE, (DWORD)(LPVOID) &mciOpenParms))
 {
 // Failed to open device. Don't close it; just return error.
 return (dwReturn);
 }

 // The device opened successfully; get the device ID.
 wDeviceID = mciOpenParms.wDeviceID;

 // Set the time format to track/minute/second/frame (TMSF).
 mciSetParms.dwTimeFormat = MCI_FORMAT_TMSF;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_SET,
 MCI_SET_TIME_FORMAT, (DWORD)(LPVOID) &mciSetParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 // Begin playback from the given track and play until the beginning
 // of the next track. The window procedure function for the parent
 // window will be notified with an MM_MCINOTIFY message when
 // playback is complete. Unless the play command fails, the window
 // procedure closes the device.
 mciPlayParms.dwFrom = 0L;
 mciPlayParms.dwTo = 0L;
 mciPlayParms.dwFrom = MCI_MAKE_TMSF(bTrack, 0, 0, 0);
 mciPlayParms.dwTo = MCI_MAKE_TMSF(bTrack + 1, 0, 0, 0);
 mciPlayParms.dwCallback = (DWORD) hWndNotify;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY,
 MCI_FROM | MCI_TO | MCI_NOTIFY, (DWORD)(LPVOID) &mciPlayParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 return (0L);
}

To specify a position relative to a track on a CD, you must use the track/minute/second/frame (TMSF)
time format.

 Playing a Movie

The following examples show how to set up and play an audio-video interleaved (AVI) file.

 Opening the Playback Window

The following example shows how to use the MCI_OPEN command to set a parent window and create
a child of that window:

MCI_DGV_OPEN_PARMS mciOpen;

mciOpen.lpstrElementName = lpstrFile; // set the filename
mciOpen.dwStyle = WS_CHILD; // set the style
mciOpen.hWndParent = hWnd; // give a window handle

if (mciSendCommand(0, MCI_OPEN,
 (DWORD)(MCI_OPEN_ELEMENT|MCI_DGV_OPEN_PARENT|MCI_DGV_OPEN),
 (DWORD)(LPSTR)&mciOpen) == 0){

 // Open operation is successful. Continue.
}

 Setting Up the Playback Window

The following example finds the dimensions needed to play an AVI file, creates a window
corresponding to that size, and plays the file in the window by using the MCIAVI driver:

HWND hwnd;
MCI_DGV_RECT_PARMS mciRect;

// Get the movie dimensions with MCI_WHERE.

mciSendCommand(wDeviceID, MCI_WHERE, MCI_DGV_WHERE_SOURCE,
 (DWORD)(LPSTR)&mciRect);

// Create the playback window. Make it bigger for the border.
// Note that the right and bottom members of RECT structures in MCI
// are unusual; rc.right is set to the rectangle's width, and rc.bottom
// is set to the rectangle's height.
hwndMovie = CreateWindow("mywindow", "Playback",
 WS_CHILD|WS_BORDER, 0,0,
 mciRect.rc.right+(2*GetSystemMetric(SM_CXBORDER)),
 mciRect.rc.bottom+(2*GetSystemMetric(SM_CYBORDER)),
 hwndParent, hInstApp, NULL);

if (hwndMovie){
 // Window created OK; make it the playback window.

 MCI_DGV_WINDOW_PARMS mciWindow;

 mciWindow.hWnd = hwndMovie;
 mciSendCommand(wDeviceID, MCI_WINDOW, MCI_DGV_WINDOW_HWND,
 (DWORD)(LPSTR)&mciWindow);

}

 Playing the AVI File

Before using the mciSendCommand function to send the MCI_PLAY command, your application
allocates the memory for the structure, initializes the members it will use, and sets the flags
corresponding to the members used in the structure. (If your application does not set a flag for a
structure member, MCI drivers ignore the member.) For example, the following example plays a movie
from the starting location specified by dwFrom to the ending location specified by dwTo. (If either
location is zero, the example assumes the location is not used.)

DWORD PlayMovie(WORD wDevID, DWORD dwFrom, DWORD dwTo)
{
 MCI_DGV_PLAY_PARMS mciPlay; // play parameters
 DWORD dwFlags = 0;

 // Check dwFrom. If it is != 0 then set parameters and flags.
 if (dwFrom){
 mciPlay.dwFrom = dwFrom; // set parameter
 dwFlags |= MCI_FROM; // set flag to validate member
 }

 // Check dwTo. If it is != 0 then set parameters and flags.
 if (dwTo){
 mciPlay.dwTo = dwTo; // set parameter
 dwFlags |= MCI_TO; // set flag to validate member
 }

 // Send the MCI_PLAY command and return the result.
 return mciSendCommand(wDevID, MCI_PLAY, dwFlags,
 (DWORD)(LPVOID)&mciPlay);
}

 Using the MCI_NOTIFY Flag

The following example shows how the MCI_NOTIFY flag is used with the MCI_PLAY command. The
handle to the window procedure that will process the MM_MCINOTIFY message is specified in hwnd.

MCI_DGV_PLAY_PARMS mciPlay;
DWORD dwFlags;

mciPlay.dwCallback = MAKELONG(hwnd, 0);
dwFlags = MCI_NOTIFY;

mciSendCommand(wMCIDeviceID, MCI_PLAY, dwFlags, (DWORD)(LPSTR)&mciPlay);

 Retrieving Information About a Movie

The following example sets the time format to frames and obtains the current position if the device is
playing:

MCI_DGV_SET_PARMS mciSet;
MCI_DGV_STATUS_PARMS mciStatus;

// Put in frame mode.
mciSet.dwTimeFormat = MCI_FORMAT_FRAMES;
mciSendCommand(wDeviceID, MCI_SET,
 MCI_SET_TIME_FORMAT,
 (DWORD)(LPSTR)&mciSet);

mciStatus.dwItem = MCI_STATUS_MODE;
mciSendCommand(wDeviceID, MCI_STATUS,
 MCI_STATUS_ITEM,
 (DWORD)(LPSTR)&mciStatus);

// If device is playing, get the position.
if (mciStatus.dwReturn == MCI_MODE_PLAY){

mciStatus.dwItem = MCI_STATUS_POSITION;
mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM,

(DWORD)(LPSTR)&mciStatus);

// Update the position from mciStatus.dwReturn.
}

 Retrieving Compact Disc Track-Specific Information

For CD audio devices, you can get the starting location and length of a track by specifying the
MCI_TRACK flag and setting the dwTrack member of MCI_STATUS_PARMS to the desired track
number. To get the starting location of a track, set the dwItem member to MCI_STATUS_POSITION. To
get the length of a track, set dwItem to MCI_STATUS_LENGTH. For example, the following example
retrieves the total number of tracks on the CD and the starting location of each track. Then, it uses the
MessageBox function to report the starting locations of the tracks.

// Uses the MCI_STATUS command to get and display the
// starting times for the tracks on a CD.
// Returns 0L if successful; otherwise, it returns an
// MCI error code.
DWORD getCDTrackStartTimes(VOID)
{
 UINT wDeviceID;
 int i, iNumTracks;
 DWORD dwReturn;
 DWORD dwPosition;
 DWORD *pMem;
 char szTempString[64];
 char szTimeString[512] = "\0"; // room for 20 tracks
 MCI_OPEN_PARMS mciOpenParms;
 MCI_SET_PARMS mciSetParms;
 MCI_STATUS_PARMS mciStatusParms;

 // Open the device by specifying the device name.

 mciOpenParms.lpstrDeviceType = "cdaudio";
 if (dwReturn = mciSendCommand(NULL, MCI_OPEN,
 MCI_OPEN_TYPE, (DWORD)(LPVOID) &mciOpenParms))
 {
 // Failed to open device;
 // don't have to close it, just return error.
 return (dwReturn);
 }

 // The device opened successfully; get the device ID.
 wDeviceID = mciOpenParms.wDeviceID;

// Set the time format to minute/second/frame (MSF) format.
 mciSetParms.dwTimeFormat = MCI_FORMAT_MSF;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_SET,
 MCI_SET_TIME_FORMAT,
 (DWORD)(LPVOID) &mciSetParms)) {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 // Get the number of tracks;

 // limit to number that can be displayed (20).
 mciStatusParms.dwItem = MCI_STATUS_NUMBER_OF_TRACKS;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_STATUS,
 MCI_STATUS_ITEM, (DWORD)(LPVOID) &mciStatusParms)) {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }
 iNumTracks = mciStatusParms.dwReturn;
 iNumTracks = min(iNumTracks, 20);

 // Allocate memory to hold starting positions.
 pMem = (DWORD *)LocalAlloc(LPTR,
 iNumTracks * sizeof(DWORD));
 if (pMem == NULL) {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (-1);
 }

// For each track, get and save the starting location and
// build a string containing starting locations.
 for(i=1; i<=iNumTracks; i++) {
 mciStatusParms.dwItem = MCI_STATUS_POSITION;
 mciStatusParms.dwTrack = i;
 if (dwReturn = mciSendCommand(wDeviceID,
 MCI_STATUS, MCI_STATUS_ITEM | MCI_TRACK,
 (DWORD)(LPVOID) &mciStatusParms)) {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 pMem[i-1] = mciStatusParms.dwReturn;

 wsprintf(szTempString,
 "Track %2d - %02d:%02d:%02d\n", i,
 MCI_MSF_MINUTE(pMem[i-1]),
 MCI_MSF_SECOND(pMem[i-1]),
 MCI_MSF_FRAME(pMem[i-1]));

 lstrcat(szTimeString, szTempString);
 }

 // Use MessageBox to display starting times.
 MessageBox(hMainWnd, szTimeString,
 "Track Starting Position", MB_ICONINFORMATION);

 // Free memory and close the device.
 LocalFree((HANDLE) pMem);
 if (dwReturn = mciSendCommand(wDeviceID,
 MCI_CLOSE, 0, NULL)) {
 return (dwReturn);
 }

 return (0L);
}

 Recording with a Waveform-Audio Device

The following example opens a waveform-audio device with a new file, records for the specified time,
plays the recording, and prompts the user to save the recording if desired:

// Uses the MCI_OPEN, MCI_RECORD, and MCI_SAVE commands to record and
// save a waveform-audio file. Returns 0L if successful; otherwise,
// it returns an MCI error code.
DWORD recordWAVEFile(DWORD dwMilliSeconds)
{
 UINT wDeviceID;
 DWORD dwReturn;
 MCI_OPEN_PARMS mciOpenParms;
 MCI_RECORD_PARMS mciRecordParms;
 MCI_SAVE_PARMS mciSaveParms;
 MCI_PLAY_PARMS mciPlayParms;

 // Open a waveform-audio device with a new file for recording.
 mciOpenParms.lpstrDeviceType = "waveaudio";
 mciOpenParms.lpstrElementName = "";
 if (dwReturn = mciSendCommand(0, MCI_OPEN,
 MCI_OPEN_ELEMENT | MCI_OPEN_TYPE,
 (DWORD)(LPVOID) &mciOpenParms))
 {
 // Failed to open device; don't close it, just return error.
 return (dwReturn);
 }

 // The device opened successfully; get the device ID.
 wDeviceID = mciOpenParms.wDeviceID;

 // Begin recording and record for the specified number of
 // milliseconds. Wait for recording to complete before continuing.
 // Assume the default time format for the waveform-audio device
 // (milliseconds).
 mciRecordParms.dwTo = dwMilliSeconds;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_RECORD,
 MCI_TO | MCI_WAIT, (DWORD)(LPVOID) &mciRecordParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 // Play the recording and query user to save the file.
 mciPlayParms.dwFrom = 0L;
 if (dwReturn = mciSendCommand(wDeviceID, MCI_PLAY,
 MCI_FROM | MCI_WAIT, (DWORD)(LPVOID) &mciPlayParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }
 if (MessageBox(hMainWnd, "Do you want to save this recording?",
 "", MB_YESNO) == IDNO)
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (0L);
 }

 // Save the recording to a file named TEMPFILE.WAV. Wait for
 // the operation to complete before continuing.

 mciSaveParms.lpfilename = "tempfile.wav";
 if (dwReturn = mciSendCommand(wDeviceID, MCI_SAVE,
 MCI_SAVE_FILE | MCI_WAIT, (DWORD)(LPVOID) &mciSaveParms))
 {
 mciSendCommand(wDeviceID, MCI_CLOSE, 0, NULL);
 return (dwReturn);
 }

 return (0L);
}

 MCI Command Reference

This section describes MCI command messages and structures. These elements are grouped as
follows.

Configuring a Device

MCI_BREAK
MCI_BREAK_PARMS
MCI_CONFIGURE
MCI_DGV_SET_PARMS
MCI_DGV_SETAUDIO_PARMS
MCI_DGV_SETVIDEO_PARMS
MCI_ESCAPE
MCI_INDEX
MCI_SEQ_SET_PARMS
MCI_SET
MCI_SET_PARMS
MCI_SETAUDIO
MCI_SETTIMECODE
MCI_SETTUNER
MCI_SETVIDEO
MCI_SPIN
MCI_VCR_SET_PARMS
MCI_VCR_SETAUDIO_PARMS
MCI_VCR_SETTUNER_PARMS
MCI_VCR_SETVIDEO_PARMS
MCI_VD_ESCAPE_PARMS
MCI_WAVE_SET_PARMS
Controlling Playback

MCI_ANIM_PLAY_PARMS
MCI_DGV_FREEZE_PARMS
MCI_DGV_LOAD_PARMS
MCI_DGV_PAUSE_PARMS
MCI_DGV_PLAY_PARMS
MCI_DGV_RESUME_PARMS
MCI_DGV_STOP_PARMS
MCI_FREEZE
MCI_LOAD
MCI_LOAD_PARMS
MCI_OVLY_LOAD_PARMS
MCI_PAUSE
MCI_PLAY
MCI_PLAY_PARMS
MCI_RESUME
MCI_STOP
MCI_UNFREEZE
MCI_VCR_PLAY_PARMS
MCI_VD_PLAY_PARMS
Controlling the Position

MCI_ANIM_STEP_PARMS
MCI_CUE
MCI_DGV_CUE_PARMS
MCI_DGV_SIGNAL_PARMS

MCI_DGV_STEP_PARMS
MCI_MARK
MCI_SEEK
MCI_SEEK_PARMS
MCI_SIGNAL
MCI_STEP
MCI_VCR_CUE_PARMS
MCI_VCR_SEEK_PARMS
MCI_VCR_STEP_PARMS
MCI_VD_STEP_PARMS
Editing

MCI_COPY
MCI_CUT
MCI_DELETE
MCI_DGV_COPY_PARMS
MCI_DGV_CUT_PARMS
MCI_DGV_DELETE_PARMS
MCI_DGV_PASTE_PARMS
MCI_PASTE
MCI_UNDO
MCI_WAVE_DELETE_PARMS
Miscellaneous

MCI_GENERIC_PARMS
Opening and Closing

MCI_ANIM_OPEN_PARMS
MCI_CLOSE
MCI_DGV_OPEN_PARMS
MCI_OPEN
MCI_OPEN_PARMS
MCI_OVLY_OPEN_PARMS
MCI_WAVE_OPEN_PARMS
Realizing a Palette

MCI_REALIZE
Repainting a Frame

MCI_ANIM_UPDATE_PARMS
MCI_DGV_UPDATE_PARMS
MCI_UPDATE
Retrieving Information

MCI_DGV_INFO_PARMS
MCI_DGV_LIST_PARMS
MCI_DGV_STATUS_PARMS
MCI_GETDEVCAPS
MCI_GETDEVCAPS_PARMS
MCI_INFO
MCI_INFO_PARMS
MCI_LIST
MCI_STATUS
MCI_STATUS_PARMS
MCI_SYSINFO
MCI_SYSINFO_PARMS
MCI_VCR_LIST_PARMS

MCI_VCR_STATUS_PARMS
Saving

MCI_DGV_RECORD_PARMS
MCI_DGV_SAVE_PARMS
MCI_OVLY_SAVE_PARMS
MCI_RECORD
MCI_RECORD_PARMS
MCI_SAVE
MCI_SAVE_PARMS
MCI_VCR_RECORD_PARMS
Video Control

MCI_CAPTURE
MCI_DGV_MONITOR_PARMS
MCI_DGV_QUALITY_PARMS
MCI_DGV_RESERVE_PARMS
MCI_DGV_RESTORE_PARMS
MCI_MONITOR
MCI_QUALITY
MCI_RESERVE
MCI_RESTORE
Window or Display Rectangles

MCI_ANIM_RECT_PARMS
MCI_ANIM_WINDOW_PARMS
MCI_DGV_PUT_PARMS
MCI_DGV_RECT_PARMS
MCI_DGV_WINDOW_PARMS
MCI_OVLY_RECT_PARMS
MCI_OVLY_WINDOW_PARMS
MCI_PUT
MCI_WHERE
MCI_WINDOW

 MCI_BREAK

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_BREAK,
 DWORD dwFlags, (DWORD) (LPMCI_BREAK_PARMS) lpBreak);

Sets a break key for an MCI device. MCI supports this command directly rather than passing it to the
device. Any MCI application can use this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and video-cassette recorder (VCR) devices,
MCI_TEST. For information about these flags, see Chapter 3, "MCI Overview."

lpBreak
Address of an MCI_BREAK_PARMS structure.

You might have to press the break key multiple times to interrupt a wait operation. Pressing the break
key after a device wait is canceled can send the break to an application. If an application has an action
defined for the virtual-key code, then it can inadvertently respond to the break. For example, an
application using VK_CANCEL for an accelerator key can respond to the default CTRL+BREAK key if it is
pressed after a wait is canceled.

Additional Flags

The following additional flags apply to all devices:

MCI_BREAK_HWND
The hwndBreak member of the structure identified by lpBreak contains a window handle that must
be the current window in order to enable break detection for that MCI device. This is usually the
application's main window. If omitted, MCI does not check the window handle of the current window.

MCI_BREAK_KEY
The nVirtKey member of the structure identified by lpBreak specifies the virtual-key code used for
the break key. By default, MCI assigns CTRL+BREAK as the break key. This flag is required if
MCI_BREAK_OFF is not specified.

MCI_BREAK_OFF
Disables any existing break key for the indicated device.

 MCI_CAPTURE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CAPTURE,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_CAPTURE_PARMS) lpCapture);

Captures the contents of the frame buffer and stores it in a specified file. Digital-video devices
recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpCapture
Address of an MCI_DGV_CAPTURE_PARMS structure.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_DGV_CAPTURE_AS
The lpstrFileName member of the structure identified by lpCapture contains an address of a buffer
specifying the destination path and filename. (This flag is required.)

MCI_DGV_CAPTURE_AT
The rc member of the structure identified by lpCapture contains a valid rectangle. The rectangle
specifies the rectangular region within the frame buffer that is cropped and saved to disk. If omitted,
the cropped region defaults to the rectangle specified or defaulted on a previous MCI_PUT
command that specifies the source area for this instance of the device driver.

 MCI_CLOSE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CLOSE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpClose);

Releases access to a device or file. All devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see Chapter 3, "MCI Overview."
lpClose

Address of an MCI_GENERIC_PARMS structure. (You can also use an MCI_CLOSE_PARMS
structure, which is identical to MCI_GENERIC_PARMS. Devices with extended command sets might
replace this structure with a device-specific structure.)

Exiting an application without closing any MCI devices it has opened can leave the device inaccessible.
Your application should explicitly close each device or file when it is finished with it. MCI unloads the
device when all instances of the device or all associated files are closed.

 MCI_CONFIGURE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CONFIGURE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpConfigure);

Displays a dialog box for setting the operating options. Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpConfigure
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

 MCI_COPY

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_COPY,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_COPY_PARMS) lpCopy);

Copies data to the clipboard. Digital-video devices recognize this command.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpCopy
Address of an MCI_DGV_COPY_PARMS structure.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_DGV_COPY_AT
A rectangle is included in the rc member of the structure identified by lpCopy. The rectangle
specifies the portion of each frame to copy. If the flag is omitted, MCI_COPY copies the entire frame.

MCI_DGV_COPY_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
lpCopy. If you use this flag and also want to copy video, you must also use the
MCI_DGV_COPY_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is copied.)

MCI_DGV_COPY_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
lpCopy. If you use this flag and also want to copy audio, you must also use the
MCI_DGV_COPY_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is copied.)

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by lpCopy. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

MCI_TO
An ending location is included in the dwTo member of the structure identified by lpCopy. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

 MCI_CUE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CUE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpCue);

Cues a device so that playback or recording begins with minimum delay.Digital-video, VCR, and
waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpCue
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_CUE_INPUT
A digital-video instance should prepare for recording. If the application has not reserved disk space,
the device reserves the disk space using its default parameters. The application can omit this flag if
the current presentation source is already the external input. (This flag has no effect on selecting the
presentation source.)

MCI_DGV_CUE_NOSHOW
A digital-video instance should prepare for playing the frame specified with the command without
displaying it. When this flag is specified, the display continues to show the image in the frame buffer
even though its corresponding frame is not the current position. For example, if the frame buffer
contains the image from frame 7, the device continues to show frame 7 when this flag is used to cue
the device to any other position. A subsequent cue command without this flag and without the
MCI_TO flag displays the current frame.

MCI_DGV_CUE_OUTPUT
A digital-video instance should prepare for playing. If the workspace is paused, no positioning
occurs. If the workspace is stopped, the position might change to a previous key-frame image. The
application can omit this flag if the current presentation source is already the workspace.

MCI_TO
A workspace position is included in the dwTo member of the structure identified by lpCue. The units
assigned to position values are specified using the MCI_SET_TIME_FORMAT flag of the MCI_SET
command. This is equivalent to seeking to a position, except the device is paused after the
command.

For digitalvideo devices, the lpCue parameter points to an MCI_DGV_CUE_PARMS structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_FROM
The dwFrom member of the structure pointed to by lpCue contains the starting location specified in
the current time format.

MCI_TO
The dwTo member of the structure pointed to by lpCue contains the ending (pausing) location
specified in the current time format.

MCI_VCR_CUE_INPUT
Prepare for recording.

MCI_VCR_CUE_OUTPUT
Prepare for playing. If neither MCI_VCR_CUE_INPUT nor MCI_VCR_CUE_OUTPUT is specified,
MCI_VCR_CUE_OUTPUT is assumed.

MCI_VCR_CUE_PREROLL
Cue the device to the current position, or the dwFrom position, minus the preroll duration. This will
allow the device to prepare itself before entering record or playback mode.

MCI_VCR_CUE_REVERSE
The direction of the next play or record command is reverse.

When cueing for playback by using the MCI_CUE command with the MCI_VCR_CUE_OUTPUT flag,
you can cancel MCI_CUE by issuing the MCI_PLAY command with MCI_FROM, MCI_TO, or
MCI_VCR_PLAY_REVERSE.

When cueing for recording by using MCI_CUE with the MCI_VCR_CUE_INPUT flag, you can cancel
MCI_CUE by issuing the MCI_RECORD command with MCI_FROM, MCI_TO, or
MCI_VCR_RECORD_INITIALIZE.

For vcr devices, the lpCue parameter points to an MCI_VCR_CUE_PARMS structure.

Waveform-Audio Flags

The following additional flags are used with the waveaudio device type:

MCI_WAVE_INPUT
A waveform-audio input device should be cued.

MCI_WAVE_OUTPUT
A waveform-audio output device should be cued. This is the default flag if a flag is not specified.

 MCI_CUT

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_CUT,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_CUT_PARMS) lpCut);

Removes data from the file and copies it to the clipboard. Digital-video devices recognize this
command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpCut
Address of an MCI_DGV_CUT_PARMS structure.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_DGV_CUT_AT
A rectangle is included in the rc member of the structure identified by lpCut. The rectangle specifies
the portion of each frame to cut. If the flag is omitted, MCI_CUT cuts the entire frame.

MCI_DGV_CUT_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
lpCut. If you use this flag and also want to cut video, you must also use the
MCI_DGV_CUT_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is cut.)

MCI_DGV_CUT_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
lpCut. If you use this flag and also want to cut audio, you must also use the
MCI_DGV_CUT_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is cut.)

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by lpCut. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

MCI_TO
An ending location is included in the dwTo member of the structure identified by lpCut. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET.

 MCI_DELETE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_DELETE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpDelete);

Removes data from the file. Digital-video and waveform-audio devices recognize this command.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags,
see Chapter 3, "MCI Overview."

lpDelete
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags

The following flags apply to the digitalvideo device type:

MCI_DGV_DELETE_AT
A rectangle is included in the rc member of the structure identified by lpDelete. The rectangle
specifies the portion of each frame to delete. When this flag is used, the frame is retained in the
workspace and the area specified by the rectangle becomes black. If the flag is omitted,
MCI_DELETE defaults to the entire frame and removes the frame from the workspace.

MCI_DGV_DELETE_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
lpDelete. If you use this flag and also want to delete video, you must also use the
MCI_DGV_DELETE_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and
video streams is deleted.)

MCI_DGV_DELETE_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
lpDelete. If you use this flag and also want to delete audio, you must also use the
MCI_DGV_DELETE_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and
video streams is deleted.)

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by lpDelete. The
units assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

MCI_TO
An ending location is included in the dwTo member of the structure identified by lpDelete. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET.

For digital-video devices, the lpDelete parameter points to an MCI_DGV_DELETE_PARMS structure.

Waveform-Audio Flags

The following flags apply to the waveaudio device type:

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by lpDelete. The
units assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of
MCI_SET.

MCI_TO
An ending location is included in the dwTo member of the structure identified by lpDelete. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET.

For waveform-audio devices, the lpDelete parameter points to an MCI_WAVE_DELETE_PARMS

structure.

 MCI_ESCAPE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_ESCAPE,
 DWORD dwFlags, (DWORD) (LPMCI_VD_ESCAPE_PARMS) lpEscape);

Sends a string directly to the device. Videodisc devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see Chapter 3, "MCI Overview."
lpEscape

Address of an MCI_VD_ESCAPE_PARMS structure.

The data sent with MCI_ESCAPE is device-dependent and is usually passed directly to the hardware
associated with the device.

Additional Flag

The following additional flag applies to videodisc devices:

MCI_VD_ESCAPE_STRING
A command string is specified in the lpstrCommand member of the structure identified by
lpEscape. This flag is required.

 MCI_FREEZE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_FREEZE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpFreeze);

Freezes motion on the display. Digital-video, video-overlay, and VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpFreeze
Address of an MCI_GENERIC_PARMS structure. (Devices with additional parameters might replace
this structure with a device-specific structure.)

Digital-Video Flags

The following additional flags are used by the digitalvideo device type:

MCI_DGV_FREEZE_AT
The rc member of the structure identified by lpFreeze contains a valid rectangle. The rectangle
specifies a region within the frame buffer that will have the lock mask bit for each pixel turned on.
The specified pixels will not be updated until their lock mask bit is turned off. If this flag is not
specified, the rectangle defaults to the entire frame buffer. This flag is supported only if the
MCI_GETDEVCAPS command returns TRUE for the MCI_DGV_GETDEVCAPS_CAN_LOCK flag.

MCI_DGV_FREEZE_OUTSIDE
The area outside the region specified for the MCI_DGV_FREEZE_AT flag is frozen.

For digital-video devices, the lpFreeze parameter points to an MCI_DGV_FREEZE_PARMS structure.

VCR Flags

The following additional flags are used by the vcr device type:

MCI_VCR_FREEZE_FIELD
Freeze only one member of the current frame.

MCI_VCR_FREEZE_FRAME
Freeze both fields of the current frame.

MCI_VCR_FREEZE_INPUT
Freeze the current frame on the screen (used for recording).

MCI_VCR_FREEZE_OUTPUT
Freeze the current frame from the VCR (used with frame capture).

For VCR devices, the lpFreeze parameter points to an MCI_GENERIC_PARMS structure.

Video-Overlay Flags

The following additional flag is used by the overlay device type:

MCI_OVLY_RECT
The rc member of the structure identified by lpFreeze contains a valid rectangle. If this flag is not
specified, the device driver will freeze the entire frame.

For video-overlay devices, the lpFreeze parameter points to an MCI_OVLY_RECT_PARMS structure.

 MCI_GETDEVCAPS

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_GETDEVCAPS,
 DWORD dwFlags, (DWORD) (LPMCI_GETDEVCAPS_PARMS) lpCapsParms);

Retrieves static information about a device. All devices recognize this command. The parameters and
flags available for this command depend on the selected device. Information is returned in the
dwReturn member of the structure identified by lpCapsParms.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpCapsParms
Address of an MCI_GETDEVCAPS_PARMS structure.

Additional Flags

The following additional standard and command-specific flags apply to all devices supporting
MCI_GETDEVCAPS:

MCI_GETDEVCAPS_COMPOUND_DEVICE
The dwReturn member is set to TRUE if the device uses data storage that must be explicitly
opened and closed; it is set to FALSE otherwise.

MCI_GETDEVCAPS_DEVICE_TYPE
The dwReturn member is set to one of the values listed in "Constants: Device Types" later in this
chapter.

MCI_GETDEVCAPS_HAS_AUDIO
The dwReturn member is set to TRUE if the device has audio output; it is set to FALSE otherwise.

MCI_GETDEVCAPS_HAS_VIDEO
The dwReturn member is set to TRUE if the device has video output; it is set to FALSE otherwise.
For example, the member is set to TRUE for devices that support the animation or videodisc
command set.

MCI_GETDEVCAPS_ITEM
Specifies that the dwItem member of the MCI_GETDEVCAPS_PARMS structure contains one of
the following constants:
MCI_GETDEVCAPS_CAN_EJECT

The dwReturn member is set to TRUE if the device can eject the media; otherwise, it is set to
FALSE.

MCI_GETDEVCAPS_CAN_PLAY
The dwReturn member is set to TRUE if the device can play the media; otherwise, it is set to
FALSE. If a device specifies TRUE, it implies the device supports the MCI_PAUSE and
MCI_STOP commands as well as the MCI_PLAY command.

MCI_GETDEVCAPS_CAN_RECORD
The dwReturn member is set to TRUE if the device supports recording; otherwise, it is set to
FALSE. If a device specifies TRUE, it implies the device supports the MCI_PAUSE and
MCI_STOP commands as well as the MCI_RECORD command.

MCI_GETDEVCAPS_CAN_SAVE
The dwReturn member is set to TRUE if the device can save a file; otherwise, it is set to FALSE.

MCI_GETDEVCAPS_USES_FILES
The dwReturn member is set to TRUE if the device requires a filename; it is set to FALSE
otherwise. Only compound devices use files.

Animation Flags

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the
animation device type:

MCI_ANIM_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the device can play in reverse; otherwise, it is set to
FALSE.

MCI_ANIM_GETDEVCAPS_CAN_STRETCH
The dwReturn member is set to TRUE if the device can stretch the image to fill the frame;
otherwise, it is set to FALSE.

MCI_ANIM_GETDEVCAPS_FAST_RATE
The dwReturn member is set to the standard fast play rate in frames per second.

MCI_ANIM_GETDEVCAPS_MAX_WINDOWS
The dwReturn member is set to the maximum number of windows that the device can handle
simultaneously.

MCI_ANIM_GETDEVCAPS_NORMAL_RATE
The dwReturn member is set to the normal play rate in frames per second.

MCI_ANIM_GETDEVCAPS_PALETTES
The dwReturn member is set to TRUE if the device can return a palette handle; otherwise, it is set
to FALSE.

MCI_ANIM_GETDEVCAPS_SLOW_RATE
The dwReturn member is set to the standard slow play rate in frames per second.

Digital-Video Flags

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the
digitalvideo device type:

MCI_DGV_GETDEVCAPS_CAN_FREEZE
The dwReturn member is set to TRUE if the device can freeze frames; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_CAN_LOCK
The dwReturn member is set to TRUE if the device can lock; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the device can play in reverse; otherwise, it is set to
FALSE.

MCI_DGV_GETDEVCAPS_CAN_STR_IN
The dwReturn member is set to TRUE if the device can stretch input; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_CAN_STRETCH
The dwReturn member is set to TRUE if the device can stretch an image; otherwise, it is set to
FALSE.

MCI_DGV_GETDEVCAPS_CAN_TEST
The dwReturn member is set to TRUE if the device can perform tests; otherwise, it is set to FALSE.

MCI_DGV_GETDEVCAPS_HAS_STILL
The dwReturn member is set to TRUE if the device can display still images; otherwise, it is set to
FALSE.

MCI_DGV_GETDEVCAPS_MAX_WINDOWS
The dwReturn member is set to the maximum number of windows that the device can handle
simultaneously.

MCI_DGV_GETDEVCAPS_MAXIMUM_RATE
The dwReturn member is set to the maximum play rate for the device, in frames per second.

MCI_DGV_GETDEVCAPS_MINIMUM_RATE
The dwReturn member is set to the minimum play rate for the device, in frames per second.

MCI_DGV_GETDEVCAPS_PALETTES
The dwReturn member is set to TRUE if the device can return a palette handle; otherwise, it is set
to FALSE.

VCR Flags

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the
vcr device type:

MCI_GETDEVCAPS_CLOCK_INCREMENT_RATE
The dwReturn member is set to the number of increments per second.

MCI_VCR_GETDEVCAPS_CAN_DETECT_LENGTH
The dwReturn member is set to TRUE if the device is capable of detecting the length of the media;
otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_FREEZE
The dwReturn member is set to TRUE if the device is capable of freezing the output image;
otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_MONITOR_SOURCES
The dwReturn member is set to TRUE if the device is capable of monitoring sources; otherwise, it is
set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_PREROLL
The dwReturn member is set to TRUE if the device is capable of preroll; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_CAN_PREVIEW
The dwReturn member is set to TRUE if the device is capable of previews; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the device is capable of playing in reverse; otherwise, it is
set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_TEST
The dwReturn member is set to TRUE if the device is capable of testing; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_HAS_CLOCK
The dwReturn member is set to TRUE if the device supports an external clock; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_HAS_TIMECODE
The dwReturn member is set to TRUE if device has timecode capability or if this capability is
unknown; otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_NUMBER_OF_MARKS
The dwReturn member is set to the number of marks (99).

MCI_VCR_GETDEVCAPS_SEEK_ACCURACY
The dwReturn member is set to the seek accuracy of the device.

Video-Overlay Flags

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the
overlay device type:

MCI_OVLY_GETDEVCAPS_CAN_FREEZE
The dwReturn member is set to TRUE if the device can freeze the image; otherwise, it is set to
FALSE.

MCI_OVLY_GETDEVCAPS_CAN_STRETCH
The dwReturn member is set to TRUE if the device can stretch the image to fill the frame;
otherwise, it is set to FALSE.

MCI_OVLY_GETDEVCAPS_MAX_WINDOWS
The dwReturn member is set to the maximum number of windows that the device can handle
simultaneously.

Videodisc Flags

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the
videodisc device type:

MCI_VD_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the videodisc player can play in reverse; otherwise, it is set
to FALSE. Some players can play CLV discs in reverse as well as CAV discs.

MCI_VD_GETDEVCAPS_CAV
When combined with other items, specifies that the return information applies to CAV format
videodiscs. This is the default if no videodisc is inserted.

MCI_VD_GETDEVCAPS_CLV
When combined with other items, specifies that the return information applies to CLV format
videodiscs.

MCI_VD_GETDEVCAPS_FAST_RATE
The dwReturn member is set to the standard fast play rate in frames per second.

MCI_VD_GETDEVCAPS_NORMAL_RATE
The dwReturn member is set to the normal play rate in frames per second.

MCI_VD_GETDEVCAPS_SLOW_RATE
The dwReturn member is set to the standard slow play rate in frames per second.

Waveform-Audio Flags

The following flags can be specified in the dwItem member of MCI_GETDEVCAPS_PARMS for the
waveaudio device type:

MCI_WAVE_GETDEVCAPS_INPUT
The dwReturn member is set to the total number of waveform input (recording) devices.

MCI_WAVE_GETDEVCAPS_OUTPUT
The dwReturn member is set to the total number of waveform output (playback) devices.

 MCI_INDEX

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_INDEX,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpIndex);

Turns the on-screen display on or off. VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpIndex
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

The information presented in the on-screen display is controlled by the MCI_VCR_SET_INDEX flag in
the MCI_SET command.

Additional Flags

The following additional flags apply to VCR devices:

MCI_SET_OFF
Turns on-screen display off.

MCI_SET_ON
Turns on-screen display on.

 MCI_INFO

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_INFO,
 DWORD dwFlags, (DWORD) (LPMCI_INFO_PARMS) lpInfo);

Retrieves string information from a device. All devices recognize this command. Information is returned
in the lpstrReturn member of the structure identified by lpInfo. The dwRetSize member specifies the
buffer length for the returned data.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpInfo
Address of an MCI_INFO_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

Additional Flag

The following additional standard and command-specific flag applies to all devices supporting
MCI_INFO:

MCI_INFO_PRODUCT
Obtains a description of the hardware associated with a device. Devices should supply a description
that identifies both the driver and the hardware used.

Animation Flags

The following additional flags apply to the animation device type:

MCI_ANIM_INFO_TEXT
Obtains the window caption.

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported only by devices that return TRUE
when you call the MCI_GETDEVCAPS command with the MCI_GETDEVCAPS_USES_FILES flag.

CD Audio Flags

The following additional flags apply to the cdaudio device type:

MCI_INFO_MEDIA_IDENTITY
Produces a unique identifier for the audio CD currently loaded in the player being queried. This flag
returns a string of 16 hexadecimal digits.

MCI_INFO_MEDIA_UPC
Produces the Universal Product Code (UPC) that is encoded on an audio CD. The UPC is a string of
digits. It might not be available for all CDs.

Digital-Video Flags

The following additional flags apply to the digitalvideo device type:

MCI_DGV_INFO_ITEM
A constant indicating the information desired is included in the dwItem member of the structure
identified by lpInfo. The following constants are defined for digital-video devices:
MCI_DGV_INFO_AUDIO_ALG

Returns the name for the current audio compression algorithm.
MCI_DGV_INFO_AUDIO_QUALITY

Returns the name for the current audio quality descriptor.
MCI_DGV_INFO_STILL_ALG

Returns the name for the current still image compression algorithm.
MCI_DGV_INFO_STILL_QUALITY

Returns the name for the current still image quality descriptor.
MCI_DGV_INFO_USAGE

Returns a string describing usage restrictions that might be imposed by the owner of the visual or
audible data in the workspace.

MCI_DGV_INFO_VIDEO_ALG
Returns the name for the current video compression algorithm.

MCI_DGV_INFO_VIDEO_QUALITY
Returns the name for the current video quality descriptor.

MCI_INFO_VERSION
Returns the release level of the device driver and hardware. Device driver developers must
document the syntax of the returned string.

MCI_DGV_INFO_TEXT
Obtains the window caption.

MCI_INFO_FILE
Obtains the path and filename of the last file specified with the MCI_OPEN or MCI_LOAD
command. If a file has not been specified, the device returns a null-terminated string. This flag is
supported only by devices that return TRUE to the MCI_GETDEVCAPS_USES_FILES flag of the
MCI_GETDEVCAPS command.

For digital-video devices, lpInfo points to an MCI_DGV_INFO_PARMS structure.

Sequencer Flags

The following additional flags apply to the sequencer device type:

MCI_INFO_COPYRIGHT
Obtains the MIDI file copyright notice from the copyright meta event.

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported only by devices that return TRUE
when you call the MCI_GETDEVCAPS command with the MCI_GETDEVCAPS_USES_FILES flag.

MCI_INFO_NAME
Obtains the sequence name from the sequence/track name meta event.

VCR Flags

The following additional flag applies to the vcr device type:

MCI_VCR_INFO_VERSION
Sets lpstrReturn member of the MCI_INFO_PARMS structure to point to the version number. Also
sets the dwRetSize member equal to the length of the string pointed to.

Video-Overlay Flags

The following additional flags apply to the overlay device type:

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported only by devices that return TRUE to
the MCI_GETDEVCAPS_USES_FILES flag of the MCI_GETDEVCAPS command.

MCI_OVLY_INFO_TEXT
Obtains the caption of the window associated with the video-overlay device.

Waveform-Audio Flags

The following additional flags apply to the waveaudio device type:

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported by devices that return TRUE when you
call the MCI_GETDEVCAPS command with the MCI_GETDEVCAPS_USES_FILES flag.

MCI_WAVE_INPUT
Obtains the product name of the current input.

MCI_WAVE_OUTPUT
Obtains the product name of the current output and its value is device specific.

 MCI_LIST

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_LIST,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpList);

Obtains information about the number and types of inputs available to the device. Digital-video and
VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpList
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags

The following additional flags apply to the digitalvideo device type:

MCI_DGV_LIST_ALG
The lpstrAlgorithm member of the structure identified by lpList contains an address of a buffer
containing the name of an algorithm. The name is used to retrieve the types of quality descriptors
associated with an algorithm.

MCI_DGV_LIST_COUNT
Returns the number of options of the specified type.

MCI_DGV_LIST_ITEM
A constant indicating the list type is included in the dwItem member of the structure identified by
lpList. This flag is required. Use one of the following constants to indicate the list type:
MCI_DGV_LIST_AUDIO_ALG

The command should retrieve names of audio algorithms.
MCI_DGV_LIST_AUDIO_QUALITY

The command should retrieve audio quality levels. The levels returned are associated with the
algorithm referenced by the lpstrAlgorithm member of the structure identified by lpList. If that
member is specified using the string "current", then the qualities associated with the current
algorithm are returned.

MCI_DGV_LIST_AUDIO_STREAM
The command should retrieve names of audio streams.

MCI_DGV_LIST_STILL_AL
The command should retrieve names of still algorithms.

MCI_DGV_LIST_STILL_QUALITY
The command should retrieve quality levels. The levels returned are associated with the algorithm
referenced by the lpstrAlgorithm member of the structure identified by lpList. If that member is
specified using the string "current", then the qualities associated with the current algorithm are
returned.

MCI_DGV_LIST_VIDEO_ALG
The command should retrieve names of video algorithms.

MCI_DGV_LIST_VIDEO_QUALITY
The command should retrieve video quality levels. The levels returned are associated with the
algorithm referenced by the lpstrAlgorithm member of the structure identified by lpList. If that
member is specified using the string "current", then the qualities associated with the current
algorithm are returned.

MCI_DGV_LIST_VIDEO_SOURCE

The command should return information about the video sources. When used with
MCI_DGV_LIST_COUNT, the command returns the number of video sources. When used with
MCI_DGV_LIST_NUMBER, the command returns the type of a video source. MCI defines the
following types:
MCI_DGV_SETVIDEO_SRC_GENERIC
MCI_DGV_SETVIDEO_SRC_NTSC
MCI_DGV_SETVIDEO_SRC_PAL
MCI_DGV_SETVIDEO_SRC_RGB
MCI_DGV_SETVIDEO_SRC_SECAM
MCI_DGV_SETVIDEO_SRC_SVIDEO
There might be more than one source of each type returned. The generic source type is used
when more then one type of signal is allowed for that connector.

MCI_DGV_LIST_VIDEO_STREAM
The command should retrieve names of video streams.

MCI_DGV_LIST_NUMBER
An index is specified in the dwNumber member of the structure identified by lpList. The index must
be an integer between 1 and the value returned for the MCI_DGV_LIST_COUNT flag.

For digital-video devices, lpList points to an MCI_DGV_LIST_PARMS structure.

VCR Flags

The following additional flags apply to the vcr device type:

MCI_VCR_LIST_AUDIO_SOURCE
List audio inputs or types.

MCI_VCR_LIST_COUNT
Sets the dwReturn member of the structure identified by lpList to the total number of video or audio
inputs.

MCI_VCR_LIST_NUMBER
Sets the dwReturn member of the structure identified by lpList to the type of the video or audio input
specified by the dwNumber member.

MCI_VCR_LIST_VIDEO_SOURCE
List video inputs or types.

For VCR devices, lpList points to an MCI_VCR_LIST_PARMS structure.

 MCI_LOAD

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_LOAD,
 DWORD dwFlags, (DWORD) (LPMCI_LOAD_PARMS) lpLoad);

Loads a file. Digital-video and video-overlay devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags,
see Chapter 3, "MCI Overview."

lpLoad
Address of an MCI_LOAD_PARMS structure. (Devices with additional parameters might replace this
structure with a device-specific structure. For digital-video devices, the lpLoad parameter points to
an MCI_DGV_LOAD_PARMS structure.)

Additional Flag

The following additional flag applies to all devices supporting MCI_LOAD:

MCI_LOAD_FILE
The lpfilename member of the structure identified by lpLoad contains an address of a buffer
containing the filename.

Video-Overlay Flags

The following additional flag is used with the overlay device type:

MCI_OVLY_RECT
The rc member of the structure identified by lpLoad contains a valid display rectangle that identifies
the area of the video buffer to update.

For video-overlay devices, the lpLoad parameter points to an MCI_OVLY_LOAD_PARMS structure.

 MCI_MARK

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_MARK,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpMark);

Records or erases marks that can be used with the MCI_SEEK command for high-speed searches.
VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpMark
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Additional Flags

The following additional flags apply to VCR devices:

MCI_VCR_MARK_ERASE
Erases a mark at the current position if one exists.

MCI_VCR_MARK_WRITE
Writes a mark at the current position.

 MCI_MONITOR

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_MONITOR,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_MONITOR_PARMS) lpMonitor);

Specifies the presentation source. Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpMonitor
Address of an MCI_DGV_MONITOR_PARMS structure.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_DGV_MONITOR_METHOD
A constant indicating the method of monitoring is included in the dwMethod member of the structure
identified by lpMonitor.
When the MCI_DGV_MONITOR_INPUT flag is used in the dwSource member, this selects the
method of monitoring. Typically, different monitoring methods have different implications on how the
hardware is used. The default monitoring method is selected by the device.

MCI_DGV_MONITOR_SOURCE
A constant indicating the monitor source is included in the dwSource member of the structure
identified by lpMonitor.

 MCI_OPEN

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_OPEN,
 DWORD dwFlags, (DWORD) (LPMCI_OPEN_PARMS) lpOpen);

Initializes a device or file. All devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see Chapter 3, "MCI Overview."
lpOpen

Address of an MCI_OPEN_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

The MCI_OPEN_TYPE flag must be used whenever a device is specified in the mciSendCommand
function. If you open a device by specifying a device-type constant, you must specify the
MCI_OPEN_TYPE_ID flag in addition to MCI_OPEN_TYPE. For a list of device-type constants, see
"Constants: Device Types" later in this chapter.

If the MCI_OPEN_SHAREABLE flag is not specified when a device or file is initially opened, all
subsequent MCI_OPEN commands to the device or file will fail. If the device or file is already open and
this flag is not specified, the call will fail even if the first open command specified
MCI_OPEN_SHAREABLE. Files opened for the MCISEQ.DRV and MCIWAVE.DRV devices are
nonshareable.

Case is ignored in the device name, but there cannot be leading or trailing blanks.

To use automatic type selection (via the entries in the registry), assign the filename and file extension
to the lpstrElementName member of the structure identified by lpOpen, set the lpstrDeviceType
member to NULL, and set the MCI_OPEN_ELEMENT flag.

Additional Flags

The following additional flags apply to all devices supporting MCI_OPEN:

MCI_OPEN_ALIAS
An alias is included in the lpstrAlias member of the structure identified by lpOpen.

MCI_OPEN_SHAREABLE
The device or file should be opened as shareable.

MCI_OPEN_TYPE
A device type name or constant is included in the lpstrDeviceType member of the structure
identified by lpOpen.

MCI_OPEN_TYPE_ID
The low-order word of the lpstrDeviceType member of the structure identified by lpOpen contains a
standard MCI device type identifier and the high-order word optionally contains the ordinal index for
the device. Use this flag with the MCI_OPEN_TYPE flag.

The following additional flags apply to compound devices:

MCI_OPEN_ELEMENT
A filename is included in the lpstrElementName member of the structure identified by lpOpen.

MCI_OPEN_ELEMENT_ID
The lpstrElementName member of the structure identified by lpOpen is interpreted as a
doubleword value and has meaning internal to the device. Use this flag with the
MCI_OPEN_ELEMENT flag.

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_OPEN_NOSTATIC
The device should reduce the number of static (system) colors in the palette to two.

MCI_ANIM_OPEN_PARENT
The parent window handle is specified in the hWndParent member of the structure identified by
lpOpen. The parent window handle is required for some window styles.

MCI_ANIM_OPEN_WS
A window style is specified in the dwStyle member of the structure identified by lpOpen. The
dwStyle value specifies the style of the window that the driver will create and display if the
application does not provide one. The style parameter takes an integer that defines the window
style. These window style constants are the same as the ones that are used in the CreateWindow
function (for example, WS_CHILD, WS_OVERLAPPEDWINDOW, and WS_POPUP).

For animation devices, the lpOpen parameter points to an MCI_ANIM_OPEN_PARMS structure.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_OPEN_NOSTATIC
The device should reduce the number of static (system) colors in the palette. This increases the
number of colors available for rendering the video stream. This flag applies only to devices that
share a palette with Windows.

MCI_DGV_OPEN_PARENT
The parent window handle is specified in the hWndParent member of the structure identified by
lpOpen.

MCI_DGV_OPEN_WS
A window style is specified in the dwStyle member of the structure identified by lpOpen.

For digital-video devices, the lpOpen parameter points to an MCI_DGV_OPEN_PARMS structure.

Video-Overlay Flags

The following additional flags are used with the overlay device type:

MCI_OVLY_OPEN_PARENT
The parent window handle is specified in the hWndParent member of the structure identified by
lpOpen.

MCI_OVLY_OPEN_WS
A window style is specified in the dwStyle member of the structure identified by lpOpen. The
dwStyle value specifies the style of the window that the driver will create and display if the
application does not provide one. The style parameter takes an integer that defines the window
style. These constants are the same as the standard window styles (such as WS_CHILD,
WS_OVERLAPPEDWINDOW, or WS_POPUP).

For video-overlay devices, the lpOpen parameter points to an MCI_OVLY_OPEN_PARMS structure.

Waveform-Audio Flag

The following additional flag is used with the waveaudio device type:

MCI_WAVE_OPEN_BUFFER
A buffer length is specified in the dwBufferSeconds member of the structure identified by lpOpen.

For waveform-audio devices, the lpOpen parameter points to an MCI_WAVE_OPEN_PARMS
structure. The MCIWAVE driver requires an asychronous waveform-audio device.

 MCI_PASTE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PASTE,
 DWORD dwlags, (DWORD) (LPMCI_DGV_PASTE_PARMS) lpPaste);

Pastes data from the clipboard into a file. Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpPaste
Address of an MCI_DGV_PASTE_PARMS structure.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_DGV_PASTE_AT
A rectangle is included in the rc member of the structure identified by lpPaste. The first two values of
the rectangle specify the point within the frame to place the clipboard information. If the rectangle
height and width are nonzero, the clipboard contents are scaled to those dimensions when they are
pasted in the frame. If the flag is omitted, MCI_PASTE defaults to the entire frame rectangle.

MCI_DGV_PASTE_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
lpPaste. If only one audio stream exists on the clipboard, the audio data is pasted into the
designated stream. If more than one audio stream exists on the clipboard, the stream indicates the
starting number for the stream sequences. If you use this flag and also want to paste video, you
must also use the MCI_DGV_PASTE_VIDEO_STREAM flag. (If neither flag is specified, all audio
and video streams are pasted starting with the first audio and video stream. Each pasted stream
retains its original stream number.)

MCI_DGV_PASTE_INSERT
Clipboard data should be inserted in the existing workspace at the position specified by the MCI_TO
flag. Any existing data after the insertion point is moved in the workspace to make room. This is the
default.

MCI_DGV_PASTE_OVERWRITE
Clipboard data should replace data already present in the workspace. The workspace data replaced
follows the insertion point.

MCI_DGV_PASTE_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
lpPaste. If only one video stream exists on the clipboard, the video data is pasted into the
designated stream. If more than one video stream exists on the clipboard, the stream indicates the
starting number for the stream sequences. If you use this flag and also want to paste audio, you
must also use the MCI_DGV_PASTE_AUDIO_STREAM flag. (If neither flag is specified, all audio
and video streams are pasted starting with the first audio and video stream. Each pasted stream
retains its original stream number.)

MCI_TO
A position value is included in the dwTo member of the structure identified by lpPaste. The position
value specifies the position to begin pasting data into the workspace. If this flag is omitted, the
position defaults to the current position.

 MCI_PAUSE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PAUSE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpPause);

Pauses the current action. Animation, CD audio, digital-video, MIDI sequencer, VCR, videodisc, and
waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpPause
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

The difference between the MCI_STOP and MCI_PAUSE commands depends on the device. If
possible, MCI_PAUSE suspends device operation but leaves the device ready to resume play
immediately. With the MCICDA, MCISEQ, and MCIPIONR drivers, the MCI_PAUSE command works
the same as the MCI_STOP command.

For digital-video devices, the lpPause parameter points to an MCI_DGV_PAUSE_PARMS structure.

 MCI_PLAY

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PLAY,
 DWORD dwFlags, (DWORD) (LPMCI_PLAY_PARMS) lpPlay);

Signals the device to begin transmitting output data. Animation, CD audio, digital-video, MIDI
sequencer, videodisc, VCR, and waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpPlay
Address of an MCI_PLAY_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

Additional Flags

The following additional flags apply to all devices supporting MCI_PLAY:

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by lpPlay. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command. If MCI_FROM is not specified, the starting location defaults to the current
position.

MCI_TO
An ending location is included in the dwTo member of the structure identified by lpPlay. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET. If
MCI_TO is not specified, the ending location defaults to the end of the media.

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_PLAY_FAST
Play fast.

MCI_ANIM_PLAY_REVERSE
Play in reverse.

MCI_ANIM_PLAY_SCAN
Play as quickly as possible.

MCI_ANIM_PLAY_SLOW
Play slowly.

MCI_ANIM_PLAY_SPEED
The play speed is included in the dwSpeed member of the structure identified by lpPlay.

For animation devices, lpPlay points to an MCI_ANIM_PLAY_PARMS structure.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_PLAY_REPEAT
Playback should start again at the beginning when the end of the content is reached.

MCI_DGV_PLAY_REVERSE
Playback should occur in reverse.

MCI_MCIAVI_PLAY_WINDOW

Playback should occur in the window associated with a device instance (the default). (This flag is
specific to MCIAVI.DRV.)

MCI_MCIAVI_PLAY_FULLSCREEN
Playback should use a full-screen display. Use this flag only when playing compressed or 8-bit files.

For digital-video devices, lpPlay points to an MCI_DGV_PLAY_PARMS structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_PLAY_AT
The dwAt member of the structure identified by lpPlay contains a time when the entire command
begins, or if the device is cued, when the device reaches the from position given by the MCI_CUE
command.

MCI_VCR_PLAY_REVERSE
Playback should occur in reverse.

MCI_VCR_PLAY_SCAN
Playback should be as fast as possible while maintaining video output.

For VCR devices, lpPlay points to an MCI_VCR_PLAY_PARMS structure.

Videodisc Flags

The following additional flags are used with the videodisc device type:

MCI_VD_PLAY_FAST
Play fast.

MCI_VD_PLAY_REVERSE
Play in reverse.

MCI_VD_PLAY_SCAN
Scan quickly.

MCI_VD_PLAY_SLOW
Play slowly.

MCI_VD_PLAY_SPEED
The play speed is included in the dwSpeed member in the structure identified by lpPlay.

For animation devices, lpPlay points to an MCI_VD_PLAY_PARMS structure.

 MCI_PUT

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_PUT,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpDest);

Sets the source, destination, and frame rectangles. Animation, digital-video, and video-overlay devices
recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags,
see Chapter 3, "MCI Overview."

lpDest
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_PUT_DESTINATION
The rectangle defined for MCI_ANIM_RECT specifies the area of the client window used to display
an image. The rectangle contains the offset and visible extent of the image relative to the window
origin. If the frame is being stretched, the source is stretched to the destination rectangle.

MCI_ANIM_PUT_SOURCE
The rectangle defined for MCI_ANIM_RECT specifies a clipping rectangle for the animation image.
The rectangle contains the offset and extent of the image relative to the image origin.

MCI_ANIM_RECT
The rc member of the structure identified by lpDest contains a valid rectangle. If this flag is not
specified, the default rectangle matches the coordinates of the image or window being clipped.

For animation devices, lpDest points to an MCI_ANIM_RECT_PARMS structure.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_PUT_CLIENT
The rectangle defined for MCI_DGV_RECT applies to the position of the client window. The
rectangle specified is relative to the parent window of the display window.
MCI_DGV_PUT_WINDOW must be set concurrently with this flag.

MCI_DGV_PUT_DESTINATION
The rectangle defined for MCI_DGV_RECT specifies a destination rectangle. The destination
rectangle specifies the portion of the client window associated with this device driver instance that
shows the image or video.

MCI_DGV_PUT_FRAME
The rectangle defined for MCI_DGV_RECT applies to the frame rectangle. The frame rectangle
specifies the portion of the frame buffer used as the destination of the video images obtained from
the video rectangle. The video should be scaled to fit within the frame buffer rectangle.
The rectangle is specified in frame buffer coordinates. The default rectangle is the full frame buffer.
Specifying this rectangle lets the device scale the image as it digitizes the data. Devices that cannot
scale the image reject this command with MCIERR_UNSUPPORTED_FUNCTION. You can use the
MCI_GETDEVCAPS_CAN_STRETCH flag with the MCI_GETDEVCAPS command to determine if
a device scales the image. A device returns FALSE if it cannot scale the image.

MCI_DGV_PUT_SOURCE

The rectangle defined for MCI_DGV_RECT specifies a source rectangle. The source rectangle
specifies which portion of the frame buffer is to be scaled to fit into the destination rectangle.

MCI_DGV_PUT_VIDEO
The rectangle defined for MCI_DGV_RECT applies to the video rectangle. The video rectangle
specifies which portion of the current presentation source is stored in the frame buffer. The rectangle
is specified using the natural coordinates of the presentation source. It allows the specification of
cropping that occurs prior to storing images and video in the frame buffer. The default rectangle is
the full active scan area or the full decompressed images and video.

MCI_DGV_PUT_WINDOW
The rectangle defined for MCI_DGV_RECT applies to the display window. This rectangle is relative
to the parent window of the display window (usually the desktop). If the window is not specified, it
defaults to the initial window size and position.

MCI_DGV_RECT
The rc member of the structure identified by lpDest contains a valid rectangle.

For digital-video devices, lpDest points to an MCI_DGV_PUT_PARMS structure.

Video-Overlay Flags

The following additional flags are used with the overlay device type:

MCI_OVLY_PUT_DESTINATION
The rectangle defined for MCI_OVLY_RECT specifies the area of the client window used to display
an image. The rectangle contains the offset and visible extent of the image relative to the window
origin. If the frame is being stretched, the source is stretched to the destination rectangle.

MCI_OVLY_PUT_FRAME
The rectangle defined for MCI_OVLY_RECT specifies the area of the video buffer used to receive
the video image. The rectangle contains the offset and extent of the buffer area relative to the video
buffer origin.

MCI_OVLY_PUT_SOURCE
The rectangle defined for MCI_OVLY_RECT specifies the area of the video buffer used as the
source of the digital image. The rectangle contains the offset and extent of the clipping rectangle for
the video buffer relative to its origin.

MCI_OVLY_PUT_VIDEO
The rectangle defined for MCI_OVLY_RECT specifies the area of the video source capture by the
video buffer. The rectangle contains the offset and extent of the clipping rectangle for the video
source relative to its origin.

MCI_OVLY_RECT
The rc member of the structure identified by lpDest contains a valid display rectangle. If this flag is
not specified, the default rectangle matches the coordinates of the video buffer or window being
clipped.

For video-overlay devices, lpDest points to an MCI_OVLY_RECT_PARMS structure.

 MCI_QUALITY

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_QUALITY,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_QUALITY_PARMS) lpQuality);

Defines a custom quality level for audio, video, or still image data compression. Digital-video devices
recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpQuality
Address of an MCI_DGV_QUALITY_PARMS structure.

The name defined for this quality level can be used when setting the audio, video, or still quality with
the MCI_SETAUDIO and MCI_SETVIDEO commands.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_QUALITY_ALG
The lpstrAlgorithm member of the structure identified by lpQuality contains an address of a buffer
containing the name of the algorithm. This algorithm must be supported by the device driver, and
must be compatible with the audio, still, or video descriptor that is used. If this flag is omitted, the
current algorithm is used.

MCI_QUALITY_DIALOG
The device driver should display a dialog box for specifying the quality level. The dialog box has
algorithm-specific fields used internally by the device driver to create a structure describing a
specific quality level.

MCI_QUALITY_HANDLE
The dwHandle member of the structure identified by lpQuality contains a handle to a structure. The
structure contains algorithmic-specific data describing the specific quality level. The format of the
structures for the algorithms is device dependent.

MCI_QUALITY_ITEM
A constant indicating the type of algorithm is included in the dwItem member of the structure
identified by lpQuality.

MCI_QUALITY_NAME
The lpstrName member of the structure identified by lpQuality contains an address of a buffer
containing the quality descriptor.

 MCI_REALIZE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_REALIZE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpRealize);

Causes a graphic device to realize its palette into a device context (DC). Animation and digital-video
devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags,
see Chapter 3, "MCI Overview."

lpRealize
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

You should use this command when your application receives the WM_QUERYNEWPALETTE
message.

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_REALIZE_BKGD
Realizes the palette as a background palette.

MCI_ANIM_REALIZE_NORM
Realizes the palette normally. This is the default.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_REALIZE_BKGD
Realizes the palette as a background palette.

MCI_DGV_REALIZE_NORM
Realizes the palette normally. This is the default.

For digital-video devices, the lpRealize parameter points to an MCI_REALIZE_PARMS structure. The
MCI_REALIZE_PARMS structure is identical to the MCI_GENERIC_PARMS structure.

 MCI_RECORD

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RECORD,
 DWORD dwFlags, (DWORD) (LPMCI_RECORD_PARMS) lpRecord);

Starts recording from the current position or from one specified location to another specified location.
VCR and waveform-audio devices recognize this command. Although digital-video devices and MIDI
sequencers also recognize this command, the MCIAVI and MCISEQ drivers do not implement it.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpRecord
Address of an MCI_RECORD_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

This command is supported by devices that return TRUE when you call the MCI_GETDEVCAPS
command with the MCI_GETDEVCAPS_CAN_RECORD flag. For the MCIWAVE driver, all data
recorded after a file is opened is discarded if the file is closed without saving it.

Additional Flags

The following additional flags apply to all devices supporting MCI_RECORD:

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by lpRecord. The
units assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command. If MCI_FROM is not specified, the starting location defaults to the current
position.

MCI_RECORD_INSERT
Newly recorded information should be inserted or pasted into the existing data. Some devices might
not support this. If supported, this is the default.

MCI_RECORD_OVERWRITE
Data should overwrite existing data. The MCIWAVE.DRV device returns
MCIERR_UNSUPPORTED_FUNCTION in response to this flag.

MCI_TO
An ending location is included in the dwTo member of the structure identified by lpRecord. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command. If MCI_TO is not specified, the ending location defaults to the end of the
content.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_RECORD_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
lpRecord. If you omit this flag, audio data is recorded into the first physical stream.

MCI_DGV_RECORD_HOLD
When recording stops, the screen will hold the last image and will not resume showing the video
until an MCI_MONITOR command is issued.

MCI_DGV_RECORD_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
lpRecord. If you omit this flag, video data is recorded into the first physical stream.

MCI_DGV_RECT
A rectangle is specified in the rc member of the structure identified by lpRecord. The rectangle
specifies the region of the external input used as the source for the pixels compressed and saved.
This rectangle defaults to the rectangle specified (or defaulted) by the MCI_DGV_PUT_VIDEO flag
for the MCI_PUT command. When it is set differently than the video rectangle, what is displayed is
not what is recorded

For digital-video devices, lpRecord points to an MCI_DGV_RECORD_PARMS structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_RECORD_AT
The dwAt member of the structure identified by lpRecord contains a time when the entire command
begins, or if the device is cued, when the device reaches the from position given by the cue
command.

MCI_VCR_RECORD_INITIALIZE
Seek the device to the start of the media, begin recording blank video and audio, and record
timecode, if possible.

For VCR devices, lpRecord points to an MCI_VCR_RECORD_PARMS structure.

 MCI_RESERVE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RESERVE,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_RESERVE_PARMS) lpReserve);

Allocates contiguous disk space for the workspace of the device driver instance for use with
subsequent recording. Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpReserve
Address of an MCI_DGV_RESERVE_PARMS structure.

If the workspace contains unsaved data, this data is lost. If disk space is not reserved prior to
recording, the MCI_RECORD command performs an implied reserve with device-specific default
parameters. On some implementations, reserve is not required and might be ignored by the device
driver. Explicitly reserving space gives you better control over when the delay for disk allocation occurs,
how much space is allocated, and where the disk space is allocated. The amount and location of disk
space already reserved for this device instance can be changed by issuing MCI_RESERVE again. Any
allocated and still unused disk space is not deallocated until any recorded data is saved or until the
device driver instance is closed.

If video is turned off with the MCI_OFF flag of the MCI_SETVIDEO command, the space reserved
does not include any video. If audio is turned off with the MCI_OFF flag of the MCI_SETAUDIO
command, the space reserved does not include any audio. If both audio and video are turned off or if
the requested size is zero, no space is reserved and any existing reserved space is deallocated.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_DGV_RESERVE_IN
The lpstrPath member of the structure identified by lpReserve contains an address of a buffer
containing the location of a temporary file. The buffer contains only the drive and directory path of
the file used to hold recorded data; the filename is specified by the device driver. This temporary file
is deleted when the device instance is closed unless it is explicitly saved. If this flag is omitted, the
device driver specifies where disk space is allocated.

MCI_DGV_RESERVE_SIZE
The dwSize member of the structure identified by lpReserve specifies the approximate amount of
disk space to reserve in the workspace for recording. The value is specified in the current time
format. The amount of disk space is estimated from the requested time and from which file format
and video and audio algorithm and quality values are in effect. If this flag is omitted, the device driver
might use a default value it defines.

 MCI_RESTORE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RESTORE,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_RESTORE_PARMS) lpRestore);

Copies a bitmap from a file to the frame buffer. Digital-video devices recognize this command. This
command performs the opposite action of the MCI_CAPTURE command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpRestore
Address of an MCI_DGV_RESTORE_PARMS structure.

The implementation can recognize a variety of image formats, but a Windows device-independent
bitmap (DIB) is always accepted.

Additional Flags

The following additional flags apply to digital-video devices:

MCI_DGV_RESTORE_FROM
The lpstrFileName member of the structure identified by lpRestore contains an address of a buffer
containing the source filename. The filename is required.

MCI_DGV_RESTORE_AT
The rc member of the structure identified by lpRestore contains a valid rectangle. The rectangle
specifies a region of the frame buffer relative to its origin. The first pair of coordinates specifies the
upper left corner of the rectangle; the second pair specifies the width and height. If this flag is not
specified, the image is copied to the upper left corner of the frame buffer.

 MCI_RESUME

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_RESUME,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpResume);

Causes a paused device to resume the paused operation. Animation, digital-video, VCR, and
waveform-audio devices recognize this command. Although CD audio, MIDI sequencer, and videodisc
devices also recognize this command, the MCICDA, MCISEQ, and MCIPIONR device drivers do not
support it.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpResume
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

This command resumes playing and recording without changing the current track position set with
MCI_PLAY or MCI_RECORD.

 MCI_SAVE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SAVE,
 DWORD dwFlags, (DWORD) (LPMCI_SAVE_PARMS) lpSave);

Saves the current file. Devices that modify files should not destroy the original copy until they receive
the save message. Video-overlay and waveform-audio devices recognize this command. Although
digital-video devices and MIDI sequencers also recognize this command, the MCIAVI and MCISEQ
drivers do not implement it.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpSave
Address of an MCI_SAVE_PARMS structure. (Devices with additional parameters might replace this
structure with a device-specific structure.)

This command is supported by devices that return TRUE when you call the MCI_GETDEVCAPS
command with the MCI_GETDEVCAPS_CAN_SAVE flag.

Additional Flag

The following additional flag applies to all devices supporting MCI_SAVE:

MCI_SAVE_FILE
The lpfilename member of the structure identified by lpSave contains an address of a buffer
containing the destination filename.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_RECT
The rc member of the structure identified by lpSave contains a valid rectangle. The rectangle
specifies a region of the frame buffer that will be saved to the specified file. The first pair of
coordinates specifies the upper left corner of the rectangle; the second pair specifies the width and
height. Digital-video devices must use the MCI_CAPTURE command to capture the contents of the
frame buffer. (Video-overlay devices should also use MCI_CAPTURE.) This flag is for compatibility
with the existing MCI video-overlay command set.

MCI_DGV_SAVE_ABORT
Stops a save operation in progress. This must be the only flag present.

MCI_DGV_SAVE_KEEPRESERVE
Unused disk space left over from the original MCI_RESERVE command is not deallocated.

For digital-video devices, the lpSave parameter points to an MCI_DGV_SAVE_PARMS structure.

Video-Overlay Flags

The following additional flag is used with the overlay device type:

MCI_OVLY_RECT
The rc member of the structure identified by lpSave contains a valid display rectangle indicating the
area of the video buffer to save.

For video-overlay devices, the lpSave parameter points to an MCI_OVLY_SAVE_PARMS structure.

 MCI_SEEK

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SEEK,
 DWORD dwFlags, (DWORD) (LPMCI_SEEK_PARMS) lpSeek);

Changes the current position in the content as quickly as possible. Video and audio output are disabled
during the seek. After the seek is complete, the device is stopped. Animation, CD audio, digital-video,
MIDI sequencer, VCR, videodisc, and waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpSeek
Address of an MCI_SEEK_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

If a data sample size for a device is larger than 1 byte (such as with waveform-audio stereo data), this
command moves to the beginning of the nearest sample when a specified position does not coincide
with the start of a sample.

Additional Flags

The following additional flags apply to all devices supporting MCI_SEEK:

MCI_SEEK_TO_END
Seek to the end of the content.

MCI_SEEK_TO_START
Seek to the beginning of the content.

MCI_TO
A position is included in the dwTo member of the structure identified by lpSeek. The units assigned
to the position values are specified with the MCI_SET_TIME_FORMAT flag of the MCI_SET
command. Do not use this flag with MCI_SEEK_TO_END or MCI_SEEK_TO_START.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_SEEK_AT
The dwAt member of the structure identified by lpSeek contains a time when the entire command
begins.

MCI_VCR_SEEK_MARK
The dwMark member of the structure identified by lpSeek contains the numbered mark to search
for.

MCI_VCR_SEEK_REVERSE
Seek direction is reverse; this is used only with the MCI_VCR_SEEK_MARK flag.

For VCR devices, the lpSeek parameter points to an MCI_VCR_SEEK_PARMS structure.

Videodisc Flag

The following additional flag is used with the videodisc device type:

MCI_VD_SEEK_REVERSE
Seek direction is reverse.

 MCI_SET

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SET,
 DWORD dwFlags, (DWORD) (LPMCI_SET_PARMS) lpSet);

Sets device information. Animation, CD audio, digital-video, MIDI sequencer, VCR, videodisc, video-
overlay, and waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpSet
Address of an MCI_SET_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

Additional Flags

The following additional flags apply to all devices supporting MCI_SET:

MCI_SET_AUDIO
An audio channel number is included in the dwAudio member of the structure identified by lpSet.
This flag must be used with MCI_SET_ON or MCI_SET_OFF. Use one of the following constants to
indicate the channel number:
MCI_SET_AUDIO_ALL

All audio channels.
MCI_SET_AUDIO_LEFT

Left channel.
MCI_SET_AUDIO_RIGHT

Right channel.
MCI_SET_DOOR_CLOSED

Closes the media cover (if any).
MCI_SET_DOOR_OPEN

Opens the media cover (if any).
MCI_SET_OFF

Disables the specified video or audio channel.
MCI_SET_ON

Enables the specified video or audio channel.
MCI_SET_TIME_FORMAT

A time format parameter is included in the dwTimeFormat member of the structure identified by
lpSet. The following flags are used with this flag:
MCI_FORMAT_BYTES

Within a PCM (Pulse Code Modulation) data format, changes the time member description to
bytes for input or output. Recognized by the waveaudio device type.

MCI_FORMAT_FRAMES
Subsequent commands will use frames. Recognized by the animation, digitalvideo, vcr, and
videodisc device types.

MCI_FORMAT_HMS
Changes the time format to hours, minutes, and seconds. Recognized by the vcr and videodisc
device types.

MCI_FORMAT_MILLISECONDS
Changes the time format to milliseconds. Recognized by all device types.

MCI_FORMAT_MSF
Changes the time format to minutes, seconds, and frames. Recognized by the cdaudio and vcr
device types.

MCI_FORMAT_SAMPLES
Changes the time format to samples for input or output. Recognized by the waveaudio device
type.

MCI_FORMAT_SMPTE_24, MCI_FORMAT_SMPTE_25, and MCI_FORMAT_SMPTE_30
Sets the time format to 24, 25, and 30 frame SMPTE (Society of Motion Picture and Television
Engineers), respectively. Recognized by the sequencer and vcr device types.

MCI_FORMAT_SMPTE_30DROP
Sets the time format to 30 drop-frame SMPTE. Recognized by the sequencer and vcr device
types.

MCI_FORMAT_TMSF
Changes the time format to tracks, minutes, seconds, and frames. (MCI uses continuous track
numbers.) Recognized by the cdaudio and vcr device types.

MCI_SET_VIDEO
Sets the video signal on or off. This flag must be used with either MCI_SET_ON or MCI_SET_OFF.
Devices that do not have video return MCIERR_UNSUPPORTED_FUNCTION.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_SET_FILEFORMAT
A file format parameter is included in the dwFileFormat member of the structure identified by lpSet.
For digital-video devices, the file format is used for save or capture commands. If omitted, this might
default to a device driver defined format. If the specified file format conflicts with the currently
selected algorithm and quality, then they are changed to the defaults for the file format. The following
file format constants are defined:
MCI_DGV_FF_AVI

AVI format.
MCI_DGV_FF_AVSS

AVSS format.
MCI_DGV_FF_DIB

DIB format.
MCI_DGV_FF_JFIF

JFIF format.
MCI_DGV_FF_JPEG

JPEG format.
MCI_DGV_FF_MPEG

MPEG format.
MCI_DGV_FF_RDIB

RLE DIB format.
MCI_DGV_FF_RJPEG

RJPEG format.
MCI_DGV_SET_SEEK_EXACTLY

Sets the format used for positioning. This flag must be used with MCI_SET_ON or MCI_SET_OFF. If
MCI_SET_ON is specified, playing or recording precisely accesses the frame specified with the
MCI_FROM flag. This might add some extra delay if the requested frame is not a key frame. If
MCI_SET_OFF is specified, the device will seek to a key-frame image that precedes the requested
frame. For some files and devices, this might be the first frame of the file. The default for this flag is
device dependent.

MCI_DGV_SET_SPEED
A speed parameter is included in the dwSpeed member of the structure identified by lpSet. Speed is
specified as a ratio between the nominal frame rate and the desired frame rate where the nominal
frame rate is designated as 1000. Half speed is 500 and double speed is 2000. The allowable speed
range is dependent on the device and possibly the file, too.

MCI_DGV_SET_STILL
When used with MCI_DGV_SET_FILEFORMAT, MCI_SET sets the file format used for capture
commands.

For digital-video devices, the lpSet parameter points to an MCI_DGV_SET_PARMS structure.

Sequencer Flags

The following additional flags are used with the sequencer device type:

MCI_SEQ_FORMAT_SONGPTR
Sets the time format to song pointer units.

MCI_SEQ_SET_MASTER
Sets the sequencer as a source of synchronization data and indicates that the type of
synchronization is specified in the dwMaster member of the structure identified by lpSet. MCISEQ
returns MCIERR_UNSUPPORTED_FUNCTION. The following constants are defined for the
synchronization type:
MCI_SEQ_MIDI

The sequencer will send MIDI format synchronization data.
MCI_SEQ_SMPTE

The sequencer will send SMPTE format synchronization data.
MCI_SEQ_NONE

The sequencer will not send synchronization data.
MCI_SEQ_SET_OFFSET

Changes the SMPTE offset of a sequence to that specified by the dwOffset member of the structure
identified by lpSet. This affects only sequences with a SMPTE division type.

MCI_SEQ_SET_PORT
Sets the output MIDI port of a sequence to that specified by the MIDI device identifier in the dwPort
member of the structure identified by lpSet. The device closes the previous port (if any), and
attempts to open and use the new port. If it fails, it returns an error and reopens the previously used
port (if any). The following constants are defined for the ports:
MCI_SEQ_NONE

Closes the previously used port (if any). The sequencer behaves exactly the same as if a port
were open, except no MIDI message is sent.

MIDI_MAPPER
Sets the port opened to the MIDI mapper.

MCI_SEQ_SET_SLAVE
Sets the sequencer to receive synchronization data and indicates that the type of synchronization is
specified in the dwSlave member of the structure identified by lpSet. MCISEQ returns
MCIERR_UNSUPPORTED_FUNCTION. The following constants are defined for the
synchronization type:
MCI_SEQ_FILE

Sets the sequencer to receive synchronization data contained in the MIDI file.
MCI_SEQ_MIDI

Sets the sequencer to receive MIDI synchronization data.
MCI_SEQ_NONE

Sets the sequencer to ignore synchronization data in a MIDI stream.
MCI_SEQ_SMPTE

Sets the sequencer to receive SMPTE synchronization data.
MCI_SEQ_SET_TEMPO

Changes the tempo of the MIDI sequence to that specified by the dwTempo member of the
structure pointed to by lpSet. For sequences with division type PPQN, tempo is specified in beats
per minute; for sequences with division type SMPTE, tempo is specified in frames per second.

For sequencer devices, the lpSet parameter points to an MCI_SEQ_SET_PARMS structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_SET_ASSEMBLE_RECORD
Sets the device to record in assemble or insert modes (when assemble is off, insert is on, and vice-
versa). Use with one of the following flag:
MCI_SET_ON

Sets assemble record on, and turns insert record off. Records all video, audio and timecode
tracks.

MCI_SET_OFF
Sets assemble record off, and turns insert record on. When assemble record is off, individual
tracks of video, audio, and timecode can be selected for recording.

MCI_VCR_SET_CLOCK
The dwClock member of the structure identified by lpSet contains the new clock time.

MCI_VCR_SET_COUNTER_FORMAT
The dwCounterFormat member of the structure identified by lpSet contains a constant specifying
the new counter-time format to be used by the status counter. For a list of valid constants, see
MCI_SET_TIME_FORMAT in the list of additional flags for this command.

MCI_VCR_SET_COUNTER_VALUE
The dwCounterValue member of the structure identified by lpSet contains the new counter value.

MCI_VCR_SET_INDEX
The dwIndex member of the structure identified by lpSet contains a constant indicating the contents
of the on-screen display and must be one of the following:
MCI_VCR_INDEX_COUNTER

Displays counter.
MCI_VCR_INDEX_DATE

Displays date.
MCI_VCR_INDEX_TIME

Displays time.
MCI_VCR_INDEX_TIMECODE

Displays timecode.
For more information, see the MCI_INDEX command.

MCI_VCR_SET_PAUSE_TIMEOUT
The dwPauseTimeout member of the structure identified by lpSet contains the maximum duration,
in milliseconds, of a pause command.

MCI_VCR_SET_POSTROLL_DURATION
The dwPostrollDuration member of the structure identified by lpSet contains the videotape length,
in the current time format, needed to brake the VCR transport when a stop or pause command is
issued.

MCI_VCR_SET_POWER
Sets the power on or off. Must be used with one of the following flags:
MCI_SET_OFF

Turns power off.

MCI_SET_ON
Turns power on.

MCI_VCR_SET_PREROLL_DURATION
The dwPrerollDuration member of the structure identified by lpSet contains the videotape length, in
the current time format, needed to stabilize the VCR output.

MCI_VCR_SET_RECORD_FORMAT
The dwRecordFormat member of the structure identified by lpSet contains a constant describing
the record speed, which must be one of the following:
MCI_VCR_FORMAT_EP

Records at slow speed.
MCI_VCR_FORMAT_LP

Records at medium-slow speed.
MCI_VCR_FORMAT_SP

Records at standard speed.
MCI_VCR_SET_SPEED

The dwSpeed member of the structure identified by lpSet contains the new speed setting, where
1000 is normal speed, 2000 is double speed, and 500 is half speed, and so on.

MCI_VCR_SET_TAPE_LENGTH
The dwTapeLength member of the structure identified by lpSet contains the new length of the tape,
provided that the length of the tape is undetectable.

MCI_VCR_SET_TIME_MODE
The dwTimeMode member of the structure identified by lpSet contains a constant indicating the
new positional time mode. The following constants are valid:
MCI_VCR_TIME_COUNTER

Forces the device to use counter exclusively.
MCI_VCR_TIME_DETECT

Each time a new videotape is inserted into the device, or the mode changes from not ready to
ready, the device should attempt to determine if there is timecode available on the videotape. If
timecode is available, use timecode in all subsequent commands that specify positions.
Otherwise, use the counter.

MCI_VCR_TIME_TIMECODE
Forces the device to use timecode exclusively.

MCI_VCR_SET_TRACKING
Tunes the speed of the VCR tape transport with a fine adjustment, and must be used with one of the
following flags:
MCI_VCR_PLUS

Increases the tape transport speed.
MCI_VCR_MINUS

Decreases the tape transport speed.
MCI_VCR_RESET

Returns the tracking adjustment to zero.

For VCR devices, the lpSet parameter points to an MCI_VCR_SET_PARMS structure.

Videodisc Flags

The following additional flag is used with the videodisc device type:

MCI_VD_FORMAT_TRACK
Changes the time format to tracks. MCI uses continuous track numbers.

For videodisc devices, the lpSet parameter points to an MCI_VD_SET_PARMS structure.

Waveform-Audio Flags

The following additional flags are used with the waveaudio device type:

MCI_WAVE_INPUT
Sets the input used for recording to the wInput member of the structure identified by lpSet.

MCI_WAVE_OUTPUT
Sets the output used for playing to the wOutput member of the structure identified by lpSet.

MCI_WAVE_SET_ANYINPUT
Any wave input compatible with the current format can be used for recording.

MCI_WAVE_SET_ANYOUTPUT
Any wave output compatible with the current format can be used for playing.

MCI_WAVE_SET_AVGBYTESPERSEC
Sets the bytes per second used for playing, recording, and saving to the nAvgBytesPerSec
member of the structure identified by lpSet.

MCI_WAVE_SET_BITSPERSAMPLE
Sets the bits per sample used for playing, recording, and saving to the nBitsPerSample member of
the PCM data format identified by lpSet.

MCI_WAVE_SET_BLOCKALIGN
Sets the block alignment used for playing, recording, and saving to the nBlockAlign member of the
structure identified by lpSet.

MCI_WAVE_SET_CHANNELS
The number of channels is indicated in the nChannels member of the structure identified by lpSet.

MCI_WAVE_SET_FORMATTAG
Sets the format type used for playing, recording, and saving to the wFormatTag member of the
structure identified by lpSet. Specifying WAVE_FORMAT_PCM changes the format to PCM.

MCI_WAVE_SET_SAMPLESPERSEC
Sets the samples per second used for playing, recording, and saving to the nSamplesPerSec
member of the structure identified by lpSet.

For waveform-audio devices, the lpSet parameter points to an MCI_WAVE_SET_PARMS structure.

Several properties of waveform-audio data are defined when the file to store the data is created. These
properties describe how the data is structured within the file and cannot be changed once recording
begins. The following list of flags identifies these properties:

· MCI_WAVE_SET_AVGBYTESPERSEC
· MCI_WAVE_SET_BITSPERSAMPLE
· MCI_WAVE_SET_BLOCKALIGN
· MCI_WAVE_SET_CHANNELS
· MCI_WAVE_SET_FORMATTAG
· MCI_WAVE_SET_SAMPLESPERSEC

 MCI_SETAUDIO

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETAUDIO,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetAudio);

Sets values associated with audio playback and capture. Digital-video and VCR devices recognize this
command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpSetAudio
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags

The following flags apply to the digitalvideo device type:

MCI_DGV_SETAUDIO_ALG
The lpstrAlgorithm member of the structure identified by lpSetAudio contains an address of a
buffer containing the name of an audio compression algorithm. The compression algorithm is used
by subsequent MCI_RESERVE or MCI_RECORD commands. The available algorithms are device
dependent. If the algorithm is incompatible with the current file format, the file format is changed to
the default format for the algorithm.

MCI_DGV_SETAUDIO_CLOCKTIME
The time specified is in milliseconds and is absolute time when used with
MCI_DGV_SETAUDIO_OVER. (This time is not in step with the playing of the workspace.)

MCI_DGV_SETAUDIO_INPUT
Modifies the bass, treble, or volume flag so that it affects the input signal and modifies what is
recorded. If possible, this is the default when monitoring the input.

MCI_DGV_SETAUDIO_ITEM
An audio constant is specified in the dwItem member of the structure identified by lpSetAudio. The
constant identifies the value that is being set. The following constants are defined:
MCI_DGV_SETAUDIO_AVGBYTESPERSEC

The average number of bytes is specified in the dwValue member of the structure identified by
lpSetAudio. This value sets the average number of bytes per second for playing or recording in
the PCM (Pulse Code Modulation) and ADPCM (Adaptive Differential Pulse Code Modulation)
formats. The file is saved in this format.

MCI_DGV_SETAUDIO_BASS
The audio low frequency level is specified as a factor in the dwValue member of the structure
identified by lpSetAudio.

MCI_DGV_SETAUDIO_BITSPERSAMPLE
The number of bits per sample is specified in the dwValue member of the structure identified by
lpSetAudio. This value sets the number of bits per sample played or recorded in the PCM format.
The file is saved in this format.

MCI_DGV_SETAUDIO_BLOCKALIGN
The data block alignment is specified in the dwValue member of the structure identified by
lpSetAudio. This value sets the alignment of data blocks relative to the start of input waveform
data.

MCI_DGV_SETAUDIO_SAMPLESPERSEC
The sample rate is specified in the dwValue member of the structure identified by lpSetAudio.

This value sets the sample rate for playing and recording with the PCM and ADPCM algorithms.
The file is saved in this format.

MCI_DGV_SETAUDIO_SOURCE
A constant specifying the source of audio input is included in the dwValue member of the
structure identified by lpSetAudio. The following constants are defined for the audio input sources:
MCI_DGV_SETAUDIO_SOURCE_AVERAGE
The average of the left and right audio channels.
MCI_DGV_SETAUDIO_SOURCE_LEFT
Left audio channel.
MCI_DGV_SETAUDIO_SOURCE_RIGHT
Right audio channel.
MCI_DGV_SETAUDIO_SOURCE_STEREO
Stereo.

MCI_DGV_SETAUDIO_STREAM
An audio-stream is specified in the dwValue member of the structure identified by lpSetAudio.
The integer value specifies the audio stream played back from the workspace. If the stream is not
specified, the first physically interleaved audio stream is played.

MCI_DGV_SETAUDIO_TREBLE
The audio high-frequency level is specified as a factor in the dwValue member of the structure
identified by lpSetAudio.

MCI_DGV_SETAUDIO_VOLUME
The audio level for one or both audio channels is specified as a factor in the dwValue member of
the structure identified by lpSetAudio. If the left and right volumes have been set to different
values, then the ratio of left to right volume is approximately unchanged.

MCI_DGV_SETAUDIO_LEFT
Enables the left audio channel when used with MCI_SET_ON. Disables the left audio channel when
used with MCI_SET_OFF. When this flag is used with the combination of
MCI_DGV_SETAUDIO_VALUE and MCI_DGV_SETAUDIO_VOLUME, it sets the volume of the left
audio channel. When this flag is used with MCI_DGV_SETAUDIO_SOURCE, it specifies the left
audio channel as the source for the audio input digitizer.

MCI_DGV_SETAUDIO_OVER
A transition length parameter is included in the dwOver member of the structure identified by
lpSetAudio. The length value specifies how long (in units of the current time format) it should take to
make a change that uses a factor. If this flag is not used, changes occur immediately.

MCI_DGV_SETAUDIO_QUALITY
The lpstrQuality member of the structure identified by lpSetAudio contains an address of a buffer
defining the audio quality. A text-string within the buffer specifies the characteristics of the audio
compression algorithm.
The MCI_DGV_SETAUDIO_ALG flag can be used to select a quality descriptor for the specified
algorithm. If this flag is omitted, then the current algorithm is used.
The algorithms and descriptor names available depend on the device. Each device supplies
documentation for the available algorithms and a description of the applicable descriptor names. The
MCI_QUALITY command can define additional descriptor names.

MCI_DGV_SETAUDIO_RECORD
Specifies whether recording includes or excludes audio data. When combined with MCI_SET_ON,
audio data is recorded. When combined with MCI_SET_OFF, audio data is excluded. The default
includes audio data.

MCI_DGV_SETAUDIO_RIGHT
Enables the right audio channel when used with MCI_SET_ON. Disables the right audio channel
when used with MCI_SET_OFF. When this flag is used with the combination of

MCI_DGV_SETAUDIO_VALUE and MCI_DGV_SETAUDIO_VOLUME, it sets the volume of the right
audio channel.

MCI_DGV_SETAUDIO_VALUE
A value is specified in the dwValue member of the structure identified by lpSetAudio. The meaning
of the value is specified by the constant defined for the MCI_DGV_SETAUDIO_ITEM flag.

MCI_SET_OFF
Disables the specified audio channel.

MCI_SET_ON
Enables the specified audio channel.

MCI_SETAUDIO_OUTPUT
Modifies the bass, treble, or volume flag so that it modifies only the played signal and not what is
recorded. If possible, this is the default when monitoring the input.

For digital-video devices, the lpSetAudio parameter points to an MCI_DGV_SETAUDIO_PARMS
structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_SETAUDIO_RECORD
Sets the audio recording to on or off, which is used in conjunction with one of following flags:
MCI_SET_ON

Audio recording on.
MCI_SET_OFF

Audio recording off. It might be necessary to first turn off the assemble recording (using the
MCI_SET command with the MCI_VCR_SET_ASSEMBLE_RECORD flag set to off) before the
audio recording can be turned off.

MCI_TRACK
The dwTrack member of the structure identified by lpSetAudio specifies which track is affected by
the command.

MCI_VCR_SETAUDIO_SOURCE
Sets the audio source. This flag must be used with the MCI_VCR_SETAUDIO_TO flag.

MCI_VCR_SETAUDIO_MONITOR
Sets the audio source monitor. This flag must be used with the MCI_VCR_SETAUDIO_TO flag.

MCI_VCR_SETAUDIO_TO
The dwTo member of the structure identified by lpSetAudio contains a constant describing the type
of input or monitored input. It must be one of the following:
MCI_VCR_SRC_TYPE_TUNER

Type is tuner.
MCI_VCR_SRC_TYPE_LINE

Type is line.
MCI_VCR_SRC_TYPE_AUX

Type is auxiliary.
MCI_VCR_SRC_TYPE_GENERIC

Type is generic.
MCI_VCR_SRC_TYPE_MUTE

Type is mute. This can be used only with the MCI_VCR_SETAUDIO_SOURCE flag.
MCI_VCR_SRC_TYPE_OUTPUT

Type is output.
MCI_VCR_SETAUDIO_NUMBER

The dwNumber member of the structure identified by lpSetAudio contains the audio input (of the

type specified in the dwTo member) to use.

For VCR devices, the lpSetAudio parameter points to an MCI_VCR_SETAUDIO_PARMS structure.

 MCI_SETTIMECODE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETTIMECODE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetTimeCode);

Enables or disables timecode recording for a VCR. VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpSetTimeCode
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Additional Flags

The following additional flag applies to VCR devices:

MCI_VCR_SETTIMECODE_RECORD
Sets the timecode track recording to on or off. This flag is used in combination with one of the
following additional flags:
MCI_SET_ON

Timecode recording on.
MCI_SET_OFF

Timecode recording off.

 MCI_SETTUNER

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETTUNER,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetTuner);

Sets the current channel on the tuner. VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpSetTuner
Address of an MCI_VCR_SETTUNER_PARMS structure.

Additional Flags

The following additional flags apply to VCR devices:

MCI_VCR_SETTUNER_CHANNEL
The dwChannel member of the structure identified by lpSetTuner contains the new channel number.

MCI_VCR_SETTUNER_CHANNEL_DOWN
Decrements the tuner channel.

MCI_VCR_SETTUNER_CHANNEL_SEEK_DOWN
Searches for a valid channel in the reverse direction.

MCI_VCR_SETTUNER_CHANNEL_SEEK_UP
Searches for a valid channel in the forward direction.

MCI_VCR_SETTUNER_CHANNEL_UP
Increments the tuner channel.

MCI_VCR_SETTUNER_NUMBER
The dwNumber member of the structure identified by lpSetTuner specifies which logical tuner to
affect with this command.

 MCI_SETVIDEO

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SETVIDEO,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSetVideo);

Sets values associated with video playback. Digital-video and VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpSetVideo
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_SETVIDEO_ALG
The lpstrAlgorithm member of the structure identified by lpSetVideo contains an address of a
buffer containing the name of a video compression algorithm. The compression algorithm is used by
subsequent MCI_RESERVE or MCI_RECORD commands. The available algorithms are device
dependent.
If the specified algorithm is incompatible with the current file format, the file format is changed to the
default format for the algorithm.

MCI_DGV_SETVIDEO_CLOCKTIME
When used with MCI_DGV_SETVIDEO_OVER, indicates time is specified in milliseconds and is
absolute time. (This time is not in step with the playing of the workspace.)

MCI_DGV_SETVIDEO_INPUT
Modifies the MCI_DGV_SETVIDEO_BRIGHTNESS, MCI_DGV_SETVIDEO_COLOR,
MCI_DGV_SETVIDEO_CONTRAST, MCI_DGV_SETVIDEO_GAMMA,
MCI_DGV_SETVIDEO_SHARPNESS, or MCI_DGV_SETVIDEO_TINT so that it affects the input
signal and modifies what is recorded. If possible, this is the default when monitoring the input.

MCI_DGV_SETVIDEO_ITEM
A video constant is specified in the dwItem member of the structure identified by lpSetVideo. The
constant identifies the value that is being set. You can specify the following constants with this flag:
MCI_AVI_SETVIDEO_DRAW_PROCEDURE

A new drawing procedure address is specified in the dwValue member of the structure identified
by lpSetVideo. You can specify a new drawing procedure only when the device is idle. This flag is
recognized only by the MCIAVI digital-video driver. There is no equivalent to this flag in the string
command interface.

MCI_AVI_SETVIDEO_PALETTE_COLOR
A new palette color is specified in the dwOver and dwValue members of the structure identified
by lpSetVideo. The dwOver member specifies the palette index of the color to be changed and
the dwValue member specifies the new color, as an RGB value. You must also specify the
MCI_DGV_SETVIDEO_OVER and MCI_DGV_SETVIDEO_VALUE flags with
MCI_DGV_SETVIDEO_ITEM when you use this constant. This flag is recognized only by the
MCIAVI digital-video driver.

MCI_AVI_SETVIDEO_PALETTE_HALFTONE
Indicates that the halftone palette should be used, instead of the default palette. This flag is
recognized only by the MCIAVI digital-video driver.

MCI_DGV_SETVIDEO_BITSPERPEL

The number of bits per pixel is specified in the dwValue member of the structure identified by
lpSetVideo. The number of bits per pixel is used for saving captured or recorded data

MCI_DGV_SETVIDEO_BRIGHTNESS
The video brightness level is specified as a factor in the dwValue member of the structure
identified by lpSetVideo.

MCI_DGV_SETVIDEO_COLOR
The video color saturation level is specified as a factor in the dwValue member of the structure
identified by lpSetVideo.

MCI_DGV_SETVIDEO_CONTRAST
The video contrast level is specified as a factor in the dwValue member of the structure identified
by lpSetVideo.

MCI_DGV_SETVIDEO_FRAME_RATE
A frame rate is specified in the dwValue member of the structure identified by lpSetVideo. The
rate is specified in units of frames per second times 1000. For example, 29.97 frames per second
is specified as 29970.

MCI_DGV_SETVIDEO_GAMMA
A gamma correction exponent value is specified in the dwValue member of the structure
identified by lpSetVideo. Gamma correction adjusts the mapping between the intensity encoded
in the presentation source and the displayed brightness. The value is the exponent multiplied by
1000. For example, 2200 indicates an exponent of 2.2. A value of 1000 indicates an exponent of
1, which applies no gamma correction.

MCI_DGV_SETVIDEO_KEY_COLOR
A key color is specified in the dwValue member of the structure identified by lpSetVideo. The key
color is a Windows RGB value.

MCI_DGV_SETVIDEO_KEY_INDEX
A key index value is specified in the dwValue member of the structure identified by lpSetVideo.
The index parameter is a physical palette index.

MCI_DGV_SETVIDEO_PALHANDLE
A palette handle is specified in the dwValue member of the structure identified by lpSetVideo. The
palette handle is contained in the low-order word. Digital-video devices should not free the palette
passed with this command. Applications should free it after they close the device. This flag is
supported only by devices that use palettes. If this specified palette handle is zero, then the
default palette is used.

MCI_DGV_SETVIDEO_SHARPNESS
A video sharpness value is specified as a factor in the dwValue member of the structure identified
by lpSetVideo.

MCI_DGV_SETVIDEO_SOURCE
A constant specifying the source of the video input is specified in the dwValue member of the
structure identified by lpSetVideo. The following constants are defined:
MCI_DGV_SETVIDEO_SRC_NTSC
Specifies NTSC.
MCI_DGV_SETVIDEO_SRC_PAL
Specifies PAL.
MCI_DGV_SETVIDEO_SRC_RGB
Specifies RGB.
MCI_DGV_SETVIDEO_SRC_SECAM
Specifies SECAM.
MCI_DGV_SETVIDEO_SRC_SVIDEO
Specifies SVIDEO.

MCI_DGV_SETVIDEO_STREAM

A video stream is specified in the dwValue member of the structure identified by lpSetVideo. The
integer value specifies the video stream played back from the workspace. If the stream is not
specified and the file format does not define a default stream, the first physically interleaved video
stream is played.

MCI_DGV_SETVIDEO_TINT
A video tint value is specified as a factor in the dwValue member of the structure identified by
lpSetVideo. Typically, this adjustment is modeled after the tint control of many color television
sets, with 250 defined as green, 750 defined as red, and 0 (or 1000) defined as blue. The nominal
value is always 500.

MCI_DGV_SETVIDEO_OUTPUT
The MCI_DGV_SETVIDEO_BRIGHTNESS, MCI_DGV_SETVIDEO_COLOR,
MCI_DGV_SETVIDEO_CONTRAST, MCI_DGV_SETVIDEO_GAMMA,
MCI_DGV_SETVIDEO_SHARPNESS, or MCI_DGV_SETVIDEO_TINT flag is modified so that it
affects only the displayed signal and not what is recorded. If possible, this is the default when
monitoring a file.

MCI_DGV_SETVIDEO_OVER
A transition length parameter is included in the dwOver member of the structure identified by
lpSetVideo. The transition length specifies how long (in the current time format) it should take to
make a change. If this flag is not used, the change occurs immediately.

MCI_DGV_SETVIDEO_QUALITY
The lpstrQuality member of the structure identified by lpSetVideo contains an address of a buffer
describing the video quality. A text-string in the buffer specifies the characteristics of the video
compression algorithm.
The MCI_DGV_SETVIDEO_ALG flag can be used to select a quality descriptor for the specified
algorithm. If this flag is omitted, then the current algorithm is used.
The algorithms and descriptor names available depend on the device. Each device supplies
documentation for the available algorithms and a description of the applicable descriptor names. The
MCI_QUALITY command can define additional descriptor names. All devices support the
descriptors "low", "medium", and "high". The default is driver specific.

MCI_DGV_SETVIDEO_RECORD
Specifies whether recording includes or excludes video data. When combined with MCI_SET_ON,
video data is recorded. When combined with MCI_SET_OFF, video data is excluded. The default
includes video data.

MCI_DGV_SETVIDEO_SRC_NUMBER
A number for the video source is specified in the dwSourceNumber member of the structure
identified by lpSetVideo. If there is more than one input of the type specified by
MCI_DGV_SETVIDEO_VALUE, the value selects the input. This flag must always be used with
MCI_DGV_SETVIDEO_SOURCE. If MCI_DGV_SETVIDEO_VALUE is omitted, however, the
specified source number indicates the absolute source to use as specified in the MCI_LIST
command.

MCI_DGV_SETVIDEO_STILL
The algorithm name or quality value specified applies to still images.
Every device driver must support an algorithm of "none", which means no compression. This is the
default. In this case, digital-video devices save still images as RGB format device-independent
bitmaps (DIBs).

MCI_DGV_SETVIDEO_VALUE
A value is included in the dwValue member of the structure identified by lpSetVideo. The meaning of
the value is specified by the MCI_DGV_SETVIDEO_ITEM flag.

MCI_SET_OFF
Disables video output. For digital-video devices, disabling video sets the pixels in the destination
rectangle defined by the MCI_PUT command (or its default, the client region of the current window)
to a solid color, but it has no effect on the frame buffer. You can hide the window with the

MCI_WINDOW command if desired. The source of video, whether it's the workspace or an external
input, might continue to store new images in the frame buffer, but they are not displayed until the
video is enabled. While applications should use the MCI_SETVIDEO command to control this
function, digital-video devices must still support this flag. The default value after an open is on.

MCI_SET_ON
Enables video output.

For digital-video devices, the lpSetVideo parameter points to an MCI_DGV_SETVIDEO_PARMS
structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_SETVIDEO_RECORD
Sets the video recording to on or off. Used in conjunction with one of following flags:
MCI_SET_ON

Video recording on.
MCI_SET_OFF

Video recording off. It might be necessary to first turn off the assemble recording (using the
MCI_SET command with the MCI_VCR_SET_ASSEMBLE_RECORD flag set to off) before the
video recording can be turned off.

MCI_TRACK
The dwTrack member of the structure identified by lpSetVideo specifies which track is affected by
the command.

MCI_VCR_SETVIDEO_SOURCE
Sets the video source, and must be used with the MCI_VCR_SETVIDEO_TO flag.

MCI_VCR_SETVIDEO_MONITOR
Sets the video source monitor, and must be used with the MCI_VCR_SETVIDEO_TO flag.

MCI_VCR_SETVIDEO_TO
The dwTo member of the structure identified by lpSetVideo contains one of the following constants:
MCI_VCR_SRC_TYPE_TUNER
MCI_VCR_SRC_TYPE_LINE
MCI_VCR_SRC_TYPE_AUX
MCI_VCR_SRC_TYPE_GENERIC
MCI_VCR_SRC_TYPE_MUTE
MCI_VCR_SRC_TYPE_OUTPUT
MCI_VCR_SRC_TYPE_RGB

MCI_VCR_SETVIDEO_NUMBER
The dwNumber member of the structure identified by lpSetVideo contains the video input (of the
type specified in the dwTo member) to use.

For VCR devices, the lpSetVideo parameter points to an MCI_VCR_SETVIDEO_PARMS structure.

 MCI_SIGNAL

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SIGNAL,
 DWORD dwFlags, (DWORD) (LPMCI_DGV_SIGNAL_PARMS) lpSignal);

Sets a specified position in the workspace. Digital-video devices recognize this command. MCIAVI
supports only one active signal at a time.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpSignal
Address of an MCI_DGV_SIGNAL_PARMS structure.

Additional Flags

The following flags apply to digital-video devices:

MCI_DGV_SIGNAL_AT
A signal position is included in the dwPosition member of the structure identified by lpSignal.

MCI_DGV_SIGNAL_CANCEL
Removes the signal position specified by the value associated with MCI_DGV_SIGNAL_USERVAL.

MCI_DGV_SIGNAL_EVERY
A signal-period value is included in the dwEvery member of the structure identified by lpSignal.

MCI_DGV_SIGNAL_POSITION
The device will send the position value with the Windows message instead of the user-specified
value.

MCI_DGV_SIGNAL_USERVAL
A data value is included in the dwUserParm member of the structure identified by lpSignal. The data
value associated with this request is reported back with the Windows message.

 MCI_SPIN

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SPIN,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpSpin);

Starts the device spinning up or down. Videodisc devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see Chapter 3, "MCI Overview."
lpSpin

Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Additional Flags

The following additional flags apply to videodisc devices:

MCI_VD_SPIN_DOWN
Stops the disc spinning.

MCI_VD_SPIN_UP
Starts the disc spinning.

 MCI_STATUS

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_STATUS,
 DWORD dwFlags, (DWORD) (LPMCI_STATUS_PARMS) lpStatus);

Retrieves information about an MCI device. All devices recognize this command. Information is
returned in the dwReturn member of the structure identified by the lpStatus parameter.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpStatus
Address of an MCI_STATUS_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Additional Flags

The following additional standard and command-specific flags apply to all devices supporting
MCI_STATUS:

MCI_STATUS_ITEM
Specifies that the dwItem member of the structure identified by lpStatus contains a constant
specifying which status item to obtain. The following constants define which status item to return in
the dwReturn member of the structure:
MCI_STATUS_CURRENT_TRACK

The dwReturn member is set to the current track number. MCI uses continuous track numbers.
MCI_STATUS_LENGTH

The dwReturn member is set to the total media length.
MCI_STATUS_MODE

The dwReturn member is set to the current mode of the device. The modes include the following:
MCI_MODE_NOT_READY
MCI_MODE_PAUSE
MCI_MODE_PLAY
MCI_MODE_STOP
MCI_MODE_OPEN
MCI_MODE_RECORD
MCI_MODE_SEEK

MCI_STATUS_NUMBER_OF_TRACKS
The dwReturn member is set to the total number of playable tracks.

MCI_STATUS_POSITION
The dwReturn member is set to the current position.

MCI_STATUS_READY
The dwReturn member is set to TRUE if the device is ready; it is set to FALSE otherwise.

MCI_STATUS_TIME_FORMAT
The dwReturn member is set to the current time format of the device. The time formats include:
MCI_FORMAT_BYTES
MCI_FORMAT_FRAMES
MCI_FORMAT_HMS
MCI_FORMAT_MILLISECONDS
MCI_FORMAT_MSF

MCI_FORMAT_SAMPLES
MCI_FORMAT_TMSF

MCI_STATUS_START
Obtains the starting position of the media. To get the starting position, combine this flag with
MCI_STATUS_ITEM and set the dwItem member of the structure identified by lpStatus to
MCI_STATUS_POSITION.

MCI_TRACK
Indicates a status track parameter is included in the dwTrack member of the structure identified by
lpStatus. You must use this flag with the MCI_STATUS_POSITION or MCI_STATUS_LENGTH
constants. When used with MCI_STATUS_POSITION, MCI_TRACK obtains the starting position of
the specified track. When used with MCI_STATUS_LENGTH, MCI_TRACK obtains the length of the
specified track. MCI uses continuous track numbers.

Animation Flags

The following additional flags are used with the animation device type. These constants are used in
the dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is
specified for the dwFlags parameter.

MCI_ANIM_STATUS_FORWARD
The dwReturn member is set to TRUE if playing forward; it is set to FALSE otherwise.

MCI_ANIM_STATUS_HPAL
The dwReturn member is set to the handle of the movie palette.

MCI_ANIM_STATUS_HWND
The dwReturn member is set to the handle of the playback window.

MCI_ANIM_STATUS_SPEED
The dwReturn member is set to the animation speed.

MCI_ANIM_STATUS_STRETCH
The dwReturn member is set to TRUE if stretching is enabled; it is set to FALSE otherwise.

MCI_STATUS_MEDIA_PRESENT
The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE
otherwise.

CD Audio Flags

The following additional flags are used with the cdaudio device type. These constants are used in the
dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is
specified for the dwFlags parameter.

MCI_CDA_STATUS_TYPE_TRACK
The dwReturn member is set to one of the following values:
MCI_CDA_TRACK_AUDIO
MCI_CDA_TRACK_OTHER
To use this flag, the MCI_TRACK flag must be set, and the dwTrack member of the structure
identified by lpStatus must contain a valid track number.

MCI_STATUS_MEDIA_PRESENT
The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE
otherwise.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_STATUS_DISKSPACE
The lpstrDrive member of the structure identified by lpStatus specifies a disk drive or, in some

implementations, a path. The MCI_STATUS command returns the approximate amount of disk
space that could be obtained by the MCI_RESERVE command in the dwReturn member of the
structure identified by lpStatus. The disk space is measured in units of the current time format.

MCI_DGV_STATUS_INPUT
The constant specified by the dwItem member of the structure identified by lpStatus applies to the
input.

MCI_DGV_STATUS_LEFT
The constant specified by the dwItem member of the structure identified by lpStatus applies to the
left audio channel.

MCI_DGV_STATUS_NOMINAL
The constant specified by the dwItem member of the structure identified by lpStatus requests the
nominal value rather than the current value.

MCI_DGV_STATUS_OUTPUT
The constant specified by the dwItem member of the structure identified by lpStatus applies to the
output.

MCI_DGV_STATUS_RECORD
The frame rate returned for the MCI_DGV_STATUS_FRAME_RATE flag is the rate used for
compression.

MCI_DGV_STATUS_REFERENCE
The dwReturn member of the structure identified by lpStatus returns the nearest key-frame image
that precedes the frame specified in the dwReference member.

MCI_DGV_STATUS_RIGHT
The constant specified by the dwItem member of the structure identified by lpStatus applies to the
right audio channel.

The following constants are used with the digitalvideo device type in the dwItem member of the
structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is specified for the dwFlags
parameter.

MCI_AVI_STATUS_AUDIO_BREAKS
The dwReturn member returns the number of times the audio portion of the last AVI sequence
broke up. The system counts an audio break whenever it attempts to write audio data to the device
driver and discovers that the driver has already played all of the available data. This flag is
recognized only by the MCIAVI digital-video driver.

MCI_AVI_STATUS_FRAMES_SKIPPED
The dwReturn member returns the number of frames that were not drawn when the last AVI
sequence was played. This flag is recognized only by the MCIAVI digital-video driver.

MCI_AVI_STATUS_LAST_PLAY_SPEED
The dwReturn member returns a value representing how closely the actual playing time of the last
AVI sequence matched the target playing time. The value 1000 indicates that the target time and the
actual time were the same. A value of 2000, for example, would indicate that the AVI sequence took
twice as long to play as it should have. This flag is recognized only by the MCIAVI digital-video
driver.

MCI_DGV_STATUS_AUDIO
The dwReturn member returns MCI_ON or MCI_OFF depending on the most recent
MCI_SET_AUDIO option for the MCI_SET command. It returns MCI_ON if either or both speakers
are enabled, and MCI_OFF otherwise.

MCI_DGV_STATUS_AUDIO_INPUT
The dwReturn member returns the approximate instantaneous audio level of the analog audio
signal. A value greater than 1000 implies there is clipping distortion. Some devices can determine
this value only while recording audio. This status value has no associated MCI_SET or
MCI_SETAUDIO command. This value is related to, but normalized differently from, the waveform-
audio command MCI_WAVE_STATUS_LEVEL.

MCI_DGV_STATUS_AUDIO_RECORD
The dwReturn member returns MCI_ON or MCI_OFF reflecting the state set by the
MCI_DGV_SETAUDIO_RECORD flag of the MCI_SETAUDIO command.

MCI_DGV_STATUS_AUDIO_SOURCE
The dwReturn member returns the current audio digitizer source:
MCI_DGV_SETAUDIO_AVERAGE

Specifies the average of the left and right audio channels.
MCI_DGV_SETAUDIO_LEFT

Specifies the left audio channel.
MCI_DGV_SETAUDIO_RIGHT

Specifies the right audio channel.
MCI_DGV_SETAUDIO_STEREO

Specifies stereo.
MCI_DGV_STATUS_AUDIO_STREAM

The dwReturn member returns the current audio-stream number.
MCI_DGV_STATUS_AVGBYTESPERSEC

The dwReturn member returns the average number of bytes per second used for recording.
MCI_DGV_STATUS_BASS

The dwReturn member returns the current audio bass level. Use MCI_DGV_STATUS_NOMINAL
with this flag to obtain the nominal level.

MCI_DGV_STATUS_BITSPERPEL
The dwReturn member returns the number of bits per pixel used for saving captured or recorded
data.

MCI_DGV_STATUS_BITSPERSAMPLE
The dwReturn member returns the number of bits per sample the device uses for recording. This
applies only to devices supporting the PCM format.

MCI_DGV_STATUS_BLOCKALIGN
The dwReturn member returns the alignment of data blocks relative to the start of the input
waveform.

MCI_DGV_STATUS_BRIGHTNESS
The dwReturn member returns the current video brightness level. Use
MCI_DGV_STATUS_NOMINAL with this flag to obtain the nominal level.

MCI_DGV_STATUS_COLOR
The dwReturn member returns the current color level. Use MCI_DGV_STATUS_NOMINAL with this
flag to obtain the nominal level.

MCI_DGV_STATUS_CONTRAST
The dwReturn member returns the current contrast level. Use MCI_DGV_STATUS_NOMINAL with
this flag to obtain the nominal level.

MCI_DGV_STATUS_FILEFORMAT
The dwReturn member returns the current file format for recording or saving.

MCI_DGV_STATUS_FILE_MODE
The dwReturn member returns the state of the file operation:
MCI_DGV_FILE_MODE_EDITING

Returned during cut, copy, delete, paste, and undo operations.
MCI_DGV_FILE_MODE_IDLE

Returned when the file is ready for the next operation.
MCI_DGV_FILE_MODE_LOADING

Returned while the file is being loaded.
MCI_DGV_FILE_MODE_SAVING

Returned while the file is being saved.

MCI_DGV_STATUS_FILE_COMPLETION
The dwReturn member returns the estimated percentage a load, save, capture, cut, copy, delete,
paste, or undo operation has progressed. (Applications can use this to provide a visual indicator of
progress.) This flag is not supported by all digital-video devices.

MCI_DGV_STATUS_FORWARD
The dwReturn member returns TRUE if the device direction is forward or the device is not playing.

MCI_DGV_STATUS_FRAME_RATE
The dwReturn member must be used with MCI_DGV_STATUS_NOMINAL,
MCI_DGV_STATUS_RECORD, or both. When used with MCI_DGV_STATUS_RECORD, the
current frame rate used for recording is returned. When used with both
MCI_DGV_STATUS_RECORD and MCI_DGV_STATUS_NOMINAL, the nominal frame rate
associated with the input video signal is returned. When used with MCI_DGV_STATUS_NOMINAL,
the nominal frame rate associated with the file is returned. In all cases the units are in frames per
second multiplied by 1000.

MCI_DGV_STATUS_GAMMA
The dwReturn member returns the current gamma value. Use MCI_DGV_STATUS_NOMINAL with
this flag to obtain the nominal level.

MCI_DGV_STATUS_HPAL
The dwReturn member returns the ASCII decimal value for the current palette handle. The handle is
contained in the low-order word of the returned value.

MCI_DGV_STATUS_HWND
The dwReturn member returns the ASCII decimal value for the current explicit or default window
handle associated with this device driver instance. The handle is contained in the low-order word of
the returned value.

MCI_DGV_STATUS_KEY_COLOR
The dwReturn member returns the current key-color value.

MCI_DGV_STATUS_KEY_INDEX
The dwReturn member returns the current key-index value.

MCI_DGV_STATUS_MONITOR
The dwReturn member returns a constant indicating the source of the current presentation. The
following constants are defined:
MCI_DGV_MONITOR_FILE

A file is the source.
MCI_DGV_MONITOR_INPUT

The input is the source.
MCI_DGV_STATUS_MONITOR_METHOD

The dwReturn member returns a constant indicating the method used for input monitoring. The
following constants are defined:
MCI_DGV_METHOD_DIRECT

Direct input monitoring.
MCI_DGV_METHOD_POST

Post-input monitoring.
MCI_DGV_METHOD_PRE

Pre-input monitoring.
MCI_DGV_STATUS_PAUSE_MODE

The dwReturn member returns MCI_MODE_PLAY if the device was paused while playing and
returns MCI_MODE_RECORD if the device was paused while recording. The command returns
MCIERR_NONAPPLICABLE_FUNCTION as an error return if the device is not paused.

MCI_DGV_STATUS_SAMPLESPERSECOND
The dwReturn member returns the number of samples per second recorded.

MCI_DGV_STATUS_SEEK_EXACTLY

The dwReturn member returns TRUE or FALSE indicating whether or not the seek exactly format is
set. (Applications can set this format by using the MCI_SET command with the
MCI_DGV_SET_SEEK_EXACTLY flag.)

MCI_DGV_STATUS_SHARPNESS
The dwReturn member returns the current sharpness level. Use MCI_DGV_STATUS_NOMINAL
with this flag to obtain the nominal level.

MCI_DGV_STATUS_SIZE
The dwReturn member returns the approximate playback duration of compressed data that the
reserved workspace will hold. The duration units are in the current time format. It returns zero if
there is no reserved disk space. The size returned is approximate since the precise disk space for
compressed data cannot, in general, be predicted until after the data has been compressed.

MCI_DGV_STATUS_SMPTE
The dwReturn member returns the SMPTE time code associated with the current position in the
workspace.

MCI_DGV_STATUS_SPEED
The dwReturn member returns the current playback speed.

MCI_DGV_STATUS_STILL_FILEFORMAT
The dwReturn member returns the current file format for the MCI_CAPTURE command.

MCI_DGV_STATUS_TINT
The dwReturn member returns the current video tint level. Use MCI_DGV_STATUS_NOMINAL with
this flag to obtain the nominal level.

MCI_DGV_STATUS_TREBLE
The dwReturn member returns the current audio treble level. Use MCI_DGV_STATUS_NOMINAL
with this flag to obtain the nominal level.

MCI_DGV_STATUS_UNSAVED
The dwReturn member returns TRUE if there is recorded data in the workspace that might be lost
as a result of a MCI_CLOSE, MCI_LOAD, MCI_RECORD, MCI_RESERVE, MCI_CUT,
MCI_DELETE, or MCI_PASTE command. The member returns FALSE otherwise.

MCI_DGV_STATUS_VIDEO
The dwReturn member returns MCI_ON if video is enabled or MCI_OFF if it is disabled.

MCI_DGV_STATUS_VIDEO_RECORD
The dwReturn member returns MCI_ON or MCI_OFF, reflecting the state set by the
MCI_DGV_SETVIDEO_RECORD flag of the MCI_SETVIDEO command.

MCI_DGV_STATUS_VIDEO_SOURCE
The dwReturn member returns a constant indicating the type of video source set by the
MCI_DGV_SETVIDEO_SOURCE flag of the MCI_SETVIDEO command.

MCI_DGV_STATUS_VIDEO_SRC_NUM
The dwReturn member returns the number within its type of the video-input source currently active.

MCI_DGV_STATUS_VIDEO_STREAM
The dwReturn member returns the current video-stream number.

MCI_DGV_STATUS_VOLUME
The dwReturn member returns the average of the volume to the left and right speakers. Use
MCI_DGV_STATUS_NOMINAL with this flag to obtain the nominal level.

MCI_DGV_STATUS_WINDOW_VISIBLE
The dwReturn member returns TRUE if the window is not hidden.

MCI_DGV_STATUS_WINDOW_MINIMIZED
The dwReturn member returns TRUE if the window is minimized.

MCI_DGV_STATUS_WINDOW_MAXIMIZED
The dwReturn member returns TRUE if the window is maximized.

MCI_STATUS_MEDIA_PRESENT

The dwReturn member returns TRUE.

For digital-video devices, the lpStatus parameter points to an MCI_DGV_STATUS_PARMS structure.

Sequencer Flags

The following additional flags are used with the sequencer device type. These constants are used in
the dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is
specified for the dwFlags parameter.

MCI_SEQ_STATUS_DIVTYPE
The dwReturn member is set to one of the following values indicating the current division type of a
sequence:
MCI_SEQ_DIV_PPQN
MCI_SEQ_DIV_SMPTE_24
MCI_SEQ_DIV_SMPTE_25
MCI_SEQ_DIV_SMPTE_30
MCI_SEQ_DIV_SMPTE_30DROP

MCI_SEQ_STATUS_MASTER
The dwReturn member is set to the synchronization type used for master operation.

MCI_SEQ_STATUS_OFFSET
The dwReturn member is set to the current SMPTE offset of a sequence.

MCI_SEQ_STATUS_PORT
The dwReturn member is set to the MIDI device identifier for the current port used by the sequence.

MCI_SEQ_STATUS_SLAVE
The dwReturn member is set to the synchronization type used for slave operation.

MCI_SEQ_STATUS_TEMPO
The dwReturn member is set to the current tempo of a MIDI sequence in beats per minute for
PPQN files, or frames per second for SMPTE files.

MCI_STATUS_MEDIA_PRESENT
The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE
otherwise.

VCR Flags

The following additional flags are used with the vcr device type. These constants are used in the
dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is
specified for the dwFlags parameter.

MCI_STATUS_MEDIA_PRESENT
The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE
otherwise.

MCI_VCR_STATUS_ASSEMBLE_RECORD
The dwReturn member is set to TRUE if assemble mode is on; it is set to FALSE otherwise.

MCI_VCR_STATUS_AUDIO_MONITOR
The dwReturn member is set to a constant, indicating the currently selected audio-monitor type.

MCI_VCR_STATUS_AUDIO_MONITOR_NUMBER
The dwReturn member is set to the number of the currently selected audio-monitor type.

MCI_VCR_STATUS_AUDIO_RECORD
The dwReturn member is set to TRUE if audio will be recorded when the next record command is
given; it is set to FALSE otherwise. If you specify MCI_TRACK in the dwFlags parameter of this
command, dwTrack contains the track this inquiry applies to.

MCI_VCR_STATUS_AUDIO_SOURCE

The dwReturn member is set to a constant, indicating the current audio-source type.
MCI_VCR_STATUS_AUDIO_SOURCE_NUMBER

The dwReturn member is set to the number of the currently selected audio-source type.
MCI_VCR_STATUS_CLOCK

The dwReturn member is set to the current clock value, in total clock increments.
MCI_VCR_STATUS_CLOCK_ID

The dwReturn member is set to a number which uniquely describes the clock in use.
MCI_VCR_STATUS_COUNTER_FORMAT

The dwReturn member is set to a constant describing the current counter format. For more
information, see the MCI_SET_TIME_FORMAT flag of the MCI_SET command.

MCI_VCR_STATUS_COUNTER_RESOLUTION
The dwReturn member is set to a constant describing the resolution of the counter, and is one of
the following values:
MCI_VCR_COUNTER_RES_FRAMES

Counter has resolution of frames.
MCI_VCR_COUNTER_RES_SECONDS

Counter has resolution of seconds.
MCI_VCR_STATUS_COUNTER_VALUE

The dwReturn member is set to the current counter reading, in the current counter-time format.
MCI_VCR_STATUS_FRAME_RATE

The dwReturn member is set to the current native frame rate of the device.
MCI_VCR_STATUS_INDEX

The dwReturn member is set to a constant, describing the current contents of the on-screen
display, and is one of the following:
MCI_VCR_INDEX_COUNTER
MCI_VCR_INDEX_DATE
MCI_VCR_INDEX_TIME
MCI_VCR_INDEX_TIMECODE

MCI_VCR_STATUS_INDEX_ON
The dwReturn member is set to TRUE if the on-screen display is on; it is set to FALSE otherwise.

MCI_VCR_STATUS_MEDIA_TYPE
The dwReturn member is set to one of the following:
MCI_VCR_MEDIA_8MM
MCI_VCR_MEDIA_HI8
MCI_VCR_MEDIA_VHS
MCI_VCR_MEDIA_SVHS
MCI_VCR_MEDIA_BETA
MCI_VCR_MEDIA_EDBETA
MCI_VCR_MEDIA_OTHER

MCI_VCR_STATUS_NUMBER
The dwNumber member is set to the logical-tuner number when you use this flag with the
MCI_VCR_STATUS_TUNER_CHANNEL flag.

MCI_VCR_STATUS_NUMBER_OF_AUDIO_TRACKS
The dwReturn member is set to the number of audio tracks that are independently selectable.

MCI_VCR_STATUS_NUMBER_OF_VIDEO_TRACKS
The dwReturn member is set to the number of video tracks that are independently selectable.

MCI_VCR_STATUS_PAUSE_TIMEOUT
The dwReturn member is set to the maximum duration, in milliseconds, of a pause command. The

return value of zero indicates that no time-out will occur.
MCI_VCR_STATUS_PLAY_FORMAT

The dwReturn member is set to one of the following:
MCI_VCR_FORMAT_EP
MCI_VCR_FORMAT_LP
MCI_VCR_FORMAT_OTHER
MCI_VCR_FORMAT_SP

MCI_VCR_STATUS_POSTROLL_DURATION
The dwReturn member is set to the length of the videotape that will play after the spot at which it
was stopped, in the current time format. This is needed to brake the VCR tape transport from a stop
or pause command.

MCI_VCR_STATUS_POWER_ON
The dwReturn member is set to TRUE if the power is on; it is set to FALSE otherwise.

MCI_VCR_STATUS_PREROLL_DURATION
The dwReturn member is set to the length of the videotape that will play before the spot at which it
was started, in the current time format. This is needed to stabilize the VCR output.

MCI_VCR_STATUS_RECORD_FORMAT
The dwReturn member is set to one of the following:
MCI_VCR_FORMAT_EP
MCI_VCR_FORMAT_LP
MCI_VCR_FORMAT_OTHER
MCI_VCR_FORMAT_SP

MCI_VCR_STATUS_SPEED
The dwReturn member is set to the current speed. For more information, see the
MCI_VCR_SET_SPEED flag of the MCI_SET command.

MCI_VCR_STATUS_TIME_MODE
The dwReturn member is set to one of the following:
MCI_VCR_TIME_COUNTER
MCI_VCR_TIME_DETECT
MCI_VCR_TIME_TIMECODE
For more information, see the MCI_VCR_SET_TIME_MODE flag of the MCI_SET command.

MCI_VCR_STATUS_TIME_TYPE
The dwReturn member is set to a constant describing the current time type in use (used by play,
record, seek, and so on), and is one of the following:
MCI_VCR_TIME_COUNTER

Counter is in use.
MCI_VCR_TIME_TIMECODE

Timecode is in use.
MCI_VCR_STATUS_TIMECODE_PRESENT

The dwReturn member is set to TRUE if timecode is present at the current position in the content; it
is set to FALSE otherwise.

MCI_VCR_STATUS_TIMECODE_RECORD
The dwReturn member is set to TRUE if the timecode will be recorded when the next record
command is given; it is set to FALSE otherwise.

MCI_VCR_STATUS_TIMECODE_TYPE
The dwReturn member is set to a constant, describing the type of timecode that is directly
supported by the device, and is one of the following:
MCI_VCR_TIMECODE_TYPE_NONE

This device does not use a timecode.

MCI_VCR_TIMECODE_TYPE_OTHER
This device uses an unspecified timecode.

MCI_VCR_TIMECODE_TYPE_SMPTE
This device uses SMPTE timecode.

MCI_VCR_TIMECODE_TYPE_SMPTE_DROP
This device uses SMPTE drop timecode.

MCI_VCR_STATUS_TUNER_CHANNEL
The dwReturn member is set to the current channel number. If you specify
MCI_VCR_STATUS_NUMBER in the dwFlags parameter of this command, dwNumber contains the
logical-tuner number this command applies to.

MCI_VCR_STATUS_VIDEO_MONITOR
The dwReturn member is set to a constant, indicating the currently selected video-monitor type.

MCI_VCR_STATUS_VIDEO_MONITOR_NUMBER
The dwReturn member is set to the number of the currently selected video-monitor type.

MCI_VCR_STATUS_VIDEO_RECORD
The dwReturn member is set to TRUE if video will be recorded when the next record command is
given; it is set to FALSE otherwise. If you specify MCI_TRACK in the dwFlags parameter of this
command, dwTrack contains the track this inquiry applies to.

MCI_VCR_STATUS_VIDEO_SOURCE
The dwReturn member is set to a constant indicating the currently selected video-source type.

MCI_VCR_STATUS_VIDEO_SOURCE_NUMBER
The dwReturn member is set to the number of the currently selected video-source type.

MCI_VCR_STATUS_WRITE_PROTECTED
The dwReturn member is set to TRUE if the media is write-protected; it is set to FALSE otherwise.

For VCR devices, the lpStatus parameter points to an MCI_VCR_STATUS_PARMS structure.

Using the MCI_STATUS_LENGTH flag to determine the length of the media always returns 2 hours for
VCR devices, unless the length has been explicitly changed using the MCI_SET command.

Video-Overlay Flags

The following additional flags are used with the overlay device type. These constants are used in the
dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is
specified for the dwFlags parameter.

MCI_OVLY_STATUS_HWND
The dwReturn member is set to the handle of the window associated with the video-overlay device.

MCI_OVLY_STATUS_STRETCH
The dwReturn member is set to TRUE if stretching is enabled; it is set to FALSE otherwise.

MCI_STATUS_MEDIA_PRESENT
The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE
otherwise.

Videodisc Flags

The following additional flags are used with the videodisc device type. These constants are used in
the dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is
specified for the dwFlags parameter.

MCI_STATUS_MEDIA_PRESENT
The dwReturn member is set to TRUE if the media is inserted in the device; it is set to FALSE
otherwise.

MCI_STATUS_MODE
The dwReturn member is set to the current mode of the device. Videodisc devices can return the

MCI_VD_MODE_PARK constant, in addition to the constants any device can return, as documented
with the dwFlags parameter.

MCI_VD_STATUS_DISC_SIZE
The dwReturn member is set to the size of the loaded disc in inches (8 or 12).

MCI_VD_STATUS_FORWARD
The dwReturn member is set to TRUE if playing forward; it is set to FALSE otherwise.
The MCI videodisc device does not support this flag.

MCI_VD_STATUS_MEDIA_TYPE
The dwReturn member is set to the media type of the inserted media. The following media types
can be returned:
MCI_VD_MEDIA_CAV
MCI_VD_MEDIA_CLV
MCI_VD_MEDIA_OTHER

MCI_VD_STATUS_SIDE
The dwReturn member is set to 1 or 2 to indicate which side of the disc is loaded. Not all videodisc
devices support this flag.

MCI_VD_STATUS_SPEED
The dwReturn member is set to the play speed in frames per second. The MCIPIONR.DRV device
driver returns MCIERR_UNSUPPORTED_FUNCTION.

Waveform-Audio Flags

The following additional flags are used with the waveaudio device type. These constants are used in
the dwItem member of the structure pointed to by the lpStatus parameter when MCI_STATUS_ITEM is
specified for the dwFlags parameter.

MCI_WAVE_FORMATTAG
The dwReturn member is set to the current format tag used for playing, recording, and saving.

MCI_WAVE_INPUT
The dwReturn member is set to the wave input device used for recording. If no device is in use and
no device has been explicitly set, then the error return is MCIERR_WAVE_INPUTUNSPECIFIED.

MCI_WAVE_OUTPUT
The dwReturn member is set to the wave output device used for playing. If no device is in use and
no device has been explicitly set, then the error return is MCIERR_WAVE_OUTPUTUNSPECIFIED.

MCI_WAVE_STATUS_AVGBYTESPERSEC
The dwReturn member is set to the current bytes per second used for playing, recording, and
saving.

MCI_WAVE_STATUS_BITSPERSAMPLE
The dwReturn member is set to the current bits per sample used for playing, recording, and saving
PCM formatted data.

MCI_WAVE_STATUS_BLOCKALIGN
The dwReturn member is set to the current block alignment used for playing, recording, and saving.

MCI_WAVE_STATUS_CHANNELS
The dwReturn member is set to the current channel count used for playing, recording, and saving.

MCI_WAVE_STATUS_LEVEL
The dwReturn member is set to the current record or playback level of PCM formatted data. The
value is returned as an 8- or 16-bit value, depending on the sample size used. The right or mono
channel level is returned in the low-order word. The left channel level is returned in the high-order
word.

MCI_WAVE_STATUS_SAMPLESPERSEC
The dwReturn member is set to the current samples per second used for playing, recording, and
saving.

 MCI_STEP

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_STEP,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpStep);

Steps the player one or more frames. Animation, digital-video, VCR, and CAV-format videodisc devices
recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpStep
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

This command supports devices that return TRUE to the MCI_GETDEVCAPS_HAS_VIDEO flag of the
MCI_GETDEVCAPS command.

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_STEP_FRAMES
The dwFrames member of the structure identified by lpStep specifies the number of frames to step.

MCI_ANIM_STEP_REVERSE
Steps in reverse.

For animation devices, the lpStep parameter points to an MCI_ANIM_STEP_PARMS structure.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_STEP_FRAMES
The dwFrames member of the structure identified by lpStep specifies the number of frames to
advance before displaying another image.

MCI_DGV_STEP_REVERSE
Steps in reverse.

For digital-video devices, the lpStep parameter points to an MCI_DGV_STEP_PARMS structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_STEP_FRAMES
The dwFrames member of the structure identified by lpStep specifies the number of frames to
advance before displaying another image.

MCI_VCR_STEP_REVERSE
Steps in reverse.

For VCR devices, the lpStep parameter points to an MCI_VCR_STEP_PARMS structure.

Videodisc Flags

The following additional flags are used with the videodisc device type:

MCI_VD_STEP_FRAMES

The dwFrames member of the structure identified by lpStep specifies the number of frames to step.
MCI_VD_STEP_REVERSE

Steps in reverse.

For videodisc devices, the lpStep parameter points to an MCI_VD_STEP_PARMS structure.

 MCI_STOP

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_STOP,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpStop);

Stops all play and record sequences, unloads all play buffers, and ceases display of video images.
Animation, CD audio, digital-video, MIDI sequencer, videodisc, VCR, and waveform-audio devices
recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpStop
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

The difference between the MCI_STOP and MCI_PAUSE commands depends on the device. If
possible, MCI_PAUSE suspends device operation but leaves the device ready to resume play
immediately.

For the CD audio device, MCI_STOP resets the current track position to zero; in contrast, MCI_PAUSE
maintains the current track position, anticipating that the device will resume playing.

 MCI_SYSINFO

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_SYSINFO,
 DWORD dwFlags, (DWORD) (LPMCI_SYSINFO_PARMS) lpSysInfo);

Retrieves information about MCI devices. MCI supports this command directly rather than passing it to
the device. Any MCI application can use this command. String information is returned in the
application-supplied buffer pointed to by the lpstrReturn member of the structure identified by
lpSysInfo. Numeric information is returned as a doubleword value placed in the application-supplied
buffer. The dwRetSize member specifies the buffer length.

· Returns zero if successful or an error otherwise.
dwFlags

One or more of the following standard and command-specific flags:
MCI_SYSINFO_INSTALLNAME

Obtains the name (listed in the registry or the SYSTEM.INI file) used to install the device.
MCI_SYSINFO_NAME

Obtains a device name corresponding to the device number specified in the dwNumber member
of the structure identified by lpSysInfo. If the MCI_SYSINFO_OPEN flag is set, MCI returns the
names of open devices.

MCI_SYSINFO_OPEN
Obtains the quantity or name of open devices.

MCI_SYSINFO_QUANTITY
Obtains the number of devices of the specified type that are listed in the registry or the [mci]
section of the SYSTEM.INI file. If the MCI_SYSINFO_OPEN flag is set, the number of open
devices is returned.

lpSysInfo
Address of an MCI_SYSINFO_PARMS structure.

The wDeviceType member of the structure identified by lpSysInfo is used to indicate the device type of
the query. If the wDeviceID parameter is set to MCI_ALL_DEVICE_ID, it overrides the value of
wDeviceType. For a list of device types, see "Constants: Device Types" later in this chapter.

Integer return values are doubleword values returned in the buffer pointed to by the lpstrReturn
member of the structure identified by lpSysInfo.

String return values are null-terminated strings returned in the buffer pointed to by the lpstrReturn
member of the structure identified by lpSysInfo.

 MCI_UNDO

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_UNDO,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpUndo);

Reverses the most recent successful MCI_CUT, MCI_COPY, MCI_DELETE, or MCI_PASTE
command. Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

lpUndo
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

 MCI_UNFREEZE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_UNFREEZE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpUnfreeze);

Restores motion to an area of the video buffer frozen with the MCI_FREEZE command. Digital-video,
VCR, and video-overlay devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

lpUnfreeze
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags

The following additional flag is used with the digitalvideo device type:

MCI_DGV_RECT
The rc member of the structure identified by lpUnfreeze contains a valid display rectangle. The
rectangle specifies a region within the frame buffer whose pixels should have their lock mask bit
turned off. Rectangular regions are specified as described for the MCI_PUT command. If omitted,
the rectangle defaults to the entire frame buffer. By using a sequence of freeze and unfreeze
commands with different rectangles, arbitrary patterns of lock mask bits can be described.

For digital-video devices, the lpUnfreeze parameter points to an MCI_DGV_UNFREEZE_PARMS
structure. The MCI_DGV_UNFREEZE_PARMS structure is identical to the MCI_DGV_RECT_PARMS
structure.

VCR Flags

The following additional flags are used with the vcr device type:

MCI_VCR_UNFREEZE_INPUT
Unfreeze the input.

MCI_VCR_UNFREEZE_OUTPUT
Unfreeze the output.

Video-Overlay Flags

The following additional flag is used with the overlay device type:

MCI_OVLY_RECT
The rc member of the structure identified by lpUnfreeze contains a valid display rectangle. This is a
required parameter.

For video-overlay devices, the lpUnfreeze parameter points to an MCI_OVLY_RECT_PARMS
structure.

 MCI_UPDATE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_UPDATE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpDest);

Updates the display rectangle. Animation and digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags,
see Chapter 3, "MCI Overview."

lpDest
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_RECT
The rc member of the structure identified by lpDest contains a valid rectangle. If this flag is not
specified, the entire window is updated.

MCI_ANIM_UPDATE_HDC
The hDC member of the structure identified by lpDest contains a handle to the display context (DC).
This flag is required.

For animation devices, the lpDest parameter points to an MCI_ANIM_UPDATE_PARMS structure.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_UPDATE_HDC
The hDC member of the structure identified by lpDest contains a valid window of the DC to paint.
This flag is required.

MCI_DGV_RECT
The rc member of the structure identified by lpUnfreeze contains a valid display rectangle. The
rectangle specifies the clipping rectangle relative to the client rectangle.

MCI_DGV_UPDATE_PAINT
An application uses this flag when it receives a WM_PAINT message that is intended for a display
DC. A frame-buffer device usually paints the key color. If the display device does not have a frame
buffer, it might ignore the MCI_UPDATE command when the MCI_DGV_UPDATE_PAINT flag is
used because the display will be repainted during the playback operation.

For digital-video devices, the lpDest parameter points to an MCI_DGV_UPDATE_PARMS structure.

 MCI_WHERE

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_WHERE,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpQuery);

Obtains the clipping rectangle for the video device. Animation, digital-video, and video-overlay devices
recognize this command. The top and left members of the returned RECT contain the origin of the
clipping rectangle, and the right and bottom members contain the width and height of the clipping
rectangle. (This is not the standard use of the right and bottom members.)

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags,
see Chapter 3, "MCI Overview."

lpQuery
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_WHERE_DESTINATION
Obtains the destination display rectangle. The rectangle coordinates are placed in the rc member of
the structure identified by lpQuery.

MCI_ANIM_WHERE_SOURCE
Obtains the animation source rectangle. The rectangle coordinates are placed in the rc member of
the structure identified by lpQuery.

For animation devices, the lpQuery parameter points to an MCI_ANIM_RECT_PARMS structure.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_WHERE_DESTINATION
Obtains a description of the rectangular region used to display video and images in the client area of
the current window.

MCI_DGV_WHERE_FRAME
Obtains a description of the rectangular region of the frame buffer into which images from the video
rectangle are scaled. The rectangle coordinates are placed in the rc member of the structure
identified by lpQuery.

MCI_DGV_WHERE_MAX
When used with MCI_DGV_WHERE_DESTINATION or MCI_DGV_WHERE_SOURCE, the
rectangle returned indicates the maximum width and height of the specified region. When used with
MCI_DGV_WHERE_WINDOW, the rectangle returned indicates the size of the entire display.

MCI_DGV_WHERE_SOURCE
Obtains a description of the rectangular region (cropped from the frame buffer) that is stretched to fit
the destination rectangle on the display.

MCI_DGV_WHERE_VIDEO
Obtains a description of the rectangular region cropped from the presentation source to fill the frame
rectangle in the frame buffer. The rectangle coordinates are placed in the rc member of the structure
identified by lpQuery.

MCI_DGV_WHERE_WINDOW
Obtains a description of the display-window frame.

For digital-video devices, the lpQuery parameter points to an MCI_DGV_WHERE_PARMS structure.
The MCI_DGV_WHERE_PARMS structure is identical to the MCI_DGV_RECT_PARMS structure.

Video-Overlay Flags

The following additional flags are used with the overlay device type:

MCI_OVLY_WHERE_DESTINATION
Obtains the destination display rectangle. The rectangle coordinates are placed in the rc member of
the structure identified by lpQuery.

MCI_OVLY_WHERE_FRAME
Obtains the overlay frame rectangle. The rectangle coordinates are placed in the rc member of the
structure identified by lpQuery.

MCI_OVLY_WHERE_SOURCE
Obtains the source rectangle. The rectangle coordinates are placed in the rc member of the
structure identified by lpQuery.

MCI_OVLY_WHERE_VIDEO
Obtains the video rectangle. The rectangle coordinates are placed in the rc member of the structure
identified by lpQuery.

For video-overlay devices, the lpQuery parameter points to an MCI_OVLY_RECT_PARMS structure.

 MCI_WINDOW

MCIERROR mciSendCommand(MCIDEVICEID wDeviceID, MCI_WINDOW,
 DWORD dwFlags, (DWORD) (LPMCI_GENERIC_PARMS) lpWindow);

Specifies the window and the window characteristics for graphic devices. Animation, digital-video, and
video-overlay devices recognize this command.

· Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these flags,
see Chapter 3, "MCI Overview."

lpWindow
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Graphic devices should create a default window when a device is opened but should not display it until
they receive the MCI_PLAY command. The MCI_WINDOW command is used to supply an application-
created window to the device and to change the display characteristics of an application-defined or
default display window. If the application supplies the display window, it should be prepared to update
an invalid rectangle on the window.

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_WINDOW_DISABLE_STRETCH
Disables stretching of the image.

MCI_ANIM_WINDOW_ENABLE_STRETCH
Enables stretching of the image.

MCI_ANIM_WINDOW_HWND
The handle of the window to use for the destination is included in the hWnd member of the structure
identified by lpWindow. Set this to MCI_ANIM_WINDOW_DEFAULT to return to the default window.

MCI_ANIM_WINDOW_STATE
The nCmdShow member of the structure identified by lpWindow contains parameters for setting the
window state. This flag is equivalent to calling the ShowWindow function with a state parameter
such as SW_HIDE, SW_MINIMIZE, or SW_SHOWNORMAL.

MCI_ANIM_WINDOW_TEXT
The lpstrText member of the structure identified by lpWindow contains an address of a buffer
containing the caption used for the window.

For animation devices, the lpWindow parameter points to an MCI_ANIM_WINDOW_PARMS structure.

Digital-Video Flags

The following additional flags are used with the digitalvideo device type:

MCI_DGV_WINDOW_HWND
The handle of the window needed for use as the destination is included in the hWnd member of the
structure identified by lpWindow.

MCI_DGV_WINDOW_STATE
The nCmdShow member of the structure identified by lpWindow contains parameters for setting the
window state.

MCI_DGV_WINDOW_TEXT
The lpstrText member of the structure identified by lpWindow contains an address of a buffer
containing the caption used in the window title bar.

For digital-video devices, the lpWindow parameter points to an MCI_DGV_WINDOW_PARMS
structure.

Video-Overlay Flags

The following additional flags are used with the overlay device type:

MCI_OVLY_WINDOW_DISABLE_STRETCH
Disables stretching of the image.

MCI_OVLY_WINDOW_ENABLE_STRETCH
Enables stretching of the image.

MCI_OVLY_WINDOW_HWND
The handle of the window used for the destination is included in the hWnd member of the structure
identified by lpWindow. Set this flag to MCI_OVLY_WINDOW_DEFAULT to return to the default
window.

MCI_OVLY_WINDOW_STATE
The nCmdShow member of the lpWindow structure contains parameters for setting the window
state. This flag is equivalent to calling ShowWindow with the state parameter. The constants are
the same as those defined in WINDOWS.H (such as SW_HIDE, SW_MINIMIZE, or
SW_SHOWNORMAL).

MCI_OVLY_WINDOW_TEXT
The lpstrText member of the structure identified by lpWindow contains an address of a buffer
containing the caption used for the window.

For video-overlay devices, the lpWindow parameter points to an MCI_OVLY_WINDOW_PARMS
structure.

 MCI_ANIM_OPEN_PARMS

typedef struct {
 DWORD dwCallback; // see below
 MCIDEVICEID wDeviceID; // identifier returned to application
 LPCSTR lpstrDeviceType; // see below
 LPCSTR lpstrElementName; // device element name (usually a path)
 LPCSTR lpstrAlias; // optional device alias
 DWORD dwStyle; // window style
 HWND hWndParent; // handle of parent window
} MCI_ANIM_OPEN_PARMS;

Contains window and device information for the MCI_OPEN command for animation devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrDeviceType
The name or constant identifier of the device type. If this member is a constant, it can be one of the
values listed in "Constants: Device Types" later in this chapter.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

You can use the MCI_OPEN_PARMS structure instead of MCI_ANIM_OPEN_PARMS if you are not
using the extended data members.

 MCI_ANIM_PLAY_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to play from
 DWORD dwTo; // position to play to
 DWORD dwSpeed; // play rate, in frames per second
} MCI_ANIM_PLAY_PARMS;

Contains play information for the MCI_PLAY command for animation devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

You can use the MCI_PLAY_PARMS structure instead of MCI_ANIM_PLAY_PARMS if you are not
using the extended data members.

 MCI_ANIM_RECT_PARMS

typedef struct {
 DWORD dwCallback;
 RECT rc;
} MCI_ANIM_RECT_PARMS;

Contains positioning information for the MCI_PUT and MCI_WHERE commands for animation devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_ANIM_STEP_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrames; // number of frames to step
} MCI_ANIM_STEP_PARMS;

Contains information for the MCI_STEP command for animation devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_ANIM_UPDATE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 RECT rc; // see below
 HDC hDC; // handle to device context (DC)
} MCI_ANIM_UPDATE_PARMS;

Contains position and DC information for the MCI_UPDATE command for animation devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_ANIM_WINDOW_PARMS

typedef struct {
 DWORD dwCallback; // see below
 HWND hWnd; // handle to display window
 UINT nCmdShow; // window-display command
 LPCSTR lpstrText; // window caption
} MCI_ANIM_WINDOW_PARMS;

Contains display information for the MCI_WINDOW command for animation devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_BREAK_PARMS

typedef struct {
 DWORD dwCallback; // see below
 int nVirtKey; // virtual-key code for break key
 HWND hwndBreak; // see below
} MCI_BREAK_PARMS;

Contains virtual-key code and window information for the MCI_BREAK command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

hwndBreak
Handle of the window that must be the current window for break detection.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members. The following flags are
defined:

MCI_BREAK_HWND
Validates the hwndBreak member specifying the window that must have focus to enable break
detection.

MCI_BREAK_KEY
Validates the nVirtKey member specifying the virtual-key code to be used for the break key.

MCI_BREAK_OFF
Disables any existing break key.

 MCI_DGV_CAPTURE_PARMS

typedef struct {
 DWORD dwCallback;
 LPSTR lpstrFileName;
 RECT rc;
} MCI_DGV_CAPTURE_PARMS;

Contains parameters for the MCI_CAPTURE command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrFileName
Address of a null-terminated string specifying the destination path and filename for the file that
receives the captured data.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_CUE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwTo; // cue position
} MCI_DGV_CUE_PARMS;

Contains parameters for the MCI_CUE command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_COPY_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // starting position for copy
 DWORD dwTo; // ending position for copy
 RECT rc; // see below
 DWORD dwAudioStream; // audio stream
 DWORD dwVideoStream; // video stream
} MCI_DGV_COPY_PARMS;

Contains parameters for the MCI_COPY command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle describing area to be copied. RECT structures are handled differently in MCI than in other
parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains its
height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_CUT_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // starting position for cut
 DWORD dwTo; // ending position for cut
 RECT rc; // see below
 DWORD dwAudioStream; // audio stream
 DWORD dwVideoStream; // video stream
} MCI_DGV_CUT_PARMS;

Contains parameters for the MCI_CUT command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle describing area to be cut. RECT structures are handled differently in MCI than in other
parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains its
height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_DELETE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // starting position for delete
 DWORD dwTo; // ending position for delete
 RECT rc; // see below
 DWORD dwAudioStream; // audio stream
} MCI_DGV_DELETE_PARMS;

Contains parameters for the MCI_DELETE command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle describing area to delete. RECT structures are handled differently in MCI than in other
parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains its
height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_FREEZE_PARMS

typedef struct {
 DWORD dwCallback;
 RECT rc;
} MCI_DGV_FREEZE_PARMS;

Contains parameters for the MCI_FREEZE and MCI_UNFREEZE commands for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_INFO_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPSTR lpstrReturn; // address of buffer for return string
 DWORD dwRetSize; // size, in bytes, of return buffer
 DWORD dwItem; // constant describing information to return
} MCI_DGV_INFO_PARMS;

Contains parameters for the MCI_INFO command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_LIST_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPSTR lpstrReturn; // buffer for return string
 DWORD dwLength; // length, in bytes, of buffer
 DWORD dwNumber; // index of item in list
 DWORD dwItem; // type of list item
 LPSTR lpstrAlgorithm; // string containing algorithm name
} MCI_DGV_LIST_PARMS;

Contains the information for the MCI_LIST command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_LOAD_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPSTR lpfilename; // string naming file to load
} MCI_DGV_LOAD_PARMS;

Contains the information for the MCI_LOAD command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_MONITOR_PARMS

typedef struct {
 DWORD dwCallback;
 DWORD dwSource;
 DWORD dwMethod;
} MCI_DGV_MONITOR_PARMS;

Contains parameters for the MCI_MONITOR command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwSource
One of the following flags for the monitor source:
MCI_DGV_MONITOR_FILE

The workspace is the presentation source. (This is the default source.) If this flag is used during
recording, the recording pauses. If the MCI_MONITOR command changes the presentation
source, recording or playing stops and the current position is the value returned by the
MCI_STATUS command for the start position.

MCI_DGV_MONITOR_INPUT
The external input is the presentation source. Playback is paused before the input is selected. If
the MCI_SETVIDEO command has been enabled using the MCI_SET_ON flag, this flag displays
a default hidden window. Device drivers might limit what other device instances can do while
monitoring input.

dwMethod
One of the following constants for the type of monitoring:
MCI_DGV_METHOD_DIRECT

The device should be configured for optimum display quality during monitoring. Direct monitoring
might be incompatible with motion-video recording.

MCI_DGV_METHOD_POST
The device should show the external input after compression. Post monitoring supports motion-
video recording.

MCI_DGV_METHOD_PRE
The device should show the external input prior to compression.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_OPEN_PARMS

typedef struct {
 DWORD dwCallback; // see below
 UINT wDeviceID; // device ID returned to user
 LPSTR lpstrDeviceType; // name or constant ID of device type
 LPSTR lpstrElementName; // device element name (usually a path)
 LPSTR lpstrAlias; // optional device alias
 DWORD dwStyle; // window style
 HWND hWndParent; // handle of parent window
} MCI_DGV_OPEN_PARMS;

Contains information for the MCI_OPEN command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_PASTE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwTo; // starting position for paste
 RECT rc; // see below
 DWORD dwAudioStream; // audio stream
 DWORD dwVideoStream; // video stream
} MCI_DGV_PASTE_PARMS;

Contains parameters for the MCI_PASTE command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_PAUSE_PARMS

typedef struct {
 DWORD dwCallback;
} MCI_DGV_PAUSE_PARMS;

Contains information for the MCI_PAUSE command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_PLAY_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to play from
 DWORD dwTo; // position to play to
} MCI_DGV_PLAY_PARMS;

Contains parameters for the MCI_PLAY command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_PUT_PARMS

typedef struct {
 DWORD dwCallback;
 RECT rc;
} MCI_DGV_PUT_PARMS;

Contains parameters for the MCI_PUT command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_QUALITY_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwItem; // see below
 LPSTR lpstrName; // string naming descriptor
 DWORD lpstrAlgorithm; // string naming algorithm
 DWORD dwHandle; // see below
} MCI_DGV_QUALITY_PARMS;

Contains parameters for the MCI_QUALITY command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem
One of the following constants indicating the type of algorithm:
MCI_QUALITY_ITEM_AUDIO

Definitions are for an audio compression algorithm.
MCI_QUALITY_ITEM_STILL

Definitions are for a still video compression algorithm.
MCI_QUALITY_ITEM_VIDEO

Definitions are for a video compression algorithm.
dwHandle

Handle of a structure containing information describing the quality attributes.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_RECORD_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to record from
 DWORD dwTo; // position to record to
 RECT rc; // see below
 DWORD dwAudioStream; // audio stream
 DWORD dwVideoStream; // video stream
} MCI_DGV_RECORD_PARMS;

Contains parameters for the MCI_RECORD command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
The region of the frame buffer used as the source for the pixels compressed and saved. RECT
structures are handled differently in MCI than in other parts of Windows; in MCI, rc.right contains
the width of the rectangle and rc.bottom contains its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_RECT_PARMS

typedef struct {
 DWORD dwCallback;
 RECT rc;
} MCI_DGV_RECT_PARMS;

Contains parameters for the MCI_FREEZE, MCI_PUT, MCI_UNFREEZE, and MCI_WHERE
commands for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

The MCI_DGV_UNFREEZE_PARMS and MCI_DGV_WHERE_PARMS structures are identical to the
MCI_DGV_RECT_PARMS structure.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_RESERVE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPSTR lpstrPath; // see below
 DWORD dwSize; // size of reserved disk space
} MCI_DGV_RESERVE_PARMS;

Contains information for the MCI_RESERVE command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrPath
Address of a null-terminated string containing the location of a temporary file. The buffer contains
only the drive and directory path of the file used to hold recorded data; the filename is specified by
the device driver.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_RESTORE_PARMS

typedef struct {
 DWORD dwCallback;
 DWORD lpstrFileName;
 RECT rc;
} MCI_DGV_RESTORE_PARMS;

Contains information for the MCI_RESTORE command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrFileName
Address of a null-terminated string containing the filename from which the frame buffer information
will be restored.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_RESUME_PARMS

typedef struct {
 DWORD dwCallback;
} MCI_DGV_RESUME_PARMS;

Contains information for the MCI_RESUME command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_SAVE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD lpstrFileName; // string for filename to save
 RECT rc; // see below
} MCI_DGV_SAVE_PARMS;

Contains information for the MCI_SAVE command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_SET_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwTimeFormat; // time format of device
 DWORD dwAudio; // channel for audio output
 DWORD dwFileFormat; // file format
 DWORD dwSpeed; // playback speed
} MCI_DGV_SET_PARMS;

Contains parameters for the MCI_SET command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_SETAUDIO_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwItem; // see below
 DWORD dwValue; // adjustment level
 DWORD dwOver; // transmission length
 LPSTR lpstrAlgorithm; // see below
 LPSTR lpstrQuality; // see below
} MCI_DGV_SETAUDIO_PARMS;

Contains parameters for the MCI_SETAUDIO command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem
Constant indicating the target adjustment. For a list of possible values, see the MCI_SETAUDIO
command.

lpstrAlgorithm
Address of a null-terminated string containing the name of the audio-compression algorithm.

lpstrQuality
Address of a null-terminated string containing a descriptor of the audio-compression algorithm.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_SETVIDEO_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwItem; // see below
 DWORD dwValue; // adjustment level
 DWORD dwOver; // transmission length
 LPSTR lpstrQuality; // see below
 LPSTR lpstrAlgorithm; // see below
 DWORD dwSourceNumber; // index of input source
} MCI_DGV_SETVIDEO_PARMS;

Contains parameters for the MCI_SETVIDEO command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem
Constant indicating the target adjustment.

lpstrQuality
Address of a null-terminated string containing a descriptor of the video-compression algorithm.

lpstrAlgorithm
Address of a null-terminated string containing the name of the video-compression algorithm.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_SIGNAL_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwPosition; // position to be marked
 DWORD dwPeriod; // interval of the position marks
 DWORD dwUserParm; // user value associated with signals
} MCI_DGV_SIGNAL_PARMS;

Contains parameters for the MCI_SIGNAL command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_STATUS_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwReturn; // buffer for return information
 DWORD dwItem; // identifies capability being queried
 DWORD dwTrack; // length or number of tracks
 LPSTR lpstrDrive; // see below
 DWORD dwReference; // see below
} MCI_DGV_STATUS_PARMS;

Contains parameters for the MCI_STATUS command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrDrive
Specifies the approximate amount of disk space that can be obtained by the MCI_RESERVE
command.

dwReference
Specifies the approximate location of the nearest previous intraframe-encoded image.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_STEP_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrames; // number of frames to step
} MCI_DGV_STEP_PARMS;

Contains parameters for the MCI_STEP command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_STOP_PARMS

typedef struct {
 DWORD dwCallback;
} MCI_DGV_STOP_PARMS;

Contains information for the MCI_STOP command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_UPDATE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 RECT rc; // see below
 HDC hDC; // handle to display context
} MCI_DGV_UPDATE_PARMS;

Contains parameters for the MCI_UPDATE command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_DGV_WINDOW_PARMS

typedef struct {
 DWORD dwCallback; // see below
 WORD hWnd; // see below
 WORD nCmdShow; // window-display command
 LPSTR lpstrText; // window caption
} MCI_DGV_WINDOW_PARMS;

Contains parameters for MCI_WINDOW command for digital-video devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

hWnd
Handle to the display window. If this member is MCI_DGV_WINDOW_HWND, the system uses a
default window.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members

 MCI_GENERIC_PARMS

typedef struct {
 DWORD dwCallback;
} MCI_GENERIC_PARMS;

Contains the handle of the window that receives notification messages. This structure is used for MCI
command messages that have empty parameter lists.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

The MCI_CLOSE_PARMS and MCI_REALIZE_PARMS structures are identical to the
MCI_GENERIC_PARMS structure.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_GETDEVCAPS_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwReturn; // contains information on exit
 DWORD dwItem; // see below
} MCI_GETDEVCAPS_PARMS;

Contains device-capability information for the MCI_GETDEVCAPS command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem
Capability being queried. This member can be one of the constants listed in the reference material
for the MCI_GETDEVCAPS command.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_INFO_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPSTR lpstrReturn; // buffer for return string
 DWORD dwRetSize; // size, in bytes, of return string
} MCI_INFO_PARMS;

Contains information for the MCI_INFO command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_LOAD_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPCSTR lpfilename; // filename to load
} MCI_LOAD_PARMS;

Contains the filename to load for the MCI_LOAD command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_OPEN_PARMS

typedef struct {
 DWORD dwCallback; // see below
 MCIDEVICEID wDeviceID; // identifier returned to application
 LPCSTR lpstrDeviceType; // see below
 LPCSTR lpstrElementName; // device element (often a path)
 LPCSTR lpstrAlias; // optional device alias
} MCI_OPEN_PARMS;

Contains information for the MCI_OPEN command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrDeviceType
Name or constant identifier of the device type. (The name of the device is typically obtained from the
registry or SYSTEM.INI file.) If this member is a constant, it can be one of the values listed in
"Constants: Device Types" later in this chapter.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_OVLY_LOAD_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPCSTR lpfilename; // name of file to load
 RECT rc; // see below
} MCI_OVLY_LOAD_PARMS;

Contains information for the MCI_LOAD command for video-overlay devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Identifies the area of the video buffer to update. RECT structures are handled differently in MCI than
in other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom
contains its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_OVLY_OPEN_PARMS

typedef struct {
 DWORD dwCallback; // see below
 MCIDEVICEID wDeviceID; // identifier returned to application
 LPCSTR lpstrDeviceType; // see below
 LPCSTR lpstrElementName; // device element name (usually a path)
 LPCSTR lpstrAlias; // optional device alias
 DWORD dwStyle; // window style
 DWORD hWndParent; // handle of parent window
} MCI_OVLY_OPEN_PARMS;

Contains information for the MCI_OPEN command for video-overlay devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrDeviceType
Name or constant identifier of the device type. (The name of the device is typically obtained from the
registry or SYSTEM.INI file.) If this member is a constant, it can be one of the values listed in
"Constants: Device Types" later in this chapter.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

You can use the MCI_OPEN_PARMS structure in place of MCI_OVLY_OPEN_PARMS if you are not
using the extended data members.

 MCI_OVLY_RECT_PARMS

typedef struct {
 DWORD dwCallback;
 RECT rc;
} MCI_OVLY_RECT_PARMS;

Contains positioning information for the MCI_PUT and MCI_WHERE commands for video-overlay
devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle containing positioning information. RECT structures are handled differently in MCI than in
other parts of Windows; in MCI, rc.right contains the width of the rectangle and rc.bottom contains
its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_OVLY_SAVE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPCSTR lpfilename; // name of file to save
 RECT rc; // see below
} MCI_OVLY_SAVE_PARMS;

Contains information for the MCI_SAVE command for video-overlay devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Rectangle indicating the area of the video buffer to save. RECT structures are handled differently in
MCI than in other parts of Windows; in MCI, rc.right contains the width of the rectangle and
rc.bottom contains its height.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_OVLY_WINDOW_PARMS

typedef struct {
 DWORD dwCallback; // see below
 HWND hWnd; // handle of display window
 UINT nCmdShow; // window-display command
 LPCSTR lpstrText; // window caption
} MCI_OVLY_WINDOW_PARMS;

Contains window-display information for the MCI_WINDOW command for video-overlay devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_PLAY_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to play from
 DWORD dwTo; // position to play to
} MCI_PLAY_PARMS;

Contains positioning information for the MCI_PLAY command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_RECORD_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to record from
 DWORD dwTo; // position to record to
} MCI_RECORD_PARMS;

Contains positioning information for the MCI_RECORD command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_SAVE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPCSTR lpfilename; // name of file to save
} MCI_SAVE_PARMS;

Contains the filename information for the MCI_SAVE command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_SEEK_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwTo; // position to seek to
} MCI_SEEK_PARMS;

Contains positioning information for the MCI_SEEK command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_SEQ_SET_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwTimeFormat; // sequencer's time format
 DWORD dwAudio; // audio output channel
 DWORD dwTempo; // tempo
 DWORD dwPort; // output port
 DWORD dwSlave; // see below
 DWORD dwMaster; // see below
 DWORD dwOffset; // data offset
} MCI_SEQ_SET_PARMS;

Contains information for the MCI_SET command for MIDI sequencer devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwSlave
Type of synchronization used by the sequencer for slave operation.

dwMaster
Type of synchronization used by the sequencer for master operation.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_SET_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwTimeFormat; // time format for device
 DWORD dwAudio; // audio output channel
} MCI_SET_PARMS;

Contains information for the MCI_SET command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_STATUS_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwReturn; // contains information on return
 DWORD dwItem; // capability being queried
 DWORD dwTrack; // length or number of tracks
} MCI_STATUS_PARMS;

Contains information for the MCI_STATUS command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

The MCI_STATUS_ITEM flag must be set in the fdwCommand parameter of the mciSendCommand
function to validate the dwItem member, which should contain one of the constants indicating what
status information is being requested.

 MCI_SYSINFO_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPSTR lpstrReturn; // see below
 DWORD dwRetSize; // size, in bytes, of return buffer
 DWORD dwNumber; // see below
 UINT wDeviceType; // see below
} MCI_SYSINFO_PARMS;

Contains information for the MCI_SYSINFO command.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrReturn
Address of a user-supplied buffer for the return string. It is also used to return a doubleword value
when the MCI_SYSINFO_QUANTITY flag is used.

dwNumber
Number indicating the device position in the MCI device table or in the list of open devices if the
MCI_SYSINFO_OPEN flag is set.

wDeviceType
Type of device. This member can be one of the values listed in "Constants: Device Types" later in
this chapter.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_CUE_PARMS

typedef struct tagMCI_VCR_CUE_PARMS {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to cue from
 DWORD dwTo; // position to cue to
} MCI_VCR_CUE_PARMS;

Contains parameters for the MCI_CUE command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_LIST_PARMS

typedef struct tagMCI_VCR_LIST_PARMS {
 DWORD dwCallback; // see below
 DWORD dwReturn; // buffer for returned information
 DWORD dwNumber; // number of VCR's video or audio inputs
} MCI_VCR_LIST_PARMS;

Contains parameters for the MCI_LIST command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_PLAY_PARMS

typedef struct tagMCI_VCR_PLAY_PARMS {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to play from
 DWORD dwTo; // position to play to
 DWORD dwAt; // see below
} MCI_VCR_PLAY_PARMS;

Contains parameters for the MCI_PLAY command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwAt
Time value that affects the MCI_PLAY or MCI_CUE command. For MCI_PLAY, this is the time when
playback begins. For MCI_CUE, this is the time when the cued device reaches the position given in
dwFrom.

Positions are specified in the current time format.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_RECORD_PARMS

typedef struct tagMCI_VCR_RECORD_PARMS {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to record from
 DWORD dwTo; // position to record to
 DWORD dwAt; // see below
} MCI_VCR_RECORD_PARMS;

Contains parameters for the MCI_RECORD command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwAt
Time value that affects the MCI_RECORD or MCI_CUE command. For MCI_RECORD, this is the
time when recording begins. For MCI_CUE, this is the time when the cued device reaches the
position given in dwFrom.

Positions are specified in the current time format.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_SEEK_PARMS

typedef struct tagMCI_VCR_SEEK_PARMS {
 DWORD dwCallback; // see below
 DWORD dwTo; // position to seek to
 DWORD dwMark; // numbered mark to seek for
 DWORD dwAt; // time when seek begins
} MCI_VCR_SEEK_PARMS;

Contains parameters for the MCI_SEEK command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

Positions are specified in the current time format.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_SET_PARMS

typedef struct tagMCI_VCR_SET_PARMS {
 DWORD dwCallback; // see below
 DWORD dwTimeFormat; // current time format
 DWORD dwAudio; // not used
 DWORD dwTimeMode; // see below
 DWORD dwRecordFormat; // recording rate
 DWORD dwCounterFormat; // format of a new counter time value
 DWORD dwIndex; // contents of on-screen display
 DWORD dwTracking; // see below
 DWORD dwSpeed; // see below
 DWORD dwLength; // see below
 DWORD dwCounter; // new counter value
 DWORD dwClock; // new clock time
 DWORD dwPauseTimeout; // new timeout value for pause command
 DWORD dwPrerollDuration; // see below
 DWORD dwPostrollDuration; // see below
} MCI_VCR_SET_PARMS;

Contains parameters for the MCI_SET command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeMode
Constant that specifies the timing source used by the device. The timing source is either a timecode
recorded on videotape, or the counters in the device that sense videotape movement.

dwTracking
Speed adjustment used when tracking the VCR playback rate.

dwSpeed
Playback speed used by the device as an integer. Normal playback speed is 1000, double speed is
2000, and half speed is 500.

dwLength
Videotape length when the length is undetectable by the device.

dwPrerollDuration
Videotape length needed to stabilize the VCR output.

dwPostrollDuration
Videotape length needed to brake the VCR transport when a MCI_STOP or MCI_PAUSE command
is issued.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_SETAUDIO_PARMS

typedef struct tagMCI_VCR_SETAUDIO_PARMS {
 DWORD dwCallback; // see below
 DWORD dwTrack; // audio track
 DWORD dwTo; // type of input or monitored input
 DWORD dwNumber; // see below
} MCI_VCR_SETAUDIO_PARMS;

Contains parameters for the MCI_SETAUDIO command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwNumber
Audio input (of the type specified in the dwTo member) to use.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_SETTUNER_PARMS

typedef struct tagMCI_VCR_SETTUNER_PARMS {
 DWORD dwCallback; // see below
 DWORD dwChannel; // new channel number
 DWORD dwNumber; // see below
} MCI_VCR_SETTUNER_PARMS;

Contains parameters for the MCI_SETTUNER command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwNumber
Logical tuner that the MCI_SETTUNER command affects.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_SETVIDEO_PARMS

typedef struct tagMCI_VCR_SETVIDEO_PARMS {
 DWORD dwCallback; // see below
 DWORD dwTrack; // affected track
 DWORD dwTo; // type of input or monitored input
 DWORD dwNumber; // see below
} MCI_VCR_SETVIDEO_PARMS;

Contains parameters for the MCI_SETVIDEO command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwNumber
Video input (of the type specified in the dwTo member) to use.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_STATUS_PARMS

typedef struct tagMCI_VCR_STATUS_PARMS {
 DWORD dwCallback; // see below
 DWORD dwReturn; // see below
 DWORD dwItem; // type of information requested
 DWORD dwTrack; // see below
 DWORD dwNumber; // see below
} MCI_VCR_STATUS_PARMS;

Contains parameters for the MCI_STATUS command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn
Value returned by the MCI_STATUS command. The return value varies according to the inquiry of
the command. For more information, see the description of the MCI_STATUS command.

dwTrack
Audio or video track that will store information during the next recording. This member is used to
return information when the MCI_STATUS command inquires about the video or audio recording
status.

dwNumber
Logical tuner that the current channel is associated with. This member is used to return information
when the MCI_STATUS command inquires about the current channel number.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VCR_STEP_PARMS

typedef struct tagMCI_VCR_STEP_PARMS {
 DWORD dwCallback;
 DWORD dwFrames;
} MCI_VCR_STEP_PARMS;

Contains parameters for the MCI_STEP command for video-cassette recorders.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrames
Number of frames to jump (the length of a single step) as the MCI_STEP command steps forward or
backward through the content.

When assigning data to the members in this structure, set the corresponding flags in the fdwCommand
parameter of mciSendCommand to validate the members.

 MCI_VD_ESCAPE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 LPCSTR lpstrCommand; // command to send to device
} MCI_VD_ESCAPE_PARMS;

Contains the command sent to a device for the MCI_ESCAPE command for videodisc devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_VD_PLAY_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to play from
 DWORD dwTo; // position to play to
 DWORD dwSpeed; // playback speed in frames per second
} MCI_VD_PLAY_PARMS;

Contains position and speed information for the MCI_PLAY command for videodisc devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

You can use the MCI_PLAY_PARMS structure instead of MCI_VD_PLAY_PARMS if you are not using
the extended data members.

 MCI_VD_STEP_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrames; // number of frames to step
} MCI_VD_STEP_PARMS;

Contains information for the MCI_STEP command for videodisc devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_WAVE_DELETE_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwFrom; // position to delete from
 DWORD dwTo; // position to delete to
} MCI_WAVE_DELETE_PARMS;

Contains position information for the MCI_DELETE command for waveform-audio devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 MCI_WAVE_OPEN_PARMS

typedef struct {
 DWORD dwCallback; // see below
 MCIDEVICEID wDeviceID; // identifier returned to application
 LPCSTR lpstrDeviceType; // see below
 LPCSTR lpstrElementName; // device element name (usually a path)
 LPCSTR lpstrAlias; // optional device alias
 DWORD dwBufferSeconds; // buffer length, in seconds
} MCI_WAVE_OPEN_PARMS;

Contains information for MCI_OPEN command for waveform-audio devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrDeviceType
Name or constant identifier of the device type. (The name of the device is typically obtained from the
registry or SYSTEM.INI file.) This member can be one of the values listed in "Constants: Device
Types" later in this chapter.

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

You can use the MCI_OPEN_PARMS structure instead of MCI_WAVE_OPEN_PARMS if you are not
using the extended data members.

 MCI_WAVE_SET_PARMS

typedef struct {
 DWORD dwCallback; // see below
 DWORD dwTimeFormat; // device's time format
 DWORD dwAudio; // see below
 UINT wInput; // audio input channel
 UINT wOutput; // see below
 WORD wFormatTag; // see below
 WORD wReserved2; // reserved
 WORD nChannels; // mono (1) or stereo (2)
 WORD wReserved3; // reserved
 DWORD nSamplesPerSec; // samples per second
 DWORD nAvgBytesPerSec; // sample rate in bytes per second
 WORD nBlockAlign; // block alignment of the data
 WORD wReserved4; // reserved
 WORD wBitsPerSample; // bits per sample
 WORD wReserved5; // reserved
} MCI_WAVE_SET_PARMS;

Contains information for the MCI_SET command for waveform-audio devices.

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwAudio
Channel number for audio output. Typically used when turning a channel on or off.

wOutput
Output device to use. For example, this value could be 2 if a system had two installed sound cards.

wFormatTag
Format of the waveform-audio data. This member can be one of the following:
WAVE_FORMAT_ADPCM

Microsoft Corporation
WAVE_FORMAT_ALAW

Microsoft Corporation
WAVE_FORMAT_ANTEX_ADPCME

Antex Electronics Corporation
WAVE_FORMAT_APTX

Audio Processing Technology
WAVE_FORMAT_AUDIOFILE_AF10

Audiofile
WAVE_FORMAT_AUDIOFILE_AF36

Audiofile
WAVE_FORMAT_CONTROL_RES_CR10

Control Resources Corporation
WAVE_FORMAT_CONTROL_RES_VQLPC

Control Resources Corporation
WAVE_FORMAT_CREATIVE_ADPCM

Creative Labs, Inc.
WAVE_FORMAT_CREATIVE_FASTSPEECH10

Creative Labs, Inc.
WAVE_FORMAT__CREATIVE__FASTSPEECH8

Creative Labs, Inc.
WAVE_FORMAT_DIALOGIC_OKI_ADPCM

Dialogic Corporation
WAVE_FORMAT_DIGIADPCM

DSP Solutions, Inc.
WAVE_FORMAT_DIGIFIX

DSP Solutions, Inc.
WAVE_FORMAT_DIGIREAL

DSP Solutions, Inc.
WAVE_FORMAT_DIGISTD

DSP Solutions, Inc.
WAVE_FORMAT_DOLBY_AC2

Dolby Laboratories, Inc.
WAVE_FORMAT_DSPGROUP_TRUESPEECH

DSP Group, Inc.
WAVE_FORMAT_DVI_ADPCM

Intel Corporation
WAVE_FORMAT_ECHOSC1

Echo Speech Corporation
WAVE_FORMAT_FM_TOWNS_SND

Fujitsu, Ltd.
WAVE_FORMAT_G721_ADPCM

Antex Electronics Corporation
WAVE_FORMAT_G723_ADPCM

Antex Electronics Corporation
WAVE_FORMAT_GSM610

Microsoft Corporation
WAVE_FORMAT_IBM_CVSD

International Business Machines
WAVE_FORMAT_IMA_ADPCM

Intel Corporation
WAVE_FORMAT_MEDIASPACE_ADPCM

VideoLogic, Inc.
WAVE_FORMAT_MPEG

Microsoft Corporation
WAVE_FORMAT_MULAW

Microsoft Corporation
WAVE_FORMAT_NMS_VBXADPCM

Natural MicroSystems Corporation
WAVE_FORMAT_OKI_ADPCM

OKI
WAVE_FORMAT_OLIADPCM

Ing C. Olivetti & C., S.p.A.
WAVE_FORMAT_OLICELP

Ing C. Olivetti & C., S.p.A.
WAVE_FORMAT_OLIGSM

Ing C. Olivetti & C., S.p.A.
WAVE_FORMAT_OLIOPR

Ing C. Olivetti & C., S.p.A.

WAVE_FORMAT_OLISBC
Ing C. Olivetti & C., S.p.A.

WAVE_FORMAT_SIERRA_ADPCM
Sierra Semiconductor Corporation

WAVE_FORMAT_SONARC
Speech Compression

WAVE_FORMAT_UNKNOWN
Microsoft Corporation

WAVE_FORMAT_YAMAHA_ADPCM
Yamaha Corporation of America

When assigning data to the members of this structure, set the corresponding flags in the fdwCommand
parameter of the mciSendCommand function to validate the members.

 Constants: Device Types

The following values identify devices in MCI messages and structures:

Value Meaning
MCI_ALL_DEVICE_ID Any device
MCI_DEVTYPE_ANIMATION Animation-playback device
MCI_DEVTYPE_CD_AUDIO CD audio device
MCI_DEVTYPE_DAT Digital-audio tape device
MCI_DEVTYPE_DIGITAL_VIDEO Digital-video playback device
MCI_DEVTYPE_OTHER Undefined device
MCI_DEVTYPE_OVERLAY Video-overlay device
MCI_DEVTYPE_SCANNER Scanner device
MCI_DEVTYPE_SEQUENCER MIDI sequencer device
MCI_DEVTYPE_VCR Video-cassette recorder
MCI_DEVTYPE_VIDEODISC Videodisc players
MCI_DEVTYPE_WAVEFORM_AUDI
O

Waveform-audio device

 MCI Overview

The Media Control Interface (MCI) is a high-level command interface to multimedia devices and
resource files. MCI provides applications with device-independent capabilities for controlling audio and
visual peripherals. Your application can use MCI to control any supported multimedia device, including
waveform-audio devices, MIDI sequencers, CD audio devices, and digital-video (video playback)
devices.

MCI provides standard commands for playing multimedia devices and recording multimedia resource
files. These commands are a generic interface to virtually every kind of multimedia device.

 MCI Command Strings and Messages

There are two forms of MCI commands: strings and messages. You can use either or both forms in
your MCI application.

· The command-message interface consists of constants and structures of the C programming
language. You use the mciSendCommand function to send a message to an MCI device.

· The command-string interface provides a textual version of the command messages. You use the
mciSendString function to send a string to an MCI device. Command strings duplicate the
functionality of the command messages. The Microsoft Windows operating system converts the
command strings to command messages before sending them to the MCI driver for processing.

The command messages that retrieve information do so in the form of structures, which are easy to
interpret in a C application. These structures can contain information on many different aspects of a
device. The command strings that retrieve information do so in the form of strings, and can only
retrieve one string at a time. Your application must parse or test each string to interpret it. You might
find that the command messages are easier to use than the command strings in some cases, but the
command strings are easy to remember and implement. Some MCI applications use command strings
when the return value is unimportant or simply "true" or "false" and command messages when
retrieving information from the device.

This chapter documents MCI without going into great detail on either the command-string or command-
message interfaces. When commands or flags are discussed, this chapter uses the string form of the
command or flag followed by the message form in parentheses. For information about the command-
string interface, see Chapter 4, "MCI Command Strings." For information about the command-message
interface, see Chapter 5, "MCI Command Messages."

 MCI Devices

Every MCI multimedia device reacts to a core set of MCI commands as you would probably expect it
to. For example, the play (MCI_PLAY) command causes the open device to play a file or track, no
matter what kind of data the device works with. This section discusses MCI devices and how they
respond to standard MCI commands.

 Device Control

To control an MCI device, you open the device, send the necessary commands to it, and then close the
device. The commands can be very similar, even for completely different MCI devices. For example,
the following series of MCI commands plays the sixth track of an audio CD by using the command-
string interface:

mciSendString("open cdaudio", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("set cdaudio time format tmsf", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("play cdaudio from 6 to 7", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("close cdaudio", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

The next example shows a similar series of MCI commands that plays the first 10,000 samples of a
waveform-audio file:

mciSendString(
 "open c:\mmdata\purplefi.wav type waveaudio alias finch",
 lpszReturnString, lstrlen(lpszReturnString), NULL);
mciSendString("set finch time format samples", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("play finch from 1 to 10000", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("close finch", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

These examples illustrate some interesting facts about MCI commands:

· The same basic commands (open, set, play, and close) are used with CD audio and waveform-
audio devices. The same MCI commands are used with all MCI devices.

· The open command for the waveform-audio device includes a filename specification. The
waveform-audio device is a compound device (one associated with a data file), while the CD audio
device is a simple device (one without an associated data file).

· The set command specifies time formats in each case, but the time-format flag for the CD audio
device specifies tracks/minutes/seconds/frames (TMSF) format, while the time format used with the
waveform-audio device specifies "samples".

· The variables used with the "from" and "to" flags are appropriate to the respective time format. For
example, for the CD audio device, the variables specify a range of tracks, but for the waveform-
audio device, the variables specify a range of samples.

 Playback and Positioning

A number of MCI commands, such as play (MCI_PLAY), stop (MCI_STOP), pause (MCI_PAUSE),
resume (MCI_RESUME), and seek (MCI_SEEK), affect the playback or positioning of a multimedia
file. If an MCI device receives a playback command while another playback command is in progress, it
accepts the command and either stops or supersedes the previous command.

Many MCI commands, such as set (MCI_SET), do not affect playback. A notification from one of these
commands does not interfere with pending playback or position commands as long as the notifications
are not performed from the same instance of the driver. For example, you can issue a set or status
(MCI_STATUS) command while a device is performing a seek command without stopping or
superseding the seek command.

However, there can only be one pending notification. For example, if an application requests a
notification for play and follows that request with status "start position notify," the play notification will
return "superseded" and the notification for the status command will return when it is finished. In this
case, however, the play command will still succeed, even though the application did not receive the
notification.

 Device Types

MCI recognizes a basic set of device types. A device type is a set of MCI drivers that share a common
command set and are used to control similar multimedia devices or data files. Many MCI commands,
such as open (MCI_OPEN), require you to specify a device type.

The following table lists the defined device types. The current implementation of MCI includes
command sets for a subset of these devices.

Device
type

Constant Description

animation MCI_DEVTYPE_ANIMATION Animation device
cdaudio MCI_DEVTYPE_CD_AUDIO CD audio player
dat MCI_DEVTYPE_DAT Digital-audio tape

player
digitalvid
eo

MCI_DEVTYPE_DIGITAL_VIDEO Digital video in a
window (not GDI
based)

other MCI_DEVTYPE_OTHER Undefined MCI
device

overlay MCI_DEVTYPE_OVERLAY Overlay device
(analog video in a
window)

scanner MCI_DEVTYPE_SCANNER Image scanner
sequence
r

MCI_DEVTYPE_SEQUENCER MIDI sequencer

vcr MCI_DEVTYPE_VCR Video-cassette
recorder or player

videodisc MCI_DEVTYPE_VIDEODISC Videodisc player
waveaudi
o

MCI_DEVTYPE_WAVEFORM_AUDIO Audio device that
plays digitized
waveform files

In this document, the names of device types are bold. Device-type names are used with the command-
string interface. Device-type constants are used with the command-message interface.

 Device Names

For any given device type, there might be several MCI drivers that share the command set but operate
on different data formats. For example, the animation device type might include several MCI drivers
that use the same command set but play different types of animation files. To uniquely identify an MCI
driver, MCI uses device names.

Device names are identified either in the [mci] section of the SYSTEM.INI file or in the appropriate part
of the registry. This information identifies all MCI drivers to Windows. The entries in the [mci] section
use the following form:

device_name = driver_filename.extension

The following example shows a typical [mci] section from SYSTEM.INI:

[mci]
cdaudio=mcicda.drv
sequencer=mciseq.drv
waveaudio=mciwave.drv
avivideo=mciavi.drv

If an MCI driver is installed using a device name that already exists in SYSTEM.INI or the registry, the
system appends an integer to the device name of the new driver, creating a unique device name. In the
preceding example, an additional driver installed using the "cdaudio" device name would be assigned
the device name "cdaudio1".

 Driver Support for MCI Commands

MCI drivers provide the functionality for MCI commands. The system software performs some basic
data-management tasks, but all the multimedia playback, presentation, and recording is handled by the
individual MCI drivers.

Drivers vary in their support for MCI commands and command flags. Because multimedia devices can
have widely different capabilities, MCI is designed to let individual drivers extend or reduce the
command sets to match the capabilities of the device. For example, the record (MCI_RECORD)
command is part of the command set for MIDI sequencers, but the MCISEQ driver included with
Windows does not support this command. The reference material for the record command explains
that devices of the sequencer device type recognize the command; this does not mean that all devices
of this type support the command. Applications should use the capability (MCI_GETDEVCAPS)
command to determine the capabilities of a particular device.

 Default Behavior of Drivers

In many situations, the MCI command specifications define the default values and behavior for drivers
of a particular device type. Since multimedia devices can have a wide range of features (and
limitations), there can be undefined areas of behavior. Also, drivers might handle exceptions differently
based on the device capabilities and the design goals of the programmer who developed the driver.

For example, consider the following commands sent to a waveform-audio driver:

mciSendString("open sound.wav alias sound", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("play sound notify", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("record sound from 0 notify", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

The record command returns a "Parameter out of range" value and stops the playback started by the
previous play command. One might expect the driver to validate the record command before stopping
playback, but the driver stops the playback first.

 Classifications of MCI Commands

MCI defines four command classifications: system, required, basic, and extended. The following list
describes these command classifications:

· System commands are handled by MCI directly, rather than by the driver.
· Required commands are handled by the driver. All MCI drivers must support the required commands

and flags.
· Basic commands (or optional commands) are used by some devices. If a device supports a basic

command, it must support a defined set of flags for that command.
· Extended commands are specific to a device type or driver. Extended commands include new

commands (like the put (MCI_PUT) and where (MCI_WHERE) commands for the animation,
digitalvideo, and overlay device types) and extensions to existing commands (like the "stretch" flag
of the status (MCI_STATUS) command for the animation and overlay device types).

While system and required commands are the minimum command set for any MCI driver, basic and
extended commands are not supported by all drivers. Your application can always use system and
required commands and their flags, but if it needs to use a basic or extended command or flag, it
should first query the driver by using the capability (MCI_GETDEVCAPS) command. The following
sections summarize the specific commands in each category.

System Commands

MCI processes the following system commands directly, rather than passing them to MCI devices:

Strin
g

Message Description

break MCI_BREAK Sets a break key for an MCI device.
sysin
fo

MCI_SYSINFO Returns information about MCI devices.

Required Commands

All MCI devices support the following required commands:

String Message Description
capabilit
y

MCI_GETDEVCAPS Obtains the capabilities of a
device.

close MCI_CLOSE Closes the device.
info MCI_INFO Obtains textual information from a

device.
open MCI_OPEN Initializes the device.
status MCI_STATUS Obtains status information from

the device. Some of this
command's flags are not required,
so it is also a basic command.

Devices must also support a standard set of command flags for the required commands.

Basic Commands

The following list summarizes the basic commands. The use of these commands by an MCI device is
optional.

String Message Description
load MCI_LOAD Loads data from a file.

pause MCI_PAUSE Stops playing. Playback or recording can
be resumed at the current position.

play MCI_PLAY Starts transmitting output data.
record MCI_RECORD Starts recording input data.
resum
e

MCI_RESUME Resumes playing or recording on a
paused device.

save MCI_SAVE Saves data to a disk file.
seek MCI_SEEK Seeks forward or backward.
set MCI_SET Sets the operating state of the device.
status MCI_STATUS Obtains status information about the

device. This is also a required command;
since some of its flags are not required, it
is also listed here. (The optional items
support devices that use linear media
with identifiable positions.)

stop MCI_STOP Stops playing.

If a driver supports a basic command, it must also support a standard set of flags for the command.

Extended Commands

Some MCI devices have additional commands, or they add flags to existing commands. While some
extended commands apply only to a specific device driver, most of them apply to all drivers of a
particular device type. For example, the command set for the sequencer device type extends the set
(MCI_SET) command to add time formats that are needed by MIDI sequencers.

You should not assume that the device supports the extended commands or flags. You can use the
capability (MCI_GETDEVCAPS) command to determine whether a specific feature is supported, and
your application should be ready to deal with "unsupported command" or "unsupported function" return
values.

The following extended commands are available with the listed device types:

String Message Device
types

Description

configur
e

MCI_CONFIGURE digitalvide
o

Displays a configuration
dialog box.

cue MCI_CUE digitalvide
o,
waveaudio

Prepares for playing or
recording.

delete MCI_DELETE waveaudio Deletes a data segment
from the media file.

escape MCI_ESCAPE videodisc Sends custom information
to a device.

freeze MCI_FREEZE overlay Disables video acquisition
to the frame buffer.

put MCI_PUT animation,
digitalvide
o, overlay

Defines the source,
destination, and frame
windows.

realize MCI_REALIZE animation,
digitalvide
o

Tells the device to select
and realize its palette into
a device context (DC) of
the displayed window.

setaudio MCI_SETAUDIO digitalvide
o

Sets audio parameters for
video.

setvideo MCI_SETVIDEO digitalvide
o

Sets video parameters.

signal MCI_SIGNAL digitalvide
o

Identifies a specified
position with a signal.

spin MCI_SPIN videodisc Starts the disc spinning or
stops the disc from
spinning.

step MCI_STEP animation,
digitalvide
o,
videodisc

Steps the play one or
more frames forward or
reverse.

unfreeze MCI_UNFREEZE overlay Enables the frame buffer
to acquire video data.

update MCI_UPDATE animation,
digitalvide
o

Repaints the current
frame into the DC.

where MCI_WHERE animation,
digitalvide
o, overlay

Obtains the rectangle
specifying the source,
destination, or frame
area.

window MCI_WINDOW animation,
digitalvide
o, overlay

Controls the display
window.

 Working with MCI Devices

This section describes how to perform the following tasks:

· Open a device.
· Retrieve information about a device.
· Obtain MCI system information.
· Play a device.
· Record.
· Stop, pause, and resume a device.
· Close a device.

In addition, this section provides you with shortcuts you can use with MCI commands.

 Opening a Device

Before using a device, you must initialize it by using the open (MCI_OPEN) command. This command
loads the driver into memory (if it isn't already loaded) and retrieves the device identifier you will use to
identify the device in subsequent MCI commands. You should check the return value of the
mciSendString or mciSendCommand function before using a new device identifier to ensure that the
identifier is valid. (You can also retrieve a device identifier by using the mciGetDeviceID function.)

Like all MCI command messages, MCI_OPEN has an associated structure. These structures are
sometimes called parameter blocks. The default structure for MCI_OPEN is MCI_OPEN_PARMS.
Certain devices (such as waveform, animation, and overlay) have extended structures to
accommodate additional optional parameters. Unless you need to use these additional parameters,
you can use the MCI_OPEN_PARMS structure with any MCI device.

The number of devices you can have open is limited only by the amount of available memory.

Using an Alias

When you open a device, you can use the "alias" flag to specify a device identifier for the device. This
flag lets you assign a short device identifier for compound devices with lengthy filenames, and it lets
you open multiple instances of the same file or device.

For example, the following command assigns the device identifier "birdcall" to the lengthy filename C:\
NABIRDS\SOUNDS\MOCKMTNG.WAV:

mciSendString(
 "open c:\nabirds\sounds\mockmtng.wav type waveaudio alias birdcall",
 lpszReturnString, lstrlen(lpszReturnString), NULL);

In the command-message interface, you specify an alias by using the lpstrAlias member of the
MCI_OPEN_PARMS structure.

Specifying a Device Type

When you open a device, you can use the "type" flag to refer to a device type, rather than to a specific
device driver. The following example opens the waveform-audio file C:\WINDOWS\CHIMES.WAV
(using the "type" flag to specify the waveaudio device type) and assigns the alias "chimes":

mciSendString(
 "open c:\windows\chimes.wav type waveaudio alias chimes",
 lpszReturnString, lstrlen(lpszReturnString), NULL);

In the command-message interface, the functionality of the "type" flag is supplied by the
lpstrDeviceType member of the MCI_OPEN_PARMS structure.

Simple and Compound Devices

MCI classifies device drivers as compound or simple. Drivers for compound devices require the name
of a data file for playback; drivers for simple devices do not.

Simple devices include cdaudio and videodisc devices. There are three ways to open simple devices:

· Specify a pointer to a null-terminated string containing the device name from the registry or the
SYSTEM.INI file.
For example, you can open a videodisc device by using the following command:
mciSendString("open videodisc", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

In this case, "videodisc" is the device name from the registry or the [mci] section of SYSTEM.INI.

· Specify the actual name of the device driver. Opening a device using the device-driver filename,
however, makes the application device-dependent and can prevent the application from running if
the system configuration changes. If you use a filename, you do not need to specify the complete
path or the filename extension; MCI assumes drivers are located in a system directory and have
the .DRV filename extension.

Compound devices include waveaudio and sequencer devices. The data for a compound device is
sometimes called a device element. This document, however, generally refers to this data as a file,
even though in some cases the data might not be stored as a file.

There are three ways to open a compound device:

· Specify only the device name. This lets you open a compound device without associating a
filename. Most compound devices process only the capability (MCI_GETDEVCAPS) and close
(MCI_CLOSE) commands when they are opened this way.

· Specify only the filename. The device name is determined from the associations entered in the
registry.

· Specify the filename and the device name. MCI ignores the entries in the registry and opens the
specified device name.

To associate a data file with a particular device, you can specify the filename and device name. For
example, the following command opens the waveaudio device with the filename MYVOICE.SND:

mciSendString("open myvoice.snd type waveaudio", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

In the command-string interface, you can also abbreviate the device name specification by using the
alternative exclamation-point format, as documented with the open command.

Opening a Device Using the Filename Extension

If the open (MCI_OPEN) command specifies only the filename, MCI uses the filename extension to
select the appropriate device from the list in the registry or the [mci extensions] section of the
SYSTEM.INI file. The entries in the [mci extensions] section use the following form:

filename_extension=device_name

MCI implicitly uses device_name if the extension is found and if a device name has not been specified
in the open command.

The following example shows a typical [mci extensions] section:

[mci extensions]
wav=waveaudio
mid=sequencer
rmi=sequencer

Using these definitions, MCI opens the waveaudio device if the following command is issued:

mciSendString("open train.wav", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

New Data Files

To create a new data file, simply specify a blank filename. MCI does not save a new file until you save
it by using the save (MCI_SAVE) command. When creating a new file, you must include a device alias
with the open (MCI_OPEN) command.

The following example opens a new waveaudio file, starts and stops recording, then saves and closes
the file:

mciSendString("open new type waveaudio alias capture", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("record capture", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("stop capture", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("save capture orca.wav", lpszReturnString,
 lstrlen(lpszReturnString), NULL);
mciSendString("close capture", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

Shareable Devices

The "shareable" (MCI_OPEN_SHAREABLE) flag of the open (MCI_OPEN) command lets multiple
applications access the same device (or file) and device instance simultaneously. If your application
opens a device or file as shareable, other applications can also access it by opening it as shareable.
The shared device or file gives each application the ability to change the parameters governing its
operating state. Each time a device or file is opened as shareable, MCI returns a unique device
identifier, even though the identifiers refer to the same instance.

If your application opens a device or file without specifying that it is shareable, no other application can
access it until your application closes it. Also, if a device supports only one open instance, the open
command will fail if you specify the shareable flag.

If your application opens a device and specifies that it is shareable, your application should not make
any assumptions about the state of this device. Your application might need to compensate for
changes made by other applications accessing the device.

Most compound files are not shareable; however, you can open multiple files (where each is unique),
or you can open a single file multiple times. If you open a single file multiple times, MCI creates an
independent instance for each, with each instance having a unique operating status.

If you open multiple instances of a file, you must assign a unique device identifier to each. You can use
an alias, as described in the following section, to assign a unique name for each file.

 Retrieving Information About a Device

Every device responds to the capability (MCI_GETDEVCAPS), status (MCI_STATUS), and info
(MCI_INFO) commands. These commands obtain information about the device. For example, the
following command returns "true" if a cdaudio device can eject the disc:

mciSendString(
 "capability cdaudio can eject",
 lpszReturnString, lstrlen(lpszReturnString), NULL);

The flags listed for the required and basic commands provide a minimum amount of information about
a device. Many devices supplement the required and basic commands with extended flags to provide
additional information about the device.

 Obtaining MCI System Information

The sysinfo (MCI_SYSINFO) command obtains system information about MCI devices. MCI handles
this command without relaying it to any MCI device. For the command-message interface, MCI returns
the system information in the MCI_SYSINFO_PARMS structure.

You can use the sysinfo (MCI_SYSINFO) command to retrieve information such as the number of MCI
devices on a system, the number of MCI devices of a particular type, the number of open MCI devices,
and the names of the devices. This command is often called more than once to retrieve a particular
piece of information. For example, you might retrieve the number of devices of a particular type in the
first call and then enumerate the names of the devices in the next.

 Playing a Device

The play (MCI_PLAY) command starts playing a device. Without any flags, this command starts
playing from the current position and plays until the command is interrupted or until the end of the
media or file is reached. After playback, the current position is at the end of the media. You can also
use the seek (MCI_SEEK) command to change the current position.

Most devices that support the play command also support the "from" (MCI_FROM) and "to" (MCI_TO)
flags. These flags indicate the position at which the device should start and stop playing. For example,
the following command plays a CD audio disc from the beginning of the first track:

mciSendString("play cdaudio from 0", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

Some device types extend this command to exploit the capabilities of a particular device. For example,
the play command for the videodisc device type includes the "fast" (MCI_VD_PLAY_FAST) , "slow"
(MCI_VD_PLAY_SLOW), and "scan" (MCI_VD_PLAY_SCAN) flags.

Note The units assigned to the position value depend on the time format used by the device. Each
device has a default time format, but you should specify the time format by using the set (MCI_SET)
command before issuing any commands that use position values.

Playing an AVI File

Video files in Windows are made up of at least two interleaved data streams: a video (pictorial) stream
and an audio stream. You can easily play these audio-video interleaved (AVI) files by using MCI
commands. The following sections discuss playing AVI files.

Setting Up an MCIAVI Playback Window

Your application can specify the following options to define the playback window for playing an AVI file:

· Use the MCIAVI driver's default pop-up window.
· Specify a parent window and window style that the MCIAVI driver can use to create the playback

window.
· Specify a playback window for the MCIAVI driver to use for playback.
· Play the AVI file on a full-screen display.

If your application does not specify any window options, the MCIAVI driver creates a default window for
playing the sequence. The driver creates this playback window for the open (MCI_OPEN) command,
but it does not display the window until your application sends a command to either display the window
or play the file. This default playback window is a pop-up window with a sizing border, title bar, a thick
frame, a system menu, and a minimize button.

Your application can also specify a parent window handle and a window style when it issues the open
command. In this case, the MCIAVI driver creates a window based on these specifications instead of
the default pop-up window. Your application can specify any window style available for the
CreateWindow function. Styles that require a parent window, such as WS_CHILD, should include a
parent window handle.

Your application can also create its own window and supply the handle to the MCIAVI driver by using
the window (MCI_WINDOW) command. The MCIAVI driver uses this window instead of creating one
of its own.

When the MCIAVI driver creates the playback window or obtains a window handle from your
application, it does not display the window until your application either plays the sequence or sends a
command to display the window. Your application can use the window command to display the window
without playing the sequence. For example, the following command displays the window using the

command-string interface:

mciSendString("window movie state show", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

In this example, "movie" is an alias for the digital-video device.

Your application can also play an AVI file full-screen. To play full-screen, modify the play (MCI_PLAY)
command with the "fullscreen" (MCI_MCIAVI_PLAY_FULLSCREEN) flag. When your application uses
this flag, the MCIAVI driver uses a 320- by 240-pixel full-screen format for playing the sequence. For
example, the following command plays the opened file full-screen (using "movie" as an alias):

mciSendString("play movie fullscreen", lpszReturnString,
 lstrlen(lpszReturnString), NULL);

Changing the Playback State for an AVI file

Your application can use the seek (MCI_SEEK) command to move the current position to the
beginning, the end, or an arbitrary position in an AVI file. There are two seek modes for the MCIAVI
driver: exact and inexact. Your application can change the seek mode by using the set (MCI_SET)
command. When seek exactly is enabled (set "seek exactly on"), the MCIAVI driver seeks exactly to
the frame your application specifies. This might cause a delay if the file is temporally encoded and your
application does not specify a key frame. With seek exactly disabled (set "seek exactly off"), the
MCIAVI driver seeks to the nearest key frame in a temporally encoded file.

Some MCI commands let your application alter the playback of an AVI file in other ways. For example,
an AVI file, by default, plays at its normal speed, but your application can increase or decrease this
speed by using the "speed" flag for the set command. For AVI files, a speed value of 1000 is normal.
Thus, to play a movie at half its normal speed, your application can use the command set "movie
speed 500"; alternatively, it can use set "movie speed 2000" to play the sequence at twice its normal
speed.

The setaudio (MCI_SETAUDIO) command lets your application control the audio portion of an AVI file.
Your application can mute audio during playback or, in the case of multiple audio stream files, select
the audio stream that is played.

The MCIAVI driver has a dialog box to control some of its playback options. Some of the options
available to the user include selecting window-oriented or full-screen playback, selecting the seek
mode, and zooming the image. Your application can have MCIAVI display this dialog box by using the
configure (MCI_CONFIGURE) command.

Stream Handlers

The data in an AVI file is treated as a series of streams. An AVI file typically contains an audio and
video stream, and there might be a custom stream as well containing text or some other custom data.
The MCIAVI driver can use different handlers for these data streams. For more information about
custom AVI files, see Chapter 9, "Custom File and Stream Handlers."

 Recording

The general MCI specification supports recording with digital-video, MIDI sequencer, video-cassette
recorder (VCR), and waveform-audio devices; however, only waveform-audio and VCR devices
currently implement recording capabilities. You can insert or overwrite recorded information into an
existing file or record into a new file. To record to an existing file, open a waveform-audio device and
file as you would normally. To record into a new file, when you open the device specify "new" as the
device name if you are using the command-string interface, or a zero-length filename if you are using
the command-message interface.

When MCI creates a new file for recording, the data format is set to a default format specified by the
device driver. To use a format other than the default format, you can use the set (MCI_SET) command.

To begin recording, use the record command (or MCI_RECORD and the MCI_RECORD_PARMS
structure).

If you record in insert mode to an existing file, you can use the "from" (MCI_FROM) and "to" (MCI_TO)
flags of the record command to specify starting and ending locations for recording. For example, if you
record to a file that is 20 seconds long, and you begin recording at 5 seconds and end recording at 10
seconds, the resulting file will be 25 seconds long. The file will have a 5-second segment inserted 5
seconds into the original recording.

If you record with overwrite mode to an existing file, you can use the "from" and "to" flags to specify
starting and ending locations of the section that is overwritten. For example, if you record to a file that
is 20 seconds long, and you begin recording at 5 seconds and end recording at 10 seconds, you still
have a recording 20 seconds long, but the section beginning at 5 seconds and ending at 10 seconds
will have been replaced.

If you do not specify an ending location, recording continues until you send a stop (MCI_STOP)
command, or until the driver runs out of free disk space. If you record to a new file, you can omit the
"from" flag or set it to zero to start recording at the beginning of a new file. You can specify an ending
location to terminate recording when recording to a new file.

The record command is sometimes accurate to within only 1 second of the starting location, such as
with VCR devices. To record more accurately, you should use the cue (MCI_CUE) command. This
command is recognized by digital-video, VCR, and waveform-audio devices. For more information
about recording with VCR devices, see "VCR Services" later in this chapter.

Saving a Recorded File

When recording is complete, use the save command (or MCI_SAVE and the MCI_SAVE_PARMS
structure) to save the recording before closing the device.

Note If you close the device without saving, the recorded data is lost.

Checking Input Levels (PCM only)

To get the level of the input signal before recording on a PCM (Pulse Code Modulation) waveform-
audio input device, use the status (MCI_STATUS) command. Specify the "level" flag (or the
MCI_STATUS_ITEM flag and set the dwItem member of the MCI_STATUS_PARMS structure to
MCI_WAVE_STATUS_LEVEL). The average input signal level is returned. The left-channel value is in
the high-order word and the right- or mono-channel value is in the low-order word

The input level is represented as an unsigned value. For 8-bit samples, this value is in the range 0
through 127 (0x7F). For 16-bit samples, it is in the range 0 through 32,767 (0x7FFF).

 Stopping, Pausing, and Resuming a Device

The stop (MCI_STOP) command suspends the playing or recording of a device. Many devices also
support the pause (MCI_PAUSE) command. The difference between stop and pause depends on the
device. Usually pause suspends operation but leaves the device ready to resume playing or recording
immediately.

Using the play (MCI_PLAY) or record (MCI_RECORD) command to restart a device resets the
locations specified with the "to" (MCI_TO) and "from" (MCI_FROM) flags before the device was paused
or stopped. Without the "from" flag, these commands reset the starting location to the current position.
Without the "to" flag, they reset the ending location to the end of the media. To continue playing or
recording without resetting a previously specified stop position, use the play or record command's "to"
flag to specify an ending location.

Some devices support the resume (MCI_RESUME) command to restart a paused device. This
command does not change the "to" and "from" locations specified with the play or record command
that preceded the pause command.

 Closing a Device

The close (MCI_CLOSE) command releases access to a device or file. MCI frees a device when all
tasks using a device have closed it. To help MCI manage the devices, your application must close each
device or file when it is finished using it.

When you close an external MCI device that uses its own media instead of files (such as CD audio),
the driver leaves the device in its current mode of operation. Thus, if you close a CD audio device that
is playing, even though the device driver is released from memory, the CD audio device will continue to
play until it reaches the end of its content.

Note Closing an application with open MCI devices can prevent other applications from using those
devices until Windows is restarted.

 MCI Implementations for Specific Devices

This section discusses using MCI commands with specific MCI devices.

 MCIAVI

An AVI file can contain more than two streams ¾ for example, a video sequence, an English
soundtrack, and a French soundtrack. Your application can use a stream independently of the other
streams in the file.

The digitalvideo device type controls video files. For a list of the MCI commands recognized by digital-
video devices, see "Digital-Video Command Set" later in this chapter.

The MCIAVI driver plays video sequences and other data streams under the control of MCI commands.
Data streams can contain images, audio, and palettes. The image data can consist of images with
either color palettes or true-color information.

Audio is synchronized with the video within one-thirtieth of a second. If audio hardware is not available,
however, the driver plays only the video stream. The MCIAVI driver can drop video frames, if
necessary, to play a stream without audio interruption.

Your application can use the MCIWnd window class services instead of the MCI command interface to
control any MCI driver. This window class handles many of the details of managing the window
supporting the MCI device and simplifies the programming required to send the MCI commands. Your
application can use the MCIWnd library services directly to control the MCI device, or it can have
MCIWnd display a toolbar, scroll bar, and menus that let the user control the device. For more
information about the MCIWnd window class, see Chapter 2, "Getting Started Using MCIWnd."

 VCR Services

Windows provides VCR services through a device driver that is based on the MCI command set for
VCRs. This section describes the MCI Video System Control Architecture (VISCA) driver and explains
how to use it to control a VCR.

The vcr device type controls VCRs. For a list of the MCI commands recognized by VCR devices, see
"VCR Command Set" later in this chapter.

The MCI VISCA Driver

The MCI VISCA driver controls Sony® VISCA-compatible VCRs, such as the CVD-1000 VDeck. The
VISCA driver controls the tape transport, channel tuners, and VCR input and output channels.

Searching and Positioning with a VCR

The VISCA driver uses two methods to track videotape movement within the VCR tape transport:
timecode information and tape counters. Timecode information is timing information that has been
recorded on the videotape. Most VCRs allow timecodes to be recorded without destroying audio and
video tracks. Tape counters estimate the amount of videotape that travels past the videotape head to
obtain a position.

Both timecode information and tape counters increase as the videotape moves from beginning to end.
Because of its accuracy, using timecode information to position a videotape is almost always preferable
to using tape counters.

The MCI command flags for specifying positioning information are expressed as time dependencies:
"time format", "duration", "from", "to", and "seek". (Also, the status "position" command returns its time
value in the current time format.)

The VISCA driver uses the set "time mode" command to select the type of positioning to use with a
videotape. When the time mode is set to "timecode", the status "position" and set "time format"
commands use the timecode on the videotape. When the time mode is set to "counter", the status
"position" and set "time format" commands use counters.

An application can set the time mode to "detect" if it doesn't matter that there might be two sources of
position information. When in detect mode, the VISCA driver uses timecode information for positioning
when any of the following conditions occur:

· The timecode information is present when the driver is opened.
· You change a videotape with the set "door open" command and timecode information is present on

the videotape.
· The set "time mode" command is reissued.

If timecode information cannot be found, the driver uses the tape counters.

To determine the current positioning method, issue the status "time type" command, which returns
either "timecode" or "counter". You can also identify the current positioning mode by using the status
"time mode" command, which returns "timecode", "counter", or "detect".

The status "counter" command retrieves the current tape counter value, regardless of the current
positioning method; however, you can use this counter reading only with the set "counter" command.

The VISCA driver can retrieve the native timecode format recorded on a videotape by using the status
"timecode type" and status "frame rate" commands together. For example, if timecode type is "smpte"
and frame rate is 25, the native timecode format recorded on the videotape is SMPTE 25.

The VISCA driver can also retrieve the counter resolution by using the status "counter resolution"
command, which returns "seconds" or "frames". The counter format might still be set to SMPTE 30, but
the return value returns only a frame of 0. If the current time type is counter, then this resolution applies
also to the value returned by status "position".

Capturing Frames

Frame-capturing commands provide still images for a frame-capture device. A frame-capture device is
a separate piece of hardware capable of reading and storing the video image. The VISCA driver
supports the freeze (MCI_FREEZE) command to stabilize a still image for capturing. Also, the
unfreeze (MCI_UNFREEZE) command can be used to restart the tape transport following a freeze
command.

The freeze command provides a high-quality, stabilized, time-base - corrected image for a frame-
capture device. This command exists because a device might not always deliver its maximum-quality
output image during playback or while paused; such a video image is not suitable for capturing.

The unfreeze command unlocks the tape transport and resumes the transport mode in effect prior to
the freeze command.

When your application needs to record a video image on the VCR, as is common with software-
animation applications, use the freeze "input" command or the cue (MCI_CUE) command to record the
image.

Selecting Inputs

The VISCA driver supports three input types: video, audio, and timecode. The video inputs include two
standard channels (lines 1 and 2), an SVideo channel, an auxiliary channel, and a channel from an
internal tuner. The audio inputs include two standard channels (lines 1 and 2) and a channel from an
internal tuner. The timecode input is internal to the VCR.

The normal outputs carry the currently selected inputs when the VCR is recording or when the tape
transport is stopped, and they carry the contents of the videotape when the tape transport is playing or
paused. The monitored outputs carry the same information as the normal outputs plus current
timecode and channel information.

Assuming the appropriate external inputs are connected to your VCR and you have decided what you
want to record, you can select the inputs to be recorded. For example, to record or view from the
"svideo" video and the "line 1" audio inputs, you would use the setvideo (MCI_SETVIDEO) and
setaudio (MCI_SETAUDIO) commands to select these input sources. You can verify these selections
by using the status (MCI_STATUS) command.

By default, the monitor shows exactly what appears as the output. Sometimes, however, you might
want to view one source while recording from another. This is a common practice using the tuner. For
example, you might want to watch channel 4 while you record channel 7. In this case, you have two
logical tuner inputs. You could set up the VCR by using the following commands:

1. Use the settuner (MCI_SETTUNER) command to select the channels to watch and record.
2. Use the setvideo command to select the video-recording source.
3. Use the setaudio command to select the audio-recording source.
4. Use the setvideo command to route the channel 4 video input to the monitored output to display it

on-screen.
5. Use the setaudio command to route the channel 4 audio input to the monitored output to play the

audio.
6. Verify your selections by using the status command.

The VISCA driver also supports a special input type for audio and video called mute. Mute allows the
selection of "no input," which is useful when recording a blank signal.

Selecting Recording Tracks

There are three types of recording tracks on a videotape: video, audio, and timecode. You have only
one video or timecode track, but you can use more than one audio track. When you do so, make track
1 the main audio track.

The VISCA driver supports two operating modes: assemble and insert. In assemble mode, all tracks
are selected to be recorded. In insert mode, tracks can be independently selected for recording. Most
VCRs are in assemble mode by default. Use the set (MCI_SET) command to change these modes.

Recording and Editing

The record (MCI_RECORD) command provides simple recording and is accurate to approximately 1
second of the starting position. To record more accurately or if you expect to edit the video content
while simultaneously operating multiple decks, you should use the cue (MCI_CUE) command.

The cue command prepares the device for recording or playing. Use the cue "input" command to
prepare the device for recording. The cue command is required because an application must know
when the device is ready to perform the command (and because it can take several minutes to prepare
for a play (MCI_PLAY) or record command).

The VCR prepares itself for recording or playing by seeking to the in-point, which is the current position
or the position specified by using the cue "from" command. If the "preroll" flag is specified with the cue
command, however, the VCR positions itself the preroll distance from the in-point. The "preroll" flag
also indicates that the VCR uses any applicable editing mode, so it's important that you use "preroll",
especially when you want the most accurate recording. (Use the capability (MCI_GETDEVCAPS)
command with the "can preroll" flag to check whether preroll is supported.)

Note When you record using "from" and "to" positions, the "from" position is included in the edit, and
the "to" position is not.

For more information about recording, see "Recording" earlier in this chapter.

Using the Clock While Editing

When editing, you might want to record segments from one VCR to another. You can begin recording
at a specific time and position on one VCR while another begins playing at the same time and position
by specifying an action (play or record), a position, and a time for each VCR.

Both VCRs must use the same clock for this type of editing; the clock helps synchronize both devices.
You can determine if two VCRs share the same clock by using the status (MCI_STATUS) command
with the "clock id" flag to query each VCR. If the identification numbers returned by the status
command are the same, the devices use the same clock. As a shared resource, the clock can be
connected to multiple VCRs. The VISCA driver supports only one shared clock.

You can also determine clock resolution by using the status "clock increment rate" command. This
command returns the number of increments the clock supports per second. For example, if the clock is
updated every millisecond, the command returns 1000 as the clock increment rate. The advantage of
using the increment rate is that the rate is expressed as an integer; otherwise, the increment would be
a (single- or double-precision) floating-point value. As an integer, manipulating the increment rate is a
simple operation and is not susceptible to rounding errors. You can reset the clock by using the set
(MCI_SET) command with the "clock 0" (zero) flag.

When issuing a play (MCI_PLAY), record (MCI_RECORD), or seek (MCI_SEEK) command, you can
specify when the command is to be executed. The characteristics of the VCRs being used determine
when to start each VCR. The timing must account for the amount of preroll each device requires and
the amount of time needed to complete the MCI commands used to set up the edit session. To do this,
retrieve the clock time and add a waiting interval of 5 to 10 seconds. (The waiting interval must be long
enough to let the preroll and any outstanding MCI commands complete.)

To ensure that the waiting period is long enough, place the record command last in your application
and check the time immediately before it. If the interval is too short, restart the play command.
Alternatively, you could check the time immediately after the last command of the script to verify that
there is enough time to send and complete all of the commands.

 Using the "Wait", "Notify", and "Test" Flags

Most MCI commands include flags that modify the command. The "wait" (MCI_WAIT) and "notify"
(MCI_NOTIFY) flags are common to every command. The "test" (MCI_TEST) flag is available to digital-
video and VCR devices. This section describes the use of these flags.

 The "Wait" Flag

MCI commands usually return to the user immediately, even if it takes several minutes to complete the
action initiated by the command. You can use the "wait" (MCI_WAIT) flag to direct the device to wait
until the requested action is completed before returning control to the application.

For example, the following play command will not return control to the application until the playback
completes:

mciSendString("play mydevice from 0 to 100 wait",
 lpszReturnString, lstrlen(lpszReturnString), NULL);

Note The user can cancel a wait operation by pressing a break key. By default, this key is
CTRL+BREAK. Applications can redefine this key by using the break (MCI_BREAK) command.
(MCI_BREAK uses the MCI_BREAK_PARMS structure.) When a wait operation is canceled, MCI
attempts to return control to the application without interrupting the command associated with the "wait"
flag.

 The "Notify" Flag

The "notify" (MCI_NOTIFY) flag directs the device to post an MM_MCINOTIFY message when the
device completes an action. Your application must have a window procedure to process the
MM_MCINOTIFY message for notification to have any effect. An MM_MCINOTIFY message indicates
that the processing of a command has completed, but it does not indicate whether the command was
completed successfully, failed, or was superseded or aborted.

The application specifies the handle to the destination window for the message when it issues a
command. In the command-string interface, this handle is the last parameter of the mciSendString
function. In the command-message interface, the handle is specified in the low-order word of the
dwCallBack member of the structure sent with the command message. (Every structure associated
with a command message contains this member.)

 The "Test" Flag

The "test" (MCI_TEST) flag queries the device to determine if it can execute the command. The device
returns an error if it cannot execute the command. It returns no error if it can handle the command.
When you specify this flag, MCI returns control to the application without executing the command.

This flag is supported by digital-video and VCR devices for all commands except open (MCI_OPEN)
and close (MCI_CLOSE).

 Using Command Shortcuts and Variations

You can use several shortcuts when working with MCI commands. These shortcuts enable you to use
a single identifier to refer to all the devices your application has opened, or to open a device without
explicitly issuing an open (MCI_OPEN) command.

 Using "All" as a Device Identifier

You can specify "all" (MCI_ALL_DEVICE_ID) as a device identifier for any command that does not
return information. When you specify "all", MCI sends the command sequentially to all devices opened
by the current application.

For example, the close "all" command closes all open devices and the play "all" command starts
playing all devices opened by the application. Because MCI sequentially sends the commands to the
MCI devices, there is an interval between when the first and last devices receive the command.

Using "all" is a convenient way to broadcast a command to all your devices, but you should not rely on
it to synchronize devices; the timing between messages can vary.

 Automatically Opening a Device

When you issue a command and specify a device that is not open, MCI tries to open the device before
implementing the command. The following rules apply to automatically opening devices :

· Automatic open works only with the command-string interface.
· Automatic open fails for commands that are specific to custom device drivers.
· Automatically opened devices do not respond to commands that use "all" as a device name.
· Automatic open does not let your application specify the "type" flag. Without the device name, MCI

determines the device name from the entries in the registry. To use a specific device, you can
combine the device name with the filename by using the exclamation point, as described in the
reference material for the open command.

If an application uses automatic open to open a device, the application should check the return value of
every subsequent open command to verify that the device is still open. MCI also automatically closes
any device that it automatically opens. MCI typically closes a device in the following situations:

· The command is completed.
· You abort the command.
· You request notification in a subsequent command.
· MCI detects a failure.

 MCI Functions, Macros, and Messages

Most MCI applications use the mciSendString and mciSendCommand functions dozens of times.
MCI provides some other useful functions that your application will use less frequently.

The device identifier that is required by most MCI commands is typically retrieved in a call to the open
(MCI_OPEN) command. If you need a device identifier but do not want to open the device ¾ for
example, if you want to query the capabilities of the device before taking any other action ¾ you can
call the mciGetDeviceID function.

The mciGetCreatorTask function allows your application to use a device identifier to retrieve a handle
to the task that created that identifier.

You can use the mciGetYieldProc and mciSetYieldProc functions to assign and retrieve the address
of the callback function associated with the "wait" (MCI_WAIT) flag.

The mciGetErrorString function retrieves a string that describes an MCI error value. Each string that
MCI returns, whether data or an error description, is a maximum of 128 characters. Dialog box fields
that are smaller than 128 characters will truncate the longer strings returned by MCI. For more
information about these strings, see "Constants: MCIERR Return Values" later in this chapter.

The MCI macros are tools you can use to create and disassemble values that specify time formats.
These time formats are used in many MCI commands. The formats acted on by the macros are
hours/minutes/seconds (HMS), minutes/seconds/frames (MSF), and tracks/minutes/seconds/frames
(TMSF). The following table lists the macros and their descriptions:

Macro Description
MCI_HMS_HOUR Retrieves the hours component from an HMS

value.
MCI_HMS_MINUTE Retrieves the minutes component from an HMS

value.
MCI_HMS_SECOND Retrieves the seconds component from an HMS

value.
MCI_MAKE_HMS Creates an HMS value.
MCI_MAKE_MSF Creates an MSF value.
MCI_MAKE_TMSF Creates a TMSF value.
MCI_MSF_FRAME Retrieves the frames component from an MSF

value.
MCI_MSF_MINUTE Retrieves the minutes component from an MSF

value.
MCI_MSF_SECOND Retrieves the seconds component from an MSF

value.
MCI_TMSF_FRAME Retrieves the frames component from a TMSF

value.
MCI_TMSF_MINUTE Retrieves the minutes component from a TMSF

value.
MCI_TMSF_SECON
D

Retrieves the seconds component from a TMSF
value.

MCI_TMSF_TRACK Retrieves the tracks component from a TMSF
value.

MCI also provides two messages: MM_MCINOTIFY and MM_MCISIGNAL. MM_MCINOTIFY notifies
an application of the outcome of an MCI command whenever that command specifies the "notify"
(MCI_NOTIFY) flag. MM_MCISIGNAL is specific to digital-video devices; it notifies the application

when a specified position is reached.

 Device-Specific Command Sets

This section lists the commands supported by each device type.

 Animation Command Set

Animation devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
put MCI_PUT
realize MCI_REALIZE
resume MCI_RESUME
seek MCI_SEEK
set MCI_SET
status MCI_STATUS
step MCI_STEP
stop MCI_STOP
sysinfo MCI_SYSINFO
update MCI_UPDATE
where MCI_WHERE
window MCI_WINDOW

 CD Audio Command Set

CD audio devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
resume MCI_RESUME
seek MCI_SEEK
set MCI_SET
status MCI_STATUS
stop MCI_STOP
sysinfo MCI_SYSINFO

 Digital-Video Command Set

Digital-video devices (for example, the MCIAVI driver) support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
capture MCI_CAPTURE
close MCI_CLOSE
configure MCI_CONFIGURE
copy MCI_COPY
cue MCI_CUE
cut MCI_CUT
delete MCI_DELETE
freeze MCI_FREEZE
info MCI_INFO
list MCI_LIST
load MCI_LOAD
monitor MCI_MONITOR
open MCI_OPEN
paste MCI_PASTE
pause MCI_PAUSE
play MCI_PLAY
put MCI_PUT
quality MCI_QUALITY
realize MCI_REALIZE
record MCI_RECORD
reserve MCI_RESERVE
restore MCI_RESTORE
resume MCI_RESUME
save MCI_SAVE
seek MCI_SEEK
set MCI_SET
setaudio MCI_SETAUDIO
setvideo MCI_SETVIDEO
signal MCI_SIGNAL
status MCI_STATUS
step MCI_STEP
stop MCI_STOP
sysinfo MCI_SYSINFO
undo MCI_UNDO
unfreeze MCI_UNFREEZE
update MCI_UPDATE
where MCI_WHERE
window MCI_WINDOW

 MIDI Sequencer Command Set

The MIDI sequencer supports the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
save MCI_SAVE
seek MCI_SEEK
set MCI_SET
status MCI_STATUS
stop MCI_STOP
sysinfo MCI_SYSINFO

 VCR Command Set

VCRs support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
cue MCI_CUE
freeze MCI_FREEZE
index MCI_INDEX
info MCI_INFO
list MCI_LIST
mark MCI_MARK
pause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
seek MCI_SEEK
set MCI_SET
setaudio MCI_SETAUDIO
settimecode MCI_SETTIMECODE
settuner MCI_SETTUNER
setvideo MCI_SETVIDEO
status MCI_STATUS
step MCI_STEP
stop MCI_STOP
sysinfo MCI_SYSINFO
unfreeze MCI_UNFREEZE

 Videodisc Command Set

Videodisc devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
escape MCI_ESCAPE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
resume MCI_RESUME
seek MCI_SEEK
set MCI_SET
spin MCI_SPIN
status MCI_STATUS
step MCI_STEP
stop MCI_STOP
sysinfo MCI_SYSINFO

 Video-Overlay Command Set

Video-overlay devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
freeze MCI_FREEZE
info MCI_INFO
load MCI_LOAD
open MCI_OPEN
put MCI_PUT
save MCI_SAVE
set MCI_SET
status MCI_STATUS
sysinfo MCI_SYSINFO
unfreeze MCI_UNFREEZE
where MCI_WHERE
window MCI_WINDOW

 Waveform-Audio Command Set

Waveform-audio devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
cue MCI_CUE
delete MCI_DELETE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
save MCI_SAVE
seek MCI_SEEK
set MCI_SET
status MCI_STATUS
stop MCI_STOP
sysinfo MCI_SYSINFO

 MCI Reference

This section describes the MCI functions, macros, messages, and error values. These elements are
grouped as follows.

Notifications

MM_MCINOTIFY
MM_MCISIGNAL
Retrieving Information

mciGetCreatorTask
mciGetDeviceID
mciGetErrorString
Sending Commands

mciSendCommand
mciSendString
Time Formats

MCI_HMS_HOUR
MCI_HMS_MINUTE
MCI_HMS_SECOND
MCI_MAKE_HMS
MCI_MAKE_MSF
MCI_MAKE_TMSF
MCI_MSF_FRAME
MCI_MSF_MINUTE
MCI_MSF_SECOND
MCI_TMSF_FRAME
MCI_TMSF_MINUTE
MCI_TMSF_SECOND
MCI_TMSF_TRACK
Yield Procedures

mciGetYieldProc
mciSetYieldProc

 mciGetCreatorTask

HANDLE mciGetCreatorTask(MCIDEVICEID IDDevice);

Retrieves a handle to the creator task for the specified device.

· Returns the handle of the creator task responsible for opening the device if successful. If the device
identifier is invalid, the return value is NULL.

IDDevice
Device for which the creator task is returned.

 mciGetDeviceID

MCIDEVICEID mciGetDeviceID(LPCTSTR lpszDevice);

Retrieves the device identifier corresponding to the name of an open device.

· Returns the device identifier assigned to the device when it was opened if successful. The identifier
is used in the mciSendCommand function. If the device name is not known, if the device is not
open, or if there was not enough memory to complete the operation, the return value is zero.

lpszDevice
Address of a null-terminated string that specifies the device name or the alias name by which the
device is known.

Each file for a compound device has a unique device identifier. The identifier of the "all" device is
MCI_ALL_DEVICE_ID.

 mciGetErrorString

BOOL mciGetErrorString(DWORD fdwError, LPTSTR lpszErrorText,
 UINT cchErrorText);

Retrieves a string that describes the specified MCI error code.

· Returns TRUE if successful or FALSE if the error code is not known.
fdwError

Error code returned by the mciSendCommand or mciSendString function.
lpszErrorText

Address of a buffer that receives a null-terminated string describing the specified error.
cchErrorText

Length of the buffer, in characters, pointed to by the lpszErrorText parameter.
Each string that MCI returns, whether data or an error description, can be a maximum of 128
characters.

 mciGetYieldProc

YIELDPROC mciGetYieldProc(MCIDEVICEID IDDevice, LPDWORD lpdwYieldData);

Retrieves the address of the callback function associated with the "wait" (MCI_WAIT) flag. The callback
function is called periodically while an MCI device waits for a command specified with the "wait" flag to
finish.

· Returns the address of the current yield callback function if successful or NULL if the device
identifier is invalid.

IDDevice
MCI device being monitored (the device performing an MCI command).

lpdwYieldData
Address of a buffer containing yield data to be passed to the callback function. This parameter can
be NULL if there is no yield data.

 mciSendCommand

MCIERROR mciSendCommand(MCIDEVICEID IDDevice, UINT uMsg,
 DWORD fdwCommand, DWORD dwParam);

Sends a command message to the specified MCI device.

· Returns zero if successful or an error otherwise. The low-order word of the returned doubleword
value contains the error return value. If the error is device-specific, the high-order word of the return
value is the driver identifier; otherwise, the high-order word is zero. For a list of possible return
values, see "Constants: MCIERR Return Values" later in this chapter.
To retrieve a text description of mciSendCommand return values, pass the return value to the
mciGetErrorString function.

IDDevice
Device identifier of the MCI device that is to receive the command message. This parameter is not
used with the MCI_OPEN command message.

uMsg
Command message. For information about command messages, see Chapter 5, "MCI Command
Messages."

fdwCommand
Flags for the command message.

dwParam
Address of a structure that contains parameters for the command message.

Error values that are returned when a device is being opened are listed with the MCI_OPEN command
message. In addition to the MCI_OPEN error return values, this function can return the values listed in
"Constants: MCIERR Return Values" later in this chapter.

Use MCI_OPEN to obtain the device identifier specified by the IDDevice parameter.

 mciSendString

MCIERROR mciSendString(LPCTSTR lpszCommand, LPTSTR lpszReturnString,
 UINT cchReturn, HANDLE hwndCallback);

Sends a command string to an MCI device. The device that the command is sent to is specified in the
command string.

· Returns zero if successful or an error otherwise. The low-order word of the returned doubleword
value contains the error return value. If the error is device-specific, the high-order word of the return
value is the driver identifier; otherwise, the high-order word is zero. For a list of possible error
values, see "Constants: MCIERR Return Values" later in this chapter.
To retrieve a text description of mciSendString return values, pass the return value to the
mciGetErrorString function.

lpszCommand
Address of a null-terminated string that specifies an MCI command string. For more information
about the command strings, see Chapter 4, "MCI Command Strings."

lpszReturnString
Address of a buffer that receives return information. If no return information is needed, this
parameter can be NULL.

cchReturn
Size, in characters, of the return buffer specified by the lpszReturnString parameter.

hwndCallback
Handle of a callback window if the "notify" flag was specified in the command string.

 mciSetYieldProc

UINT mciSetYieldProc(MCIDEVICEID IDDevice, YIELDPROC yp,
 DWORD dwYieldData);

Sets the address of a procedure to be called periodically when an MCI device is waiting for a command
to finish because the "wait" (MCI_WAIT) flag was specified.

· Returns TRUE if successful or FALSE otherwise.
IDDevice

Identifier of the device to assign a procedure to.
yp

Address of the procedure to call when yielding for the specified device. If this parameter is NULL,
the function disables any existing yield procedure.

dwYieldData
Data to be sent to the yield procedure when it is called for the specified device.

This function overrides any previous yield procedure for this device.

 MCI_HMS_HOUR

BYTE MCI_HMS_HOUR(DWORD dwHMS)

Retrieves the hours component from a parameter containing packed hours/minutes/seconds (HMS)
information.

· Returns the hours component of the specified HMS information.
dwHMS

Time in HMS format.

Time in HMS format is expressed as a doubleword value with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte containing
seconds. The most significant byte is unused.

The MCI_HMS_HOUR macro is defined as follows:

#define MCI_HMS_HOUR(hms) ((BYTE)(hms))

 MCI_HMS_MINUTE

BYTE MCI_HMS_MINUTE(DWORD dwHMS)

Retrieves the minutes component from a parameter containing packed hours/minutes/seconds (HMS)
information.

· Returns the minutes component of the specified HMS information.
dwHMS

Time in HMS format.

Time in HMS format is expressed as a doubleword value with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte containing
seconds. The most significant byte is unused.

The MCI_HMS_MINUTE macro is defined as follows:

#define MCI_HMS_MINUTE(hms) ((BYTE)(((WORD)(hms)) >> 8))

 MCI_HMS_SECOND

BYTE MCI_HMS_SECOND(DWORD dwHMS)

Retrieves the seconds component from a parameter containing packed hours/minutes/seconds (HMS)
information.

· Returns the seconds component of the specified HMS information.
dwHMS

Time in HMS format.

Time in HMS format is expressed as a doubleword value with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte containing
seconds. The most significant byte is unused.

The MCI_HMS_SECOND macro is defined as follows:

#define MCI_HMS_SECOND(hms) ((BYTE)((hms) >> 16))

 MCI_MAKE_HMS

DWORD MCI_MAKE_HMS(BYTE hours, BYTE minutes, BYTE seconds)

Creates a time value in packed hours/minutes/seconds (HMS) format from the given hours, minutes,
and seconds values.

· Returns the time in packed HMS format.
hours, minutes, and seconds

Number of hours, minutes, and seconds.

Time in HMS format is expressed as a doubleword value with the least significant byte containing
hours, the next least significant byte containing minutes, and the next least significant byte containing
seconds. The most significant byte is unused.

The MCI_MAKE_HMS macro is defined as follows:

#define MCI_MAKE_HMS(h, m, s) ((DWORD)(((BYTE)(h) | \
 ((WORD)(m) << 8)) | \
 (((DWORD)(BYTE)(s)) << 16)))

 MCI_MAKE_MSF

DWORD MCI_MAKE_MSF(BYTE minutes, BYTE seconds, BYTE frames)

Creates a time value in packed minutes/seconds/frames (MSF) format from the given minutes,
seconds, and frame values.

· Returns the time in packed MSF format.
minutes, seconds, and frames

Number of minutes, seconds, and frames.

Time in MSF format is expressed as a doubleword value with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant byte
containing frames. The most significant byte is unused.

The MCI_MAKE_MSF macro is defined as follows:

#define MCI_MAKE_MSF(m, s, f) ((DWORD)(((BYTE)(m) | \
 ((WORD)(s) << 8)) | \
 (((DWORD)(BYTE)(f)) << 16)))

 MCI_MAKE_TMSF

DWORD MCI_MAKE_TMSF(BYTE tracks, BYTE minutes, BYTE seconds,
 BYTE frames)

Creates a time value in packed tracks/minutes/seconds/frames (TMSF) format from the given tracks,
minutes, seconds, and frames values.

· Returns the time in packed TMSF format.
tracks, minutes, seconds, and frames

Number of tracks, minutes, seconds, and frames.

Time in TMSF format is expressed as a doubleword value with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte containing
seconds, and the most significant byte containing frames.

The MCI_MAKE_TMSF macro is defined as follows:

#define MCI_MAKE_TMSF(t, m, s, f) ((DWORD)(((BYTE)(t) | \
 ((WORD)(m) << 8)) | \
 (((DWORD)(BYTE)(s) | \
 ((WORD)(f) << 8)) << 16)))

 MCI_MSF_FRAME

BYTE MCI_MSF_FRAME(DWORD dwMSF)

Creates the frames component from a parameter containing packed minutes/seconds/frames (MSF)
information.

· Returns the frames component of the specified MSF information.
dwMSF

Time in MSF format.

Time in MSF format is expressed as a doubleword value with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant byte
containing frames. The most significant byte is unused.

The MCI_MSF_FRAME macro is defined as follows:

#define MCI_MSF_FRAME(msf) ((BYTE)((msf) >> 16))

 MCI_MSF_MINUTE

BYTE MCI_MSF_MINUTE(DWORD dwMSF)

Retrieves the minutes component from a parameter containing packed minutes/seconds/frames (MSF)
information.

· Returns the minutes component of the specified MSF information.
dwMSF

Time in MSF format.

Time in MSF format is expressed as a doubleword value with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant byte
containing frames. The most significant byte is unused.

The MCI_MSF_MINUTE macro is defined as follows:

#define MCI_MSF_MINUTE(msf) ((BYTE)(msf))

 MCI_MSF_SECOND

BYTE MCI_MSF_SECOND(DWORD dwMSF)

Retrieves the seconds component from a parameter containing packed minutes/seconds/frames (MSF)
information.

· Returns the seconds component of the specified MSF information.
dwMSF

Time in MSF format.

Time in MSF format is expressed as a doubleword value with the least significant byte containing
minutes, the next least significant byte containing seconds, and the next least significant byte
containing frames. The most significant byte is unused.

The MCI_MSF_SECOND macro is defined as follows:

#define MCI_MSF_SECOND(msf) ((BYTE)(((WORD)(msf)) >> 8))

 MCI_TMSF_FRAME

BYTE MCI_TMSF_FRAME(DWORD dwTMSF)

Retrieves the frames component from a parameter containing packed tracks/minutes/seconds/frames
(TMSF) information.

· Returns the frames component of the specified TMSF information.
dwTMSF

Time in TMSF format.

Time in TMSF format is expressed as a doubleword value with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte containing
seconds, and the most significant byte containing frames.

The MCI_TMSF_FRAME macro is defined as follows:

#define MCI_TMSF_FRAME(tmsf) ((BYTE)((tmsf) >> 24))

 MCI_TMSF_MINUTE

BYTE MCI_TMSF_MINUTE(DWORD dwTMSF)

Retrieves the minutes component from a parameter containing packed tracks/minutes/seconds/frames
(TMSF) information.

· Returns the minutes component of the specified TMSF information.
dwTMSF

Time in TMSF format.

Time in TMSF format is expressed as a doubleword value with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte containing
seconds, and the most significant byte containing frames.

The MCI_TMSF_MINUTE macro is defined as follows:

#define MCI_TMSF_MINUTE(tmsf) ((BYTE)(((WORD)(tmsf)) >> 8))

 MCI_TMSF_SECOND

BYTE MCI_TMSF_SECOND(DWORD dwTMSF)

Retrieves the seconds component from a parameter containing packed tracks/minutes/seconds/frames
(TMSF) information.

· Returns the seconds component of the specified TMSF information.
dwTMSF

Time in TMSF format.

Time in TMSF format is expressed as a doubleword value with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte containing
seconds, and the most significant byte containing frames.

The MCI_TMSF_SECOND macro is defined as follows:

#define MCI_TMSF_SECOND(tmsf) ((BYTE)((tmsf) >> 16))

 MCI_TMSF_TRACK

BYTE MCI_TMSF_TRACK(DWORD dwTMSF)

Retrieves the tracks component from a parameter containing packed tracks/minutes/seconds/frames
(TMSF) information.

· Returns the tracks component of the specified TMSF information.
dwTMSF

Time in TMSF format.

Time in TMSF format is expressed as a doubleword value with the least significant byte containing
tracks, the next least significant byte containing minutes, the next least significant byte containing
seconds, and the most significant byte containing frames.

The MCI_TMSF_TRACK macro is defined as follows:

#define MCI_TMSF_TRACK(tmsf) ((BYTE)(tmsf))

 MM_MCINOTIFY

MM_MCINOTIFY
wParam = (WPARAM) wFlags
lParam = (LONG) lDevID

Notifies an application that an MCI device has completed an operation. MCI devices send this
message only when the "notify" (MCI_NOTIFY) flag is used.

· Returns zero if successful or an error otherwise.
wFlags

Reason for the notification. The following values are defined:
MCI_NOTIFY_ABORTED

The device received a command that prevented the current conditions for initiating the callback
function from being met. If a new command interrupts the current command and it also requests
notification, the device sends this message only and not MCI_NOTIFY_SUPERCEDED.

MCI_NOTIFY_FAILURE
A device error occurred while the device was executing the command.

MCI_NOTIFY_SUCCESSFUL
The conditions initiating the callback function have been met.

MCI_NOTIFY_SUPERSEDED
The device received another command with the "notify" flag set and the current conditions for
initiating the callback function have been superseded.

lDevID
Identifier of the device initiating the callback function.

For more information about the "notify" (MCI_NOTIFY) flag, see "The "Notify" Flag" earlier in this
chapter.

A device returns the MCI_NOTIFY_SUCCESSFUL flag with MM_MCINOTIFY when the action for a
command finishes. For example, a CD audio device uses this flag for notification for the play
(MCI_PLAY) command when the device finishes playing. The play command is successful only when it
reaches the specified end position or reaches the end of the media. Similarly, the seek (MCI_SEEK)
and record (MCI_RECORD) commands do not return MCI_NOTIFY_SUCCESSFUL until they reach
the specified end position or reach the end of the media.

A device returns the MCI_NOTIFY_ABORTED flag with MM_MCINOTIFY only when it receives a
command that prevents it from meeting the notification conditions. For example, the play command
would not abort notification for a previous play command provided that the new command does not
change the play direction or change the ending position. The seek and record commands behave
similarly. MCI also does not send MCI_NOTIFY_ABORTED when playback or recording is paused with
the pause (MCI_PAUSE) command. Sending the resume (MCI_RESUME) command allows them to
continue to meet the callback conditions.

When your application requests notification for a command, check the error return of the
mciSendString or mciSendCommand functions. If these functions encounter an error and return a
nonzero value, MCI will not set notification for the command.

 MM_MCISIGNAL

MM_MCISIGNAL
wParam = (WPARAM) wID
lParam = (LONG) lUserParm

Sent to a window to notify an application that an MCI device has reached a position defined in a
previous signal (MCI_SIGNAL) command.

wID
Identifier of the device initiating the signal message.

lUserParm
Value passed in the dwUserParm member of the MCI_DGV_SIGNAL_PARAMS structure when the
signal command has defined this callback function. Alternatively, it might contain the position value.

 Constants: MCIERR Return Values

The mciSendCommand and mciSendString functions return zero if they are successful; otherwise,
they return a doubleword value that contains one of the following error values in the low word. You can
obtain a description of individual return values by passing the return values to the mciGetErrorString
function.

 General Error Values

The following error values can be returned by either the mciSendCommand or mciSendString
function:

Value Meaning
MCIERR_BAD_TIME_FORMAT The specified value for the time

format is invalid.
MCIERR_CANNOT_LOAD_DRIVER The specified device driver will not

load properly.
MCIERR_CANNOT_USE_ALL The device name "all" is not

allowed for this command.
MCIERR_CREATEWINDOW Could not create or use window.
MCIERR_DEVICE_LENGTH The device or driver name is too

long. Specify a device or driver
name that is less than 79
characters.

MCIERR_DEVICE_LOCKED The device is now being closed.
Wait a few seconds, then try
again.

MCIERR_DEVICE_NOT_INSTALLED The specified device is not
installed on the system. Use the
Drivers option from the Control
Panel to install the device.

MCIERR_DEVICE_NOT_READY The device driver is not ready.
MCIERR_DEVICE_OPEN The device name is already used

as an alias by this application.
Use a unique alias.

MCIERR_DEVICE_ORD_LENGTH The device or driver name is too
long. Specify a device or driver
name that is less than 79
characters.

MCIERR_DEVICE_TYPE_REQUIRED The specified device cannot be
found on the system. Check that
the device is installed and the
device name is spelled correctly.

MCIERR_DRIVER The device driver exhibits a
problem. Check with the device
manufacturer about obtaining a
new driver.

MCIERR_DRIVER_INTERNAL The device driver exhibits a
problem. Check with the device
manufacturer about obtaining a
new driver.

MCIERR_DUPLICATE_ALIAS The specified alias is already
used in this application. Use a
unique alias.

MCIERR_EXTENSION_NOT_FOUND The specified extension has no
device type associated with it.
Specify a device type.

MCIERR_EXTRA_CHARACTERS You must enclose a string with

quotation marks; characters
following the closing quotation
mark are not valid.

MCIERR_FILE_NOT_FOUND The requested file was not found.
Check that the path and filename
are correct.

MCIERR_FILE_NOT_SAVED The file was not saved. Make sure
your system has sufficient disk
space or has an intact network
connection.

MCIERR_FILE_READ A read from the file failed. Make
sure the file is present on your
system or that your system has an
intact network connection.

MCIERR_FILE_WRITE A write to the file failed. Make sure
your system has sufficient disk
space or has an intact network
connection.

MCIERR_FILENAME_REQUIRED The filename is invalid. Make sure
the filename is no longer than
eight characters, followed by a
period and an extension.

MCIERR_FLAGS_NOT_COMPATIBL
E

The specified parameters cannot
be used together.

MCIERR_GET_CD The requested file OR MCI device
was not found. Try changing
directories or restarting your
system.

MCIERR_HARDWARE The specified device exhibits a
problem. Check that the device is
working correctly or contact the
device manufacturer.

MCIERR_ILLEGAL_FOR_AUTO_OPE
N

MCI will not perform the specified
command on an automatically
opened device. Wait until the
device is closed, then try to
perform the command.

MCIERR_INTERNAL A problem occurred in initializing
MCI. Try restarting the Windows
operating system.

MCIERR_INVALID_DEVICE_ID Invalid device ID. Use the ID
given to the device when the
device was opened.

MCIERR_INVALID_DEVICE_NAME The specified device is not open
nor recognized by MCI.

MCIERR_INVALID_FILE The specified file cannot be
played on the specified MCI
device. The file may be corrupt or
may use an incorrect file format.

MCIERR_MISSING_PARAMETER The specified command requires
a parameter, which you must

supply.
MCIERR_MULTIPLE Errors occurred in more than one

device. Specify each command
and device separately to identify
the devices causing the errors.

MCIERR_MUST_USE_SHAREABLE The device driver is already in
use. You must specify the
"shareable" parameter with each
open command to share the
device.

MCIERR_NO_ELEMENT_ALLOWED The specified device does not use
a filename.

MCIERR_NO_INTEGER The parameter for this MCI
command must be an integer
value.

MCIERR_NO_WINDOW There is no display window.
MCIERR_NONAPPLICABLE_FUNCTI
ON

The specified MCI command
sequence cannot be performed in
the given order. Correct the
command sequence; then, try
again.

MCIERR_NULL_PARAMETER_BLOC
K

A null parameter block (structure)
was passed to MCI.

MCIERR_OUT_OF_MEMORY Your system does not have
enough memory for this task. Quit
one or more applications to
increase the available memory,
then, try to perform the task again.

MCIERR_OUTOFRANGE The specified parameter value is
out of range for the specified MCI
command.

MCIERR_SET_CD The specified file or MCI device is
inaccessible because the
application cannot change
directories.

MCIERR_SET_DRIVE The specified file or MCI device is
inaccessible because the
application cannot change drives.

MCIERR_UNNAMED_RESOURCE You cannot store an unnamed file.
Specify a filename.

MCIERR_UNRECOGNIZED_COMMA
ND

The driver cannot recognize the
specified command.

MCIERR_UNSUPPORTED_FUNCTIO
N

The MCI device driver the system
is using does not support the
specified command.

 mciSendString Errors

The following errors are returned by the mciSendString function but not by mciSendCommand:

Value Meaning
MCIERR_BAD_CONSTANT The value specified for a

parameter is unknown.
MCIERR_BAD_INTEGER An integer in the command was

invalid or missing.
MCIERR_DUPLICATE_FLAGS A flag or value was specified

twice.
MCIERR_MISSING_COMMAND_STRIN
G

No command was specified.

MCIERR_MISSING_DEVICE_NAME No device name was specified.
MCIERR_MISSING_STRING_ARGUME
NT

A string value was missing from
the command.

MCIERR_NEW_REQUIRES_ALIAS An alias must be used with the
"new" device name.

MCIERR_NO_CLOSING_QUOTE A closing quotation mark is
missing.

MCIERR_NOTIFY_ON_AUTO_OPEN The "notify" flag is illegal with
auto-open.

MCIERR_PARAM_OVERFLOW The output string was not long
enough.

MCIERR_PARSER_INTERNAL An internal parser error
occurred.

MCIERR_UNRECOGNIZED_KEYWORD An unknown command
parameter was specified.

 Digital-Video Errors

The following additional return values are defined for digital-video devices:

Value Meaning
MCIAVI_PRODUCTNAME Video
MCIERR_AVI_AUDIOERROR Unknown error while attempting

to play audio.
MCIERR_AVI_BADPALETTE Unable to switch to new palette.
MCIERR_AVI_CANTPLAYFULLSCRE
EN

This AVI file cannot be played in
full screen mode.

MCIERR_AVI_DISPLAYERROR Unknown error while attempting
to display video.

MCIERR_AVI_NOCOMPRESSOR Can't locate installable
compressor needed to play this
file.

MCIERR_AVI_NODISPDIB 256 color VGA mode not
available.

MCIERR_AVI_NOTINTERLEAVED This AVI file is not interleaved.
MCIERR_AVI_OLDAVIFORMAT This AVI file is of an obsolete

format.
MCIERR_AVI_TOOBIGFORVGA This AVI file is too big to be

played in the selected VGA mode.

 Sequencer Errors

The following additional return values are defined for MCI sequencers:

Value Meaning
MCIERR_SEQ_DIV_INCOMPATIBLE The time formats of the "song

pointer" and SMPTE are
singular. You can't use them
together.

MCIERR_SEQ_NOMIDIPRESENT This system has no installed
MIDI devices. Use the Drivers
option from the Control Panel
to install a MIDI driver.

MCIERR_SEQ_PORT_INUSE The specified MIDI port is
already in use. Wait until it is
free; then, try again.

MCIERR_SEQ_PORT_MAPNODEVICE The current MIDI Mapper
setup refers to a MIDI device
that is not installed on the
system. Use the MIDI Mapper
from the Control Panel to edit
the setup.

MCIERR_SEQ_PORT_MISCERROR An error occurred with
specified port.

MCIERR_SEQ_PORT_NONEXISTENT The specified MIDI device is
not installed on the system.
Use the Drivers option from
the Control Panel to install a
MIDI device.

MCIERR_SEQ_PORTUNSPECIFIED The system does not have a
current MIDI port specified.

MCIERR_SEQ_TIMER All multimedia timers are
being used by other
applications. Quit one of
these applications; then, try
again.

 Waveform-Audio Errors

The following additional return values are defined for MCI waveform-audio devices:

Value Meaning
MCIERR_WAVE_INPUTSINUSE All waveform devices that can

record files in the current
format are in use. Wait until
one of these devices is free;
then, try again.

MCIERR_WAVE_INPUTSUNSUITABLE No installed waveform device
can record files in the current
format. Use the Drivers option
from the Control Panel to
install a suitable waveform
recording device.

MCIERR_WAVE_INPUTUNSPECIFIED You can specify any
compatible waveform
recording device.

MCIERR_WAVE_OUTPUTSINUSE All waveform devices that can
play files in the current format
are in use. Wait until one of
these devices is free; then, try
again.

MCIERR_WAVE_OUTPUTSUNSUITABLE No installed waveform device
can play files in the current
format. Use the Drivers option
from the Control Panel to
install a suitable waveform
device.

MCIERR_WAVE_OUTPUTUNSPECIFIED You can specify any
compatible waveform
playback device.

MCIERR_WAVE_SETINPUTINUSE The current waveform device
is in use. Wait until the device
is free; then, try again to set
the device for recording.

MCIERR_WAVE_SETINPUTUNSUITABLE The device you are using to
record a waveform cannot
recognize the data format.

MCIERR_WAVE_SETOUTPUTINUSE The current waveform device
is in use. Wait until the device
is free; then, try again to set
the device for playback.

MCIERR_WAVE_SETOUTPUTUNSUITAB
LE

The device you are using to
playback a waveform cannot
recognize the data format.

 MCI Command Strings

The Media Control Interface (MCI) is a high-level command interface to multimedia devices and
resource files. MCI provides standard commands for playing multimedia devices and recording
multimedia resource files. MCI commands are a generic interface to multimedia devices.

There are two forms of MCI commands: strings and messages. You can use either or both forms in
your MCI application. This chapter documents the command-string interface to MCI. For information
about the command-message interface, see Chapter 5, "MCI Command Messages." For an overview
of MCI, including information about whether you should use the string interface or the message
interface in your application, see Chapter 3, "MCI Overview."

You can send a string command by using the mciSendString function, which includes parameters for
the string command and a buffer for any returned information. For more information about
mciSendString, see "Sending Command Strings" later in this chapter.

 Syntax of Command Strings

MCI command strings use a consistent verb-object-modifier syntax. Each command string includes a
command, a device identifier, and command arguments. Arguments are optional for some commands
and required for others.

A command string has the following form:

command device_id arguments

These components contain the following information:

· The command specifies an MCI command, such as open, close, or play.
· The device_id identifies an instance of an MCI driver. The device_id is created when the device is

opened.
· The arguments specify the flags and variables used by the command. Flags are keywords

recognized with the MCI command. Variables are numbers or strings that apply to the MCI
command or flag.
For example, the play command uses the arguments "from position" and "to position" to indicate the
positions to start and end playing. You can list the flags used with a command in any order. When
you use a flag that has a variable associated with it, you must supply a value for the variable.
Unspecified (and optional) command arguments assume a default value.

 Data Types for Command Variables

You can use the following data types for the variables in a command string:

Data type Description
Strings String data types are delimited by leading and trailing

white spaces and quotation marks ("). MCI removes
single quotation marks from a string. To put a quotation
mark in a string, use a set of two quotation marks where
you want to embed your quotation mark. To use an
empty string, use two quotation marks delimited by
leading and trailing white spaces.

Signed long
integers

Signed long integer data types are delimited by leading
and trailing white spaces. Unless otherwise specified,
integers can be positive or negative. If you use negative
integers, you should not separate the minus sign and
the first digit with a space.

Rectangles Rectangle data types are an ordered list of four signed
short values. White space delimits this data type and
separates each integer in the list.

 Sending Command Strings

Windows provides two functions to send command strings to devices and to query devices for error
information: The mciSendString function sends a command string to an MCI device. The
mciGetErrorString function returns the error string corresponding to an error number.

The mciSendString function returns zero if successful. If the function fails, the low-order word of the
return value contains an error code. You can pass this error code to mciGetErrorString to get a text
description of it.

 Using MCI Command Strings

This section contains examples demonstrating how to use the MCI command-string interface to
perform the following tasks:

· Send a command.
· Open an audio-video interleaved (AVI) file.
· Change the playback state.
· Convert strings.

 Sending a Command

The following example function sends the play command with the "from" and "to" flags.

DWORD PlayFromTo(LPSTR lpstrAlias, DWORD dwFrom, DWORD dwTo)
{
 char achCommandBuff[128];
 wsprintf(achCommandBuff, "play %s from %u to %u",
 lpstrAlias, dwFrom, dwTo);
 return mciSendString(achCommandBuff, NULL, 0, NULL);
}

 Opening Multiple AVI Files

If your application opens multiple files, it should include routines such as the following simple functions.
The application would use the "initAVI" function during its initialization and the "termAVI" function during
its termination.

// Initialize the MCIAVI driver. This returns TRUE if OK,
// FALSE on error.

BOOL initAVI(VOID)
{
 // Perform additional initialization before loading first file.
 return mciSendString("open digitalvideo", NULL, 0, NULL) == 0;
}

// Close the MCIAVI driver.
void termAVI(VOID)
{
 mciSendString("close digitalvideo", NULL, 0, NULL);
}

 Changing the Playback State

The following examples show how to use the pause, resume, stop, and seek commands.

// Assume the file was opened with the alias 'movie'.

// Pause play.
mciSendString("pause movie", NULL, 0, NULL);

// Resume play.
mciSendString("resume movie", NULL, 0, NULL);

// Stop play.
mciSendString("stop movie", NULL, 0, NULL);

// Seek to the beginning.
mciSendString("seek movie to start", NULL, 0, NULL);

The following example shows how to change the seek mode:

// Set seek mode with the string interface.
// Assume the file was opened with the alias 'movie'.

void SetSeekMode(BOOL fExact)
{
 if (fExact)
 mciSendString("set movie seek exactly on", NULL, 0, NULL);
 else
 mciSendString("set movie seek exactly off", NULL, 0, NULL);
}

 Converting Strings

When you use the string interface, all values passed with the command and all return values are text
strings, so your application needs conversion routines to translate from variables to strings or back
again. The following example retrieves the source rectangle and converts the returned string into
rectangle coordinates.

void GetSourceRect(LPSTR lpstrAlias, LPRECT lprc)
{
 char achRetBuff[128];
 char achCommandBuff[128];

 // Build the command string.
 wsprintf(achCommandBuff, "where %s source", lpstrAlias);
 SetRectEmpty(lprc); // clears the RECT

 // Send the command.

 if (mciSendString(achCommandBuff, achRetBuff,
 sizeof(achRetBuff), NULL) == 0){

 // The rectangle is returned as "x y dx dy".
 // Both x and y are 0 because this is the source
 // rectangle. Translate the string into the RECT
 // structure.
 char *p;
 p = achRetBuff; // point to the return string
 while (*p != ' ') p++; // go past the x (0)
 while (*p == ' ') p++; // go past spaces
 while (*p != ' ') p++; // go past the y (0)
 while (*p == ' ') p++; // go past spaces

 // Retrieve the width.
 for (; *p != ' '; p++)
 lprc->right = (10 * lprc->right) + (*p - '0');

 while (*p == ' ') p++; // go past spaces

 // Retrieve the height.
 for (; *p != ' '; p++)
 lprc->bottom = (10 * lprc->bottom) + (*p - '0');
 }
}

Note RECT structures are handled differently in MCI than in other parts of Windows; in MCI, rc.right
contains the width of the rectangle and rc.bottom contains its height. In the string interface, a
rectangle is specified as X1 Y1 X2 Y2. The coordinates X1 Y1 specify the upper left corner of the
rectangle, and the coordinates X2 Y2 specify the width and height.

 MCI Command String Reference

This section describes the MCI command strings. These elements are grouped as follows.

Configuring a Device

break
configure
escape
index
set
setaudio
settimecode
settuner
setvideo
spin
Controlling Playback

freeze
load
pause
play
resume
stop
unfreeze
Controlling the Position

cue
mark
seek
signal
step
Editing

copy
cut
delete
paste
undo
Opening and Closing

close
open
Realizing a Palette

realize
Repainting a Frame

update
Retrieving Information

capability
info
list
status
sysinfo
Saving

record
save
Video Control

capture
monitor
quality
reserve
restore
Window or Display Rectangles

put
where
window

 break

wsprintf(lpstrCommand, "break %s %s %s", lpszDeviceID, lpszVirtKey,
 lpszFlags);

Specifies a key to abort a command that was invoked using the "wait" flag. This command is an MCI
system command; it is interpreted directly by MCI.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszVirtKey

One of the following flags:
on virtual key
code

Specifies the key that aborts a command that was
started using the "wait" flag.

off Disables the current break key.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

When the break key is enabled and the user presses the key identified by the virtual-key code specified
in the lpsVirtKey parameter, the device returns control to the application. If possible, the command
continues execution.

The following command sets F2 as the break key for the "mysound" device:

break mysound on 113

 capability

wsprintf(lpstrCommand, "capability %s %s %s", lpszDeviceID, lpszRequest,
 lpszFlags);

Requests information about a particular capability of a device. All MCI devices recognize this
command.

· Returns information in the lpstrReturnString parameter of the mciSendString function. The
information is dependent on the request type.

lpszDeviceID
Identifier of an MCI device. This identifier or alias is assigned when the device is opened.

lpszRequest
Flag that identifies a device capability. The following table lists device types that recognize the
capability command and the flags used by each type:
animation can eject

can play
can record
can reverse
can save
can stretch
compound device
device type

fast play rate
has audio
has video
normal play rate
slow play rate
uses files
uses palettes
windows

cdaudio can eject
can play
can record
can save
compound device

device type
has audio
has video
uses files

digitalvid
eo

can eject
can freeze
can lock
can play
can record
can reverse
can save
can stretch
can stretch input
can test

compound device
device type
has audio
has still
has video
maximum play rate
minimum play rate
uses files
uses palettes
windows

overlay can eject
can freeze
can play
can record
can save
can stretch

compound device
device type
has audio
has video
uses files
windows

sequence
r

can eject
can play
can record
can save
compound device

device type
has audio
has video
uses files

vcr can detect length
can eject
can freeze
can monitor sources

clock increment rate
compound device
device type
has audio

can play
can preroll
can preview
can record
can reverse
can save
can test

has clock
has timecode
has video
number of marks
seek accuracy
uses files

videodisc can eject
can play
can record
can reverse
can save
CAV
CLV
compound device

device type
fast play rate
has audio
has video
normal play rate
slow play rate
uses files

waveaudi
o

can eject
can play
can record
can save
compound device
device type

has audio
has video
inputs
outputs
uses files

The following table lists the flags that can be specified in the lpszRequest parameter and their
meanings:
can detect
length

Returns TRUE if the device can detect the length of
the media.

can eject Returns TRUE if the device can eject the media.
can freeze Returns TRUE if the device can freeze data in the

frame buffer.
can lock Returns TRUE if the device can lock data.
can monitor
sources

Returns TRUE if the device can pass an input
(source) to the monitored output, independent of the
current input selection.

can play Returns TRUE if the device can play.
can preroll Returns TRUE if the device supports the "preroll" flag

with the cue command.
can preview Returns TRUE if the device supports previews.
can record Returns TRUE if the device supports recording.
can reverse Returns TRUE if the device can play in reverse.
can save Returns TRUE if the device can save data.
can stretch Returns TRUE if the device can stretch frames to fill a

given display rectangle.
can stretch
input

Returns TRUE if the device can resize an image in
the process of digitizing it into the frame buffer.

can test Returns TRUE if the device recognizes the test
keyword.

cav When combined with other items, this flag specifies
that the return information applies to CAV format
videodiscs. This is the default if no videodisc is
inserted.

clock increment Returns the number of subdivisions the external clock

rate supports per second. If the external clock is a
millisecond clock, the return value is 1000. If the
return value is 0, no clock is supported.

clv When combined with other items, this flag specifies
that the return information applies to CLV format
videodiscs.

compound
device

Returns TRUE if the device supports an element
name (filename).

device type Returns a device type name, which can be one of the
following:
animation
cdaudio
dat
digitalvideo
other
overlay
scanner
sequencer
vcr
videodisc
waveaudio

fast play rate Returns the fast play rate in frames per second, or
zero if the device cannot play fast.

has audio Returns TRUE if the device supports audio playback.
has clock Returns TRUE if the device has a clock.
has still Returns TRUE if the device treats files with a single

image more efficiently than motion video files.
has timecode Returns TRUE if the device is capable of supporting

timecode, or if it is unknown.
has video Returns TRUE if the device supports video.
inputs Returns the total number of input devices.
maximum play
rate

Returns the maximum play rate, in frames per
second, for the device.

minimum play
rate

Returns the minimum play rate, in frames per second,
for the device.

normal play
rate

Returns the normal play rate, in frames per second,
for the device.

number of
marks

Returns the maximum number of marks that can be
used; zero indicates that marks are unsupported.

outputs Returns the total number of output devices.
seek accuracy Returns the expected accuracy of a search in frames;

0 indicates that the device is frame accurate, 1
indicates that the device expects to be within one
frame of the indicated seek position, and so on.

slow play rate Returns the slow play rate in frames per second, or
zero if the device cannot play slowly.

uses files Returns TRUE if the data storage used by a
compound device is a file.

uses palettes Returns TRUE if the device uses palettes.
windows Returns the number of simultaneous display windows

the device can support.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The following command returns the device type of the "mysound" device:

capability mysound device type

 capture

wsprintf(lpstrCommand, "capture %s %s %s", lpszDeviceID, lpszCapture,
 lpszFlags);

Copies the contents of the frame buffer and stores it in the specified file. Digital-video devices
recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszCapture

One or more of the following flags:
as
pathname

Specifies the destination path and filename for the
captured image. This flag is required.

at rectangle Specifies the rectangular region within the frame buffer
that the device crops and saves to disk. If omitted, the
cropped region defaults to the rectangle specified or
defaulted on a previous put "source" command for this
device instance.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

This command might fail if the device is currently playing motion video or executing some other
resource-intensive operation. If the frame buffer is being updated in real time, the updating momentarily
pauses so that a complete image is captured. If the device pauses the updating, there might be a
visual or audible effect. If the file format, compression algorithm, and quality levels have not been set,
their defaults are used.

 close

wsprintf(lpstrCommand, "close %s %s", lpszDeviceID, lpszFlags);

Closes the device or file and any associated resources. MCI unloads a device when all instances of the
device or all files are closed. All MCI devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFlags

Can be "wait", "notify", or both. For more information about these flags, see Chapter 3, "MCI
Overview."

To close all devices opened by your application, specify the "all" device identifier for the lpszDeviceID
parameter.

The following command closes the "mysound" device:

close mysound

 configure

wsprintf(lpstrCommand, "configure %s %s", lpszDeviceID, lpszFlags);

Displays a dialog box used to configure the device. Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFlags

Can be "wait", "notify", or "test". For more information about these flags, see Chapter 3, "MCI
Overview."

 copy

wsprintf(lpstrCommand, "copy %s %s %s", lpszDeviceID, lpszItem,
 lpszFlags);

Copies data to the clipboard. Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszItem

One of the following flags identifying the item to copy:
at rectangle Specifies the portion of each frame that will be

copied. If omitted, the default setting is the entire
frame.

audio stream
stream

Specifies the audio stream in the workspace
affected by the command. If you use this flag and
also want to copy video, you must also use the
"video stream" flag. (If neither flag is specified, all
audio and video streams are copied.)

from position Specifies the start of the range copied. If omitted,
the default setting is the current position.

to position Specifies the end of the range copied. The audio
and video data copied are exclusive of this position.
If omitted, the default setting is the end of the
workspace.

video stream
stream

Specifies the video stream in the workspace
affected by the command. If you use this flag and
also want to copy audio, you must also use the
"audio stream" flag. (If neither flag is specified, all
audio and video streams are copied.)

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

 cue

wsprintf(lpstrCommand, "cue %s %s %s", lpszDeviceID, lpszInOutTo,
 lpszFlags);

Prepares for playing or recording. Digital-video, VCR, and waveform-audio devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszInOutTo

Flag that prepares a device for playing or recording. The following table lists device types that
recognize the cue command and the flags used by each type:
digitalvideo input

noshow
output
to position

vcr from position
input
output

preroll
reverse
to position

waveaudio input output

The following table lists the flags that can be specified in the lpszInOutTo parameter and their
meanings:
from position Indicates where to start.
input Prepares for recording. For digital-video devices, this

flag can be omitted if the current presentation source is
already the external input.

noshow Prepares for playing a frame without displaying it. When
this flag is specified, the display continues to show the
image in the frame buffer even though its corresponding
frame is not the current position. A subsequent cue
command without this flag and without the "to" flag
displays the current frame.

output Prepares for playing. If neither "input" nor "output" is
specified, the default setting is "output".

preroll Moves the preroll distance from the in-point. The in-point
is the current position, or the position specified by the
"from" flag.

reverse Indicates play direction is in reverse (backward).
to position Moves the workspace to the specified position. For VCR

devices, this flag indicates where to stop.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

Although it is not necessary, issuing the cue command before playing or recording on some devices
might reduce the delay before the device starts the action.

This command fails if playing or recording is in progress or if the device is paused.

When cueing for playback (using cue "output"), issuing the play command with the "from", "to", or
"reverse" flag cancels the cue command.

When cueing for recording (using cue "input"), issuing the record command with the "from", "to", or
"initialize" flag cancels the cue command.

The following command prepares the "mysound" device for recording:

cue mysound input

 cut

wsprintf(lpstrCommand, "cut %s %s %s", lpszDeviceID, lpszItem,
 lpszFlags);

Removes data from the workspace and copies it to the clipboard. Digital-video devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszItem

One of the following flags identifying the item to cut:
at rectangle Specifies the portion of each frame cut. If omitted, it

defaults to the entire frame. When this item is
specified, frames are not deleted. Instead the area
inside the rectangle becomes black.

audio stream
stream

Specifies the audio stream in the workspace
affected by the command. If you use this flag and
also want to cut video, you must also use the "video
stream" flag. (If neither flag is specified, all audio
and video streams are cut.)

from position Specifies the start of the range cut. If omitted, it
defaults to the current position.

to position Specifies the end of the range cut. The audio and
video data cut are exclusive of this position. If
omitted it defaults to the end of the workspace.

video stream
stream

Specifies the video stream in the workspace
affected by the command. If you use this flag and
also want to cut audio, you must also use the "audio
stream" flag. (If neither flag is specified, all audio
and video streams are cut.)

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

The change becomes permanent only when the data is explicitly saved; however, playback acts as if
the data has been removed.

 delete

wsprintf(lpstrCommand, "delete %s %s %s", lpszDeviceID, lpszPosition,
 lpszFlags);

Deletes a data segment from a file. Digital-video and waveform-audio devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszPosition

Flag that identifies a data segment to delete. The following table lists device types that recognize the
delete command and the flags used by each type:
digitalvideo at rectangle

audio stream stream
from position

to position
video stream stream

waveaudio from position to position

The following table lists the flags that can be specified in the lpszPosition parameter and their
meanings:
at rectangle Specifies the portion of each frame deleted. If

omitted, it defaults to the entire frame. When this
item is specified, frames are not deleted. Instead
the area inside the rectangle becomes black.

audio stream
stream

Specifies the audio stream in the workspace
affected by the command. If you use this flag and
also want to delete video, you must also use the
"video stream" flag. (If neither flag is specified, all
audio and video streams are deleted.)

from position Specifies the position at which deletion begins. If
this flag is omitted, the deletion begins at the
current position.

to position Specifies the position at which deletion ends. If this
flag is omitted, the deletion continues to the end of
the content or workspace.

video stream
stream

Specifies the video stream in the workspace
affected by the command. If you use this flag and
also want to delete audio, you must also use "audio
stream" flag. (If neither flag is specified, all audio
and video streams are deleted.)

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

Before issuing any commands that use position values, you should set the desired time format by using
the set command.

The following command deletes the waveform-audio data from 1 millisecond through 900 milliseconds
(assuming the time format is set to milliseconds):

delete mysound from 1 to 900

 escape

wsprintf(lpstrCommand, "escape %s %s %s", lpszDeviceID, lpszEscape,
 lpszFlags);

Sends device-specific information to a device. Videodisc devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszEscape

Custom information to send to the device.
lpszFlags

Can be "wait", "notify", or both. For more information about these flags, see Chapter 3, "MCI
Overview."

The following command sends the escape string "SA" to the videodisc device:

escape videodisc SA

 freeze

wsprintf(lpstrCommand, "freeze %s %s %s", lpszDeviceID, lpszFreezeFlags,
 lpszFlags);

Freezes video input or video output on a VCR or disables video acquisition to the frame buffer. Digital-
video, video-overlay, and VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFreezeFlags

Flag that identifies what to freeze. The following table lists device types that recognize the freeze
command and the flags used by each type:
digitalvide
o

at rectangle outside

overlay at rectangle
vcr field

frame
input
output

The following table lists the flags that can be specified in the lpszFreezeFlags parameter and their
meanings:
at
rectangle

Specifies the region that will be frozen. For video-overlay
devices, this region will have video acquisition disabled.
For digital-video devices, the pixels within the rectangle
will have their lock mask bit turned on (unless the "outside"
flag is specified). The rectangle is relative to the video
buffer origin and is specified as X1 Y1 X2 Y2. The
coordinates X1 Y1 specify the upper left corner of the
rectangle, and the coordinates X2 Y2 specify the width and
height.

field Freezes the first field. Field is assumed by default (if
neither frame nor field is specified).

frame Freezes the entire frame, displaying both fields.
input Freezes the current frame of the input image, whether it is

paused or running.
output Freezes the current frame of the output from the VCR. If

the VCR is playing when freeze is issued, the current
frame is frozen and the VCR is paused. If the VCR is
paused when this command is issued, the current frame is
frozen. The frozen image remains on the output device
until an unfreeze command is issued. If neither "input" nor
"output" is specified, "output" is assumed.

outside Indicates that the area outside the region specified using
the "at" flag is frozen.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

When used with VCR devices, this command is intended for frame-grabbing cards.

To specify irregular acquisition regions with the "at" flag, use a series of freeze and unfreeze

commands. Some video-overlay devices limit the complexity of the acquisition region.

This command is supported only if a call to the capability command with the "can freeze" flag returns
TRUE.

The following command disables video acquisition in a 100-pixel square at the upper left corner of the
video buffer:

freeze vboard at 0 0 100 100

 index

wsprintf(lpstrCommand, "index %s %s %s", lpszDeviceID, lpszIndex,
 lpszFlags);

Controls a VCR's on-screen display. VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszIndex

One of the following flags:
off Turns off the on-screen display.
on Turns on the on-screen display. The item to be displayed is

specified by the "index" flag of the set command.

lpszFlags
Can be "wait", "notify", or "test". For more information about these flags, see Chapter 3, "MCI
Overview."

 info

wsprintf(lpstrCommand, "info %s %s %s", lpszDeviceID, lpszInfoType,
 lpszFlags);

Retrieves a hardware description from a device. All MCI devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszInfoType

Flag that identifies the type of information required. The following table lists device types that
recognize the info command and the flags used by each type:
animation file

product
window text

cdaudio info identity
info upc

product

digitalvideo audio algorithm
audio quality
file
product
still algorithm
still quality

usage
version
video algorithm
video quality
window text

overlay file
product

window text

sequencer copyright
file

name
product

vcr product version
videodisc product
waveaudio file

input
output
product

The following table lists the flags that can be specified in the lpszInfoType parameter and their
meanings:
audio
algorithm

Returns the name of the current audio compression
algorithm.

audio quality Returns the name for the current audio quality
descriptor. This might return "unknown" if the
application has set parameters to specific values that
do not correspond to defined qualities.

copyright Retrieves the MIDI file copyright notice from the
copyright meta event.

file Retrieves the name of the file used by the compound
device. If the device is opened without a file and the
load command has not been used, a null string is
returned.

info identity Produces a unique identifier for the audio CD currently
loaded in the player being queried.

info upc Produces the Universal Product Code (UPC) that is
encoded on an audio CD. The UPC is a string of digits.

It might not be available for all CDs.
input Retrieves the description of the current input device.

Returns "none" if an input device is not set.
name Retrieves the sequence name from the sequence/track

name meta event.
output Retrieves the description of the current output device.

Returns "none" if an output device is not set.
product Retrieves a description of the device. This information

often includes the product name and model. The string
length will be 31 characters or fewer.

still algorithm Returns the name of the current still image compression
algorithm.

still quality Returns the name for the current still image quality
descriptor. This might return "unknown" if the
application has set parameters to specific values that
do not correspond to defined qualities.

usage Returns a string describing usage restrictions that might
be imposed by the owner of the visual or audio data in
the workspace.

version Returns the release level of the device driver and
hardware.

video
algorithm

Returns the name of the current video compression
algorithm.

video quality Returns the name for the current video quality
descriptor. This might return "unknown" if the
application has set parameters to specific values that
do not correspond to defined qualities.

window text Retrieves the caption of the window used by the device.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The following command retrieves a description of the hardware associated with the "mysound" device:

info mysound product

 list

wsprintf(lpstrCommand, "list %s %s %s", lpszDeviceID, lpszList,
 lpszFlags);

Determines the number and types of video and audio inputs. Digital-video and VCR devices recognize
this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszList

Flag that identifies the number and types of video and audio inputs. The following table lists device
types that recognize the list command and the flags used by each type:
digitalvid
eo

audio algorithm
audio quality algorithm
algorithm
audio stream
count
number index

still algorithm
still quality algorithm
algorithm
video algorithm
video quality algorithm
algorithm
video source
video stream

vcr audio source count
audio source number
index

video source count
video source number index

The following table lists the flags that can be specified in the lpszList parameter and their meanings:
audio algorithm Specifies the command should retrieve

audio algorithm names.
audio quality algorithm
algorithm

Specifies the command should retrieve
quality levels associated with the specified
algorithm. If algorithm is "current", the
quality level of the current algorithm is
returned.

audio source count Returns the total number of audio inputs.
audio source number
index

Returns the type of audio input of source
index.

audio stream Specifies the command should retrieve the
names of the audio streams associated
with the workspace. These strings (such
as "English" or "German") are embedded
in the file and identify the stream.

count Returns the number of options of the
specified type.

number index Returns a string describing a specific
option (as identified by index) of the
specified option type. Index must be an
integer between 1 and the value returned
by "count".

still algorithm Specifies the command should retrieve still
algorithm names.

still quality algorithm Specifies the command should retrieve

algorithm quality levels associated with the specified
still algorithm. If algorithm is "current", the
quality level of the current algorithm is
returned.

video algorithm Specifies the command should retrieve
video algorithm names.

video quality algorithm
algorithm

Specifies the command should retrieve
quality levels associated with the specified
video algorithm. If algorithm is "current",
the quality level of the current algorithm is
returned.

video source Specifies the command should return
information about the video sources. When
used with the "count" flag, it returns the
number of video sources. When used with
the "number" flag, it returns the type of a
video source. MCI defines the following
constants for type: "ntsc", "rgb", "pal",
"secam", "svideo", and "generic". There
might be more than one source of each
type returned. The "generic" source type is
used when more than one signal is
allowed for that connector.

video source count Returns total number of video inputs.
video source number index Returns the type of video input of source

index.
video stream Specifies the command should retrieve the

names of video streams associated with
the workspace. These strings (such as
"funny ending" or "sad ending") are
embedded in the file and identify the
stream.

lpszFlags
Can be "wait", "notify", or "test". For more information about these flags, see Chapter 3, "MCI
Overview."

For VCR devices, either "video source" or "audio source" must be specified with either the "count" or
"number" flags. If "count" is specified, the total number of inputs of video or audio is returned. If
"number" is specified, the driver returns a type corresponding to the input. The type can be any one of
the following: "tuner", "line", "svideo", "aux", or "generic". Typically, you should first query the VCR for
the "count" and then use the count as the range for the "number" flag. The "source" numbers start from
1.

 load

wsprintf(lpstrCommand, "load %s %s %s", lpszDeviceID, lpszFilePos,
 lpszFlags);

Loads a file in a device-specific format. Digital-video and video-overlay devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFilePos

Path and filename to load. For video-overlay devices, this can also include a target rectangle for the
data. To specify a target rectangle, specify "at" followed by X1 Y1 X2 Y2, where X1 Y1 specify the
upper left corner of the rectangle, and X2 Y2 specify the width and height. The rectangle is relative
to the video buffer origin.

lpszFlags
Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more
information about these flags, see Chapter 3, "MCI Overview."

The following command loads a file into the "vidboard" device:

load vidboard c:\vid\fish.vid notify

The "vidboard" device sends a notification message when the loading is completed.

 mark

wsprintf(lpstrCommand, "mark %s %s %s", lpszDeviceID, lpszMark,
 lpszFlags);

Controls recording and erasing of marks on the videotape. VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszMark

One of the following flags:
eras
e

Erases a mark at the current position, if one exists. To erase a
mark, first seek to the mark and then issue the mark "erase"
command.

write Writes a mark at the current position. The VCR might need to be
in play or record mode for this command to succeed.

lpszFlags
Can be "wait", "notify", or "test". For more information about these flags, see Chapter 3, "MCI
Overview."

Marks are special signals written to the content that can be detected by the VCR during high-speed
searches. Marks are VCR specific.

 monitor

wsprintf(lpstrCommand, "monitor %s %s %s", lpszDeviceID, lpszMonitor,
 lpszFlags);

Specifies the presentation source. (The default presentation source is the workspace.) Switching the
presentation source switches all audio and video streams in the source. Digital-video devices
recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszMonitor

One or more of the following flags:
file Specifies that the workspace is the presentation source.

This is the default source.
input Specifies that the external input is the presentation

source. If a play command is in progress, it is first
paused. If setvideo is "on", this flag displays a default
hidden window. Devices might limit what other device
instances can do while monitoring input.

method
method

When used with monitor "input", this flag selects the
method of monitoring. The method is either "pre", "post",
or "direct". Direct monitoring requests that the device be
configured for optimum display quality during monitoring.
The direct monitoring method might be incompatible with
motion video recording.
Pre- and post-monitoring allow motion video recording.
Pre-monitoring shows the external input prior to
compression, while post-monitoring shows the external
input after compression. Typically, different monitoring
methods have different hardware implications. The
default monitoring method is selected by the device.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

The presentation source automatically switches to the workspace after a play, step, pause, cue
"output", or seek command. The record command does not automatically switch presentation sources,
which gives your application the option of not showing video while it is being recorded.

 open

wsprintf(lpstrCommand, "open %s %s %s", lpszDevice, lpszOpenFlags,
 lpszFlags);

Initializes a device. All MCI devices recognize this command.

· Returns zero if successful or an error otherwise. If an error occurs, it returns one of the values listed
in the reference section of Chapter 3, "MCI Overview."

lpszDevice
Identifier of an MCI device or device driver. This can be either a device name (as given in the
registry or the SYSTEM.INI file) or the filename of the device driver. If you specify the filename of the
device driver, you can optionally include the .DRV extension, but you should not include the path to
the file.

lpszOpenFlags
Flag that identifies what to initialize. The following table lists device types that recognize the open
command and the flags used by each type:
animation alias device_alias

nostatic
parent hwnd
shareable
style child

style overlapped
style popup
style style_type
type device_type

cdaudio alias device_alias
shareable

type device_type

digitalvideo alias device_alias
elementname
nostatic
parent hwnd
shareable

style child
style overlapped
style popup
style style_type
type device_type

overlay alias device_alias
parent hwnd
shareable
style child

style overlapped
style popup
style style_type
type device_type

sequencer alias device_alias
shareable

type device_type

vcr alias device_alias
shareable

type device_type

videodisc alias device_alias
shareable

type device_type

waveaudio alias device_alias
buffer buffer_size

shareable
type device_type

The following table lists the flags that can be specified in the lpszOpenFlags parameter and their
meanings:
alias
device_alias

Specifies an alternate name for the given device. If
specified, it must be used as the device_id in
subsequent commands.

elementname Specifies the name of the device element (file) loaded
when the device opens.

buffer
buffer_size

Sets the size, in seconds, of the buffer used by the
waveform-audio device. The default size of the buffer
is set when the waveform-audio device is installed or

configured. Typically the buffer size is set to 4
seconds. With the MCIWAVE device, the minimum
size is 2 seconds and the maximum size is 9 seconds.

nostatic Indicates that the animation device should reduce the
number of static (system) colors in the palette. This
increases the number of colors controlled by the
animation.

parent hwnd Specifies the window handle of the parent window.
shareable Initializes the device or file as shareable. Subsequent

attempts to open the device or file fail unless you
specify "shareable" in both the original and
subsequent open commands.
MCI returns an invalid device error if the device is
already open and not shareable.
The MCISEQ sequencer and MCIWAVE devices do
not support shared files.

style child Opens a window with a child window style.
style
overlapped

Opens a window with an overlapped window style.

style popup Opens a window with a pop-up window style.
style style_type Indicates a window style.
type
device_type

Specifies the device type of a file.

lpszFlags
Can be "wait", "notify", or both. For more information about these flags, see Chapter 3, "MCI
Overview."

MCI reserves "cdaudio" for the CD audio device type, "videodisc" for the videodisc device type,
"sequencer" for the MIDI sequencer device type, "AVIVideo" for the digital-video device type, and
"waveaudio" for the waveform-audio device type.

As an alternative to the "type" flag, MCI can select the device based on the extension used by the file,
as recorded in the registry or the [mci extension] section of the SYSTEM.INI file.

MCI can open AVI files by using a file-interface pointer or a stream-interface pointer. To open a file by
using either type of interface pointer, specify an at sign (@) followed by the interface pointer in place of
the file or device name for the lpszDevice parameter. For more information about the file and stream
interfaces, see Chapter 6, "AVIFile Functions and Macros ."

The following command opens the "mysound" device:

open new type waveaudio alias mysound buffer 6

With device name "new", the waveform driver prepares a new waveform resource. The command
assigns the device alias "mysound" and specifies a 6-second buffer.

You can eliminate the "type" flag if you combine the device name with the filename. MCI recognizes
this combination when you use the following syntax:

device_name!element_name

The exclamation point separates the device name from the filename. The exclamation point should not
be delimited by white spaces.

The following example opens the RIGHT.WAV file using the "waveaudio" device:

open waveaudio!right.wav

The MCIWAVE driver requires an asynchronous waveform-audio device.

 paste

wsprintf(lpstrCommand, "paste %s %s %s", lpszDeviceID, lpszItem,
 lpszFlags);

Copies the contents of the clipboard into the workspace. Digital-video devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszItem

One or more of the following flags:
at rectangle Specifies the location within the frame where the

data is pasted. The upper left corner of the
rectangle corresponds to the upper left corner of
the added data. If the rectangle has a nonzero size
in X or Y, the contents of the clipboard are scaled in
those dimensions when they are pasted into the
frame. If omitted, the rectangle defaults to the
entire frame. If this flag is specified in "insert" mode
(the default), any region outside the rectangle is
painted a solid color.

audio stream
stream

Specifies the audio stream in the workspace
affected by the command. If only one audio stream
exists on the clipboard, the audio data is pasted
into the designated stream. If more than one audio
stream exists on the clipboard, the stream indicates
the starting number for the stream sequences. If
you use this flag and also want to paste video, you
must also use the "video stream" flag. (If neither
flag is specified, all audio and video streams are
pasted and retain their original stream numbers.)

insert Specifies that the data is inserted into the
workspace. Any data after the insertion point is
moved forward in the workspace to make room.
This is the default value.

overwrite Specifies that the data is copied into the workspace
by writing over any existing data after the insertion
point. The "insert" and "overwrite" flags affect
whether frames are destroyed or moved during the
paste operation, not how the data is pasted within
each frame.

to position Specifies the position in the workspace at which the
data is pasted. If omitted, it defaults to the current
position.

video stream
stream

Specifies the video stream in the workspace
affected by the command. If only one video stream
exists on the clipboard, the video data is pasted
into the designated stream. If more than one video
stream exists on the clipboard, the stream indicates
the starting number for the stream sequences. If
you use this flag and also want to paste audio, you

must also use the "audio stream" flag. (If neither
flag is specified, all audio and video streams are
pasted and retain their original stream numbers.)

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

No signals are present in the data copied from the clipboard. The change becomes permanent only
when the data is explicitly saved; however, playback acts as if the data has been added.

 pause

wsprintf(lpstrCommand, "pause %s %s", lpszDeviceID, lpszFlags);

Pauses playing or recording. Most drivers retain the current position and eventually resume playback
or recording at this position. Animation, CD audio, digital-video, MIDI sequencer, VCR, videodisc, and
waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

With the MCICDA, MCISEQ, and MCIPIONR drivers, the pause command works the same as the stop
command.

The following command pauses the "mysound" device:

pause mysound

 play

wsprintf(lpstrCommand, "play %s %s %s", lpszDeviceID, lpszPlayFlags,
 lpszFlags);

Starts playing a device. Animation, CD audio, digital-video, MIDI sequencer, videodisc, VCR, and
waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszPlayFlags

Flag for playing a device. The following table lists device types that recognize the play command
and the flags used by each type:
animation fast

from position
reverse
scan

slow
speed fps
to position

cdaudio from position to position
digitalvideo from position

fullscreen
repeat

reverse
to position
window

sequencer from position to position
vcr at time

from position
reverse

scan
to position

videodisc fast
from position
reverse
scan

slow
speed integer
to position

waveaudio from position to position

The following table lists the flags that can be specified in the lpszPlayFlags parameter and their
meanings:
at time Indicates when the device should begin performing this

command, or, if the device has been cued, when the
cued command begins. For more information, see the
cue command.

fast Indicates that the device should play faster than normal.
To determine the exact speed on a videodisc player, use
the "speed" flag of the status command. To specify the
speed more precisely, use the "speed" flag of this
command.

from position Specifies a starting position for the playback. If the
"from" flag is not specified, playback begins at the
current position. For cdaudio devices, if the "from"
position is greater than the end position of the disc, or if
the "from" position is greater than the "to" position, the
driver returns an error. For videodisc devices, the
default positions are in frames for CAV discs and in
hours, minutes, and seconds for CLV discs.

fullscreen Specifies that a full-screen display should be used. Use

this flag only when playing compressed files.
(Uncompressed files won't play full-screen.)

repeat Specifies that playback should restart when the end of
the content is reached.

reverse Specifies that the play direction is backward. You cannot
specify an ending location with the "reverse" flag. For
videodiscs, "scan" applies only to CAV format.

scan Plays as fast as possible without disabling video
(although audio might be disabled). For videodiscs,
"scan" applies only to CAV format.

slow Plays slowly. To determine the exact speed on a
videodisc player, use the "speed" flag of the status
command. To specify the speed more precisely, use the
"speed" flag of this command. For videodiscs, "slow"
applies only to CAV format.

speed fps Plays an animation sequence at the specified speed, in
frames per second.

speed
integer

Plays a videodisc at the specified speed, in frames per
second. This flag applies only to CAV discs.

to position Specifies an ending position for the playback. If the "to"
flag is not specified, playback stops at the end of the
content. For cdaudio devices, if the "to" position is
greater than the end position of the disc, the driver
returns an error. For videodisc devices, the default
positions are in frames for CAV discs and in hours,
minutes, and seconds for CLV discs.

window Specifies that playing should use the window associated
with the device instance. This is the default setting.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

Before issuing commands that use position values, you should set the desired time format by using the
set command. This command begins playing at the current speed, as set with the set "speed"
command. The direction is reverse if the "reverse" flag is specified, or if the "to" flag is specified as a
value less than the "from" flag. If the "from" flag is not specified, playback begins at the current position.
The "to" and "reverse" flags cannot be used together.

The following command plays the "mysound" device from position 1000 through position 2000, sending
a notification message when the playback completes:

play mysound from 1000 to 2000 notify

 put

wsprintf(lpstrCommand, "put %s %s %s", lpszDeviceID, lpszRegions,
 lpszFlags);

Defines the area of the source image and destination window used for display. Animation, digital-video,
and video-overlay devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszRegions

Flag for defining the area. The following table lists device types that recognize the put command
and the flags used by each type:
animation destination

destination at rectangle
source
source at rectangle

digitalvid
eo

destination
destination at rectangle
frame
frame at rectangle
source
source at rectangle

video
video at rectangle
window
window at rectangle
window client
window client at rectangle

overlay destination
destination at rectangle
frame
frame at rectangle

source
source at rectangle
video
video at rectangle

The following table lists the flags that can be specified in the lpszRegions parameter and their
meanings:
destination Selects the entire client area of the

destination window to display the data.
destination at rectangle Selects a portion of the client area of the

destination window used to display the image.
When an area of the display window is
specified and the device supports stretching,
the source image is stretched to the
destination offset and extent.

frame Selects the entire frame buffer to receive the
incoming video images.

frame at rectangle Selects a portion of the frame buffer to
receive the incoming video images.

source Selects the entire image for display in the
destination window.

source at rectangle Selects a portion of the image to display in the
destination window. When an area of the
source image is specified, and the device
supports stretching, the source image is
stretched to the destination offset and extent.

video Selects the entire incoming video image to
capture in the frame buffer.

video at rectangle Selects a portion of the incoming video image
to capture in the frame buffer.

window Restores the initial window size on the
display. This command also displays the
window.

window at rectangle Changes the size and location of the display
window. The specified rectangle is relative to
the parent window of the display window
(usually the desktop) if the "style child" flag
has been used for the open command. To
change the location of the window without
changing its height or width, specify zero for
the height and width.

window client Restores the client area of the window.
window client at
rectangle

Changes the size and location of the client
area of the window. The specified rectangle is
relative to the parent window of the client
window. To change the location of the window
without changing its height or width, specify
zero for the height and width.

When a flag includes a rectangle, the rectangle coordinates are relative to the window origin or the
image origin, as appropriate, and are specified as X1 Y1 X2 Y2. The coordinates X1 Y1 specify the
upper left corner, and the coordinates X2 Y2 specify the width and height of the rectangle.

lpszFlags
Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more
information about these flags, see Chapter 3, "MCI Overview."

The put command defines one or more of the following rectangles when working with video-overlay
devices:

· The video rectangle defines the region of the incoming video image to capture.
· The frame rectangle defines the region of the frame buffer that receives the incoming video image.
· The source rectangle defines which region of the frame buffer is copied to the destination rectangle.
· The destination rectangle defines the region of the display window client area that receives the video

image.

The video rectangle is related to the frame rectangle in the same way the source rectangle is related to
the destination rectangle. Stretching can occur from the video rectangle to the frame rectangle and
from the source rectangle to the destination rectangle. Not all devices support stretching, and
stretching must be enabled (by using the set command).

The following command defines three regions for the video, frame, and source:

put vboard video 120 120 200 200 frame 0 0 200 200 source 0 0 200 200

The regions in this example are defined as follows:

· A 200- by 200-pixel region of the incoming video data, starting at an origin 120 pixels from the upper
left corner, will be captured to the frame buffer.

· The video data will be placed in a 200- by 200-pixel region at the upper left corner of the frame
buffer.

· Transfers are made from the 200- by 200-pixel region at the upper left corner of the frame buffer to
the destination window.

 quality

wsprintf(lpstrCommand, "quality %s %s %s", lpszDeviceID, lpszQuality,
 lpszFlags);

Defines a custom quality level for either audio, video or still image data compression. Digital-video
devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszQuality

One or more of the following flags. (One of the three flags "audio", "still", and "video" must be
present.)
algorithm
algorithm

Associates the quality level with the specified
algorithm. This algorithm must be supported by the
device and be compatible with the "audio", "still", or
"video" flag that is used. If omitted, the current
algorithm is used.

audio name Indicates this command specifies an "audio" quality
level identified with name.

dialog Requests that the device display a dialog box. This
dialog box has algorithm-specific fields that are
used internally by the device to create the structure
describing a specific quality level.

handle handle Specifies a handle to a structure that contains
algorithmic-specific data describing a specific
quality level. The structures for the data referenced
by this handle are device specific.

still name Indicates the command specifies a "still" quality
level identified with name.

video name Indicates the command specifies a "video" quality
level identified with name.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

This command defines a string name for the quality level, which can then be used in a setvideo
"quality", setvideo "still quality", or setaudio "quality" command to establish it as the current video, still,
or audio-compression quality level.

 realize

wsprintf(lpstrCommand, "realize %s %s %s", lpszDeviceID, lpszPalette,
 lpszFlags);

Instructs a device to select and realize its palette into the display context of the displayed window.
Animation and digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszPalette

One of the following flags:
backgrou
nd

Realizes the palette as a background palette.

normal Realizes the palette for a top-level window. This is the
default setting.

lpszFlags
Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more
information about these flags, see Chapter 3, "MCI Overview."

Use this command only if your application uses a window handle and receives a
WM_QUERYNEWPALLETTE or WM_PALETTECHANGED message.

The following command tells the "myvideo" device to realize its palette:

realize myvideo normal

 record

wsprintf(lpstrCommand, "record %s %s %s", lpszDeviceID, lpszRecordFlags,
 lpszFlags);

Starts recording data. VCR and waveform-audio devices recognize this command. Although digital-
video devices and MIDI sequencers also recognize this command, the MCIAVI and MCISEQ drivers do
not implement it.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszRecordFlags

Flag for recording data. The following table lists device types that recognize the record command
and the flags used by each type:
digitalvideo at rectangle

audio stream stream
from position
hold

insert
overwrite
to position
video stream stream

sequencer from position
insert

overwrite
to position

vcr at time
from position
initialize

insert
overwrite
to position

waveaudio from position
insert

overwrite
to position

The following table lists the flags that can be specified in the lpszRecordFlags parameter and their
meanings:
at rectangle Specifies a rectangular region of the external input

used as the source for the pixels compressed and
saved. If not specified, the rectangle defaults to the
rectangle specified for put "video". When it is set
differently from the "video" rectangle, the displayed
image is not what is recorded.

at time Indicates when the device should begin performing
this command, or, if the device has been cued,
when the cued command begins. For more
information, see the cue command.

audio stream
stream

Specifies the audio stream used for recording. If
this flag is not specified and the file format does not
define a default, it is recorded into the stream that
is physically first.

from position Specifies a starting position for the recording. If the
"from" flag is not specified, the device starts
recording at the current position.

hold Freezes the image when recording has finished
instead of showing live video. When recording
stops, an automatic monitor "file" command is
performed. To return to live video, issue the
monitor "input" command.

initialize Initialize the tape (media), which involves recording

timecode (if possible) for blank video and audio.
This command might take several hours if the
entire tape must be initialized.

insert Specifies that new data is added to the file at the
current position.

overwrite Specifies that new data will replace data in the file.
to position Specifies an ending position for the recording. If

the "to" flag is not specified, the device records
until it receives a stop or pause command.

video stream
stream

Specifies the video stream used for recording. If
this is not specified and the file format does not
define a default, then it is recorded into the stream
that is physically first.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The recording stops when a stop or pause command is issued. For the MCIWAVE driver, all data
recorded after a file is opened is discarded if the file is closed without saving it.

Before issuing any commands that use position values, you should set the desired time format by using
the set command. The tracks to be recorded are specified by the settimecode "record", set "assemble
record", setvideo "record", and setaudio "record" commands.

The following command starts recording at the current position:

record mysound

 reserve

wsprintf(lpstrCommand, "reserve %s %s %s", lpszDeviceID, lpszReserve,
 lpszFlags);

Allocates contiguous disk space for the device instance's workspace. Digital-video devices recognize
this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszReserve

One or more of the following flags:
in path Specifies the drive and directory path (but not the name)

of a temporary file used to hold recorded data. The name
of this file is specified by the device. The temporary file is
deleted when the device is closed. If this flag is omitted,
the device specifies the location of the disk space.

size
duration

Specifies the approximate amount of disk space to
reserve in the workspace. The duration value is specified
in the current time format. The device bases its estimate
of the required disk space on the following parameters:
the requested time, the file format, the video and audio
compression algorithm, and the compression quality
values in effect. If setvideo "record" is "off", then space
is reserved only for audio. If setaudio "record" is "off",
then space is reserved only for video. If both are "off", or
if duration is zero, then no space is reserved and any
existing reserved space is deallocated. If this flag is
omitted, the device will use a device-defined default.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

If needed, subsequent record or save commands use the space reserved by this command. If the
workspace contains unsaved data, the data is lost. Some devices do not require reserve and ignore it.
If disk space is not reserved prior to recording, the record command performs an implied reserve with
device-specific default flags. Use an explicit reserve command if you want better control of when the
delay for disk allocation occurs, control of how much space is allocated, and control of where the disk
space is allocated. Your application can change the amount and location of previously reserved disk
space with subsequent reserve commands. Any allocated and still unused disk space is not
deallocated until any recorded data is saved, or until the device instance is closed.

 restore

wsprintf(lpstrCommand, "restore %s %s %s", lpszDeviceID, lpszRestore,
 lpszFlags);

Copies a still image from a file to the frame buffer. This is the reverse of the capture command. Digital-
video devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszRestore

One or more of the following flags:
at rectangle Specifies a rectangle relative to the frame buffer origin.

The rectangle is specified as X1 Y1 X2 Y2. The
coordinates X1 Y1 specify the upper left corner and the
coordinates X2 Y2 specify the width and height.
If this flag is not used, the image is copied to the upper
left corner of the frame buffer.

from
filename

Specifies the image filename to recall. This flag is
required.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

Devices can recognize a variety of image formats; a Windows device-independent bitmap is always
recognized.

 resume

wsprintf(lpstrCommand, "resume %s %s", lpszDeviceID, lpszFlags);

Continues playing or recording on a device that has been paused using the pause command.
Animation, digital-video, VCR, and waveform-audio devices recognize this command. Although CD
audio, MIDI sequencer, and videodisc devices also recognize this command, the MCICDA, MCISEQ,
and MCIPIONR device drivers do not support it.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFlags

Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The following command continues playing or recording the "newsound" device:

resume newsound

 save

wsprintf(lpstrCommand, "save %s %s %s", lpszDeviceID, lpszFilename,
 lpszFlags);

Saves an MCI file. Video-overlay and waveform-audio devices recognize this command. Although
digital-video devices and MIDI sequencers also recognize this command, the MCIAVI and MCISEQ
drivers do not support it.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFilename

Flag specifying the name of the file being saved and, optionally, additional flags modifying the save
operation. The following table lists device types that recognize the save command and the flags
used by each type:
digitalvide
o

abort
at rectangle

filename
keepreserve

overlay at rectangle filename
sequencer filename
waveaudi
o

filename

The following table lists the flags that can be specified in the lpszFilename parameter and their
meanings:
abort Stops a save operation in progress. If used, this must be

the only item present.
at
rectangle

Specifies a rectangle relative to the frame buffer origin.
The rectangle is specified as X1 Y1 X2 Y2. The
coordinates X1 Y1 specify the upper left corner and the
coordinates X2 Y2 specify the width and height.
For digital-video devices, the capture command is used to
capture the contents of the frame buffer.

filename Specifies the filename to assign to the data file. If a path is
not specified, the file will be placed on the disk and in the
directory previously specified on the explicit or implicit
reserve command. If reserve has not been issued, the
default drive and directory are those associated with the
application's task. If a path is specified, the device might
require it to be on the disk drive specified by the explicit or
implicit reserve. This flag is required.

keepreserv
e

Specifies that unused disk space left over from the original
reserve command is not deallocated.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The filename variable is required if the device was opened using the "new" device identifier.

The following command saves the entire video buffer to a file named VCAPFILE.TGA:

save vboard c:\vcap\vcapfile.tga

 seek

wsprintf(lpstrCommand, "seek %s %s %s", lpszDeviceID, lpszSeekFlags,
 lpszFlags);

Moves to the specified position and stops. Animation, CD audio, digital-video, MIDI sequencer, VCR,
videodisc, and waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszSeekFlags

Flag for moving to a specified position. The following table lists device types that recognize the seek
command and the flags used by each type:
animation to end

to position
to start

cdaudio to end
to position

to start

digitalvideo to end
to position

to start

sequencer to end
to position

to start

vcr at time
mark mark_num
reverse

to end
to position
to start

videodisc reverse
to end

to position
to start

waveaudio to end
to position

to start

The following table lists the flags that can be specified in the lpszSeekFlags parameter and their
meanings:
at time Indicates when the device should begin performing this

command, or, if the device has been cued, when the
cued command begins. For more information, see the
cue command.

mark
mark_num

Seeks to the relative mark indicated by mark_num,
which must be a positive integer value. Marks are
signals written to the VCR tape using the mark
command and are used for high-speed searching.

reverse Indicates that the seek direction on VCRs and CAV
videodiscs is backward. This flag is invalid if the "to"
flag is specified. For VCRs, this flag must be used with
the "mark" flag.

to end Seeks to the end of the content.
to position Specifies the position to stop the seek. For cdaudio

devices, MCI returns an out-of-range error if the
specified position is greater than the length of the disc.

to start Seeks to the start of the content.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For

more information about these flags, see Chapter 3, "MCI Overview."

Before issuing any commands that use position values, you should set the desired time format by using
the set command.

Digital-video devices support two seek modes, which you can change by using the set command. The
"seek exactly on" mode causes the seek command to move to the specified frame. The "seek exactly
off" mode causes the seek command to move to the closest key frame prior to the specified frame.

If a CD audio device is playing when the seek command is issued, playback is stopped. When the
seek command is issued with a videodisc device, the device searches using fast forward or fast
reverse with video and audio off.

When the seek command is issued with a waveform-audio device, the behavior depends on the
sample size. If the sample size is 16 bits or greater, seek moves to the beginning of the nearest
sample when a specified position does not coincide with the start of a sample.

The following command seeks to the start of the media file associated with the "mysound" device:

seek mysound to start

 set

wsprintf(lpstrCommand, "set %s %s %s", lpszDeviceID, lpszSetting,
 lpszFlags);

Establishes control settings for the device. Animation, CD audio, digital-video, MIDI sequencer, VCR,
videodisc, video-overlay, and waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszSetting

Flag for establishing control settings. The following table lists device types that recognize the set
command and the flags used by each type:
animation audio all off

audio all on
audio left off
audio left on
audio right off
audio right on

door closed
door open
time format frames
time format milliseconds
video off
video on

cdaudio audio all off
audio all on
audio left off
audio left on
audio right off
audio right on

door closed
door open
time format milliseconds
time format msf
time format tmsf

digitalvide
o

audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
door closed
door open

file format format
seek exactly on
seek exactly off
speed factor
still file format format
time format frames
time format milliseconds
video off
video on

overlay audio all off
audio all on
audio left off
audio left on
audio right off

audio right on
door closed
door open
video off
video on

sequence
r

audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
door closed
door open
master MIDI
master none
master SMPTE
offset time

port mapper
port none
port port_number
slave file
slave MIDI
slave none
slave SMPTE
tempo tempo_value
time format milliseconds
time format SMPTE fps
time format SMPTE 30 drop
time format song pointer

vcr assemble record on power on

assemble record off
audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
clock time
counter format
counter value
door closed
door open
index counter
index date
index time
index timecode
length duration
pause timeout
postroll duration -
 duration

power off
preroll duration duration
record format SP
record format LP
record format EP
speed factor
time format frames
time format hms
time format milliseconds
time format msf
time format SMPTE fps
time format SMPTE 30 drop
time format tmsf
time mode counter
time mode detect
time mode timecode
tracking plus
tracking minus
tracking reset

videodisc audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
door closed

door open
time format frames
time format hms
time format milliseconds
time format track
video off
video on

waveaudi
o

alignment integer
any input
any output
audio all off
audio all on
audio left off
audio left on
audio right off
audio right on
bitspersample
bit_count
bytespersec
byte_rate

channels channel_count
door closed
door open
format tag pcm
format tag tag
input integer
output integer
samplespersec integer
time format bytes
time format milliseconds
time format samples

The following table lists the flags that can be specified in the lpszSetting parameter and their
meanings:
alignment integer Sets the alignment of data blocks relative to

the start of data passed to the waveform-
audio device. The file is saved in this format.

any input Use any input that supports the current
format when recording. This is the default
setting.

any output Use any output that supports the current
format when playing. This is the default.

assemble record on
assemble record off

In assemble mode, all tracks are recorded as
defined by the device. Most VCRs are in

assemble mode by default.
audio all off
audio all on

Disables or enables audio output. Video-
overlay devices, the MCISEQ sequencer, and
the MCIWAVE waveform-audio device do not
support this flag.

audio left off
audio left on
audio right off
audio right on

Disables or enables output to either the left or
the right audio channel. Video-overlay
devices, the MCISEQ sequencer, and the
MCIWAVE waveform-audio device do not
support this flag.

bitspersample bit_count Sets the number of bits per PCM (Pulse
Code Modulation) sample played or
recorded. The file is saved in this format.

bytespersec byte_rate Sets the average number of bytes per
second played or recorded. The file is saved
in this format.

channels channel_count Sets the channels for playing and recording.
The file is saved in this format.

clock time Sets time on the external clock to time. The
format is specified as a long unsigned
integer.

counter format Set the time format for the counter, as
returned by status "counter". For information
about applicable types, see the set "time
format" command.

counter value Sets the VCR counter to the specified value.
The value must be specified in the current
counter format. For more information, see the
set "counter format" command.

door closed Retracts the tray and closes the door, if
possible. For VCRs, loads the tape
automatically.

door open Opens the door and ejects the tray or tape, if
possible.

file format format Specifies a file format that is used for save or
capture commands. If omitted, this might
default to a device driver defined format. If
the specified file format conflicts with the
currently selected algorithm and quality, then
they are changed to the defaults for the file
format. The following file formats are defined:
avi
Specifies AVI format.
avss
Specifies AVSS format.
dib
Specifies DIB format.
jfif
Specifies JFIF format.
jpeg
Specifies JPEG format.

mpeg
Specifies MPEG format.
rdib
Specifies RLE DIB format.
rjpeg
Specifies RJPEG format.

format tag pcm Sets the format type to PCM for playing and
recording. The file is saved in this format.

format tag tag Sets the format type for playing and
recording. The file is saved in this format.

index timecode
index counter
index date
index time

Sets the current display screen on the VCR.

input integer Sets the audio channel used as the input.
length duration Sets the user-specified length of the tape in

the VCR. This length is returned by the
status "length" command and is provided for
compatibility with applications that require
this command to return a valid length.

master midi Sets the MIDI sequencer as the
synchronization source. Synchronization data
is sent in MIDI format. The MCISEQ
sequencer does not support this flag.

master none Inhibits the MIDI sequencer from sending
synchronization data. The MCISEQ
sequencer does not support this flag.

master smpte Sets the MIDI sequencer as the
synchronization source. Synchronization data
is sent in SMPTE (Society of Motion Picture
and Television Engineers) format. The
MCISEQ sequencer does not support this
flag.

offset time Sets the SMPTE offset time. The offset is the
beginning time of a SMPTE based sequence.
The time is expressed as hh:mm:ss:ff, where
hh is hours, mm is minutes, ss is seconds,
and ff is frames.

output integer Sets the audio channel used as the output.
pause timeout Sets the maximum duration, in milliseconds,

of a pause command. A timeout value of zero
indicates that no time-out will occur.

postroll duration
duration

Sets the length, in the current time format,
needed to brake the VCR transport when a
stop or pause command is issued.

port mapper Sets the MIDI mapper as the port receiving
the MIDI messages. This command fails if
the MIDI mapper or a port it needs is being
used by another application.

port none Disables the sending of MIDI messages. This
command also closes a MIDI port.

port port_number Sets the MIDI port receiving the MIDI
messages. This command fails if the port you
are trying to open is being used by another
application.

power on
power off

Sets the device power to on or off.

preroll duration duration Sets the length, in the current time format,
needed to stabilize the VCR output.

record format SP
record format LP
record format EP

Sets the recording mode for the VCR to SP
for standard play, EP for extended play, or LP
for long play. These values are not intended
to be VHS specific. They map to any three
appropriate modes with other tape formats.
For example, SP maps to the fastest, highest
quality recording.

samplespersec integer Sets the sample rate for playing and
recording. The file is saved in this format.

seek exactly on
seek exactly off

Selects one of two seek modes. With "seek
exactly on", seek will always move to the
frame specified. With "seek exactly off", seek
will move to the closest key frame prior to the
frame specified.

slave file Sets the MIDI sequencer to use file data as
the synchronization source. This is the
default setting.

slave midi Sets the MIDI sequencer to use incoming
MIDI data for the synchronization source.
The sequencer recognizes synchronization
data with the MIDI format. The MCISEQ
sequencer does not support this flag.

slave none Sets the MIDI sequencer to ignore
synchronization data.

slave smpte Sets the MIDI sequencer to use incoming
MIDI data for the synchronization source.
The sequencer recognizes synchronization
data with the SMPTE format. The MCISEQ
sequencer does not support this flag.

speed factor Sets the relative speed of video and audio
playback from the workspace. Factor is the
ratio between the nominal frame rate and the
desired frame rate, where the nominal frame
rate is designated as 1000. (A rate of 500 is
half normal speed, 2000 is twice normal
speed, and so on.) Setting the speed to zero
plays the video as fast as possible without
dropping frames and without audio.

still file format format Specifies the file format used for capture
commands.

tempo tempo_value Sets the tempo of the sequence according to
the current time format. For a PPQN-based
file, the tempo_value is interpreted as beats
per minute. For a SMPTE-based file, the

tempo_value is interpreted as frames per
second.

time format bytes In a PCM file format, sets the time format to
bytes. All position information is specified as
bytes following this command.

time format frames Sets the time format to frames. All commands
that use position values will assume frames.
When the device is opened, frames is the
default mode. Supported by videodiscs using
CAV format.

time format hms Sets the time format to hours, minutes, and
seconds. All commands that use position
values will assume HMS. HMS is the default
format for CLV videodiscs.
Specify an HMS value as hh:mm:ss, where
hh is hours, mm is minutes, and ss is
seconds. You can omit a field if it and all
following fields are zero. For example,
3, 3:0, and 3:0:0 are all valid ways to express
3 hours.

time format milliseconds Sets the time format to milliseconds. All
commands that use position values will
assume milliseconds. You can abbreviate
milliseconds as "ms".
For sequencer devices, the sequence file
sets the default format to PPQN or SMPTE.
Video-overlay devices do not support this
flag.

time format msf Sets the time format to minutes, seconds,
and frames. All commands that use position
values will assume MSF (the default format
for CD audio).
Specify an MSF value as mm:ss:ff, where
mm is minutes, ss is seconds, and ff is
frames. You can omit a field if it and all
following fields are zero. For example, 3, 3:0,
and 3:0:0 are valid ways to express 3
minutes.
The MSF fields have the following maximum
values:
Minutes 99
Seconds 59
Frames 74

time format samples Sets the time format to samples. All position
information is specified as samples following
this command.

time format smpte 24
time format smpte 25
time format smpte 30

Sets the time format to an SMPTE frame
rate.
For VCRs, sets the time format to
hh:mm:ss:ff, where the legal values are
00:00:00:00 through 23:59:59:xx, and xx is
one less than the frames per second as

specified by the number 24, 25, or 30 as
specified in the flag. On input, colons (:) are
required to separate the components. The
least significant units can be
omitted if they are 00; for example, 02:00 is
the same
as 02:00:00:00.
All commands that use position values will
assume SMPTE format.
The sequence file sets the default format to
PPQN or SMPTE.

time format smpte 30
drop

Sets the time format to SMPTE 30 drop
frame rate.
For VCRs, same as SMPTE 30, except that
certain timecode positions are dropped from
the format to have the recorded timecode
positions for each frame (at the NTSC frame
rate of 29.97 fps) correspond to real time (at
30 fps). Timecode positions that are dropped
are as follows: two every minute, on the
minute, for the first nine of every ten minutes
of recorded content. For example, at
01:04:59:29, the next timecode position
would be 01:05:00:02, not 01:05:00:00.
All commands that use position values will
assume SMPTE format.
The sequence file sets the default format to
PPQN or SMPTE.

time format song pointer Sets the time format to song pointer
(sixteenth notes). All commands that use
position values will assume song pointer
units. This flag is valid only for a sequence of
division type PPQN.

time format tmsf Sets the time format to tracks, minutes,
seconds, and frames. All commands that use
position values will assume TMSF.
Specify a TMSF value as tt:mm:ss:ff, where tt
is tracks, mm is minutes, ss is seconds, and
ff is frames. You can omit a field if it and all
following fields are zero. For example, 3, 3:0,
3:0:0, and 3:0:0:0 are all valid ways to
express track 3.
The TMSF fields have the following
maximum values:
Tracks 99
Minutes 99
Seconds 59
Frames 74

time format track Sets the position format to tracks. All
commands that use position values will
assume tracks.

time mode counter Sets the position-information mode to use the

VCR counters.
time mode detect Sets the position information mode based on

detection of timecode information on the
tape. If timecode information is detected, the
time type is set to "timecode"; otherwise, the
time type is set to "counter".
"Detect" is a special mode. Whenever the
driver is opened, a new tape is inserted, or
the "time mode" command is issued, the
driver checks the current time mode available
on the tape and sets "time type" to either
"timecode" or "counter". Once "time type" is
set, the driver doesn't change it until one of
the above conditions occurs again.

time mode timecode Sets the position information mode to use
"timecode" information on the tape.

tracking plus
tracking minus
tracking reset

Adjusts the speed of the videotape transport
in fine increments. Use the "tracking" flags
when a noisy picture is obtained from a VCR.
"Tracking plus" increases the transport
speed. "Tracking minus" decreases the
transport speed. "Tracking reset" returns the
tracking adjustment to zero.

video off Disables video output.
video on Enables video output.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

Several properties of waveform-audio data are defined when the file to store the data is created. These
properties describe how the data is structured within the file and cannot be changed once recording
begins. The following list identifies these properties:

· alignment
· bitspersample
· bytespersec
· channels
· format tag
· samplespersec

The following command sets the time format to milliseconds and sets the waveform-audio format to 8
bit, mono, 11 kHz:

set mysound time format ms bitspersample 8 channels 1 samplespersec 11025

 setaudio

wsprintf(lpstrCommand, "setaudio %s %s %s", lpszDeviceID, lpszAudio,
 lpszFlags);

Sets values associated with audio playback and capture. Digital-video and VCR devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszAudio

Flag for audio playback and capture. The following table lists device types that recognize the
setaudio command and the flags used by each type:
digitalvid
eo

algorithm algorithm
alignment to integer
bass to factor
bitspersample to bit_count
bytespersec to integer
clocktime
input
left off
left on
left volume to factor
off
on
output

over duration
quality descriptor
record off
record on
right off
right on
right volume to factor
samplespersec to integer
source to sourcename
stream to number
treble to factor
volume to factor

vcr off
on
monitor to type number
number
record off
record track track_number off

record on
record track track_number
on
source to type number
number
track track_number off
track track_number on

The following table lists the flags that can be specified in the lpszAudio parameter and their
meanings:
algorithm algorithm Selects a specific audio compression

algorithm for use by a subsequent
reserve or record command. The
algorithms supported are device specific.
MCI defines the values "g711", "g721",
"g722", "g728", "pcm", "cdxa", "adpcm",
and "adpcm4e" for algorithm. If a device
supports the algorithm names "pcm",
"cdxa", and "adpcm4e", they adhere to
standard definitions. The "cdxa" algorithm
has been defined by Sony Corporation.
The "adpcm4e" algorithm has been
defined by Intel Corporation. The "g711",
"g721", "g722", and "g728" values
represent audio algorithms
recommended by the International
Telegraph and Telephone Consultative

Committee (CCITT).
If the specified algorithm conflicts with the
current file format, the file format is
changed to the default format for the
algorithm.

alignment to integer Sets the alignment of data blocks relative
to the start of input waveform-audio data.

bass to factor Sets the audio low frequency level.
bitspersample to bit_count Sets the number of bits per sample

recorded. The file is saved in this format.
This flag applies only to devices
supporting the "pcm" algorithm.

bytespersec to integer Sets the average number of bytes per
second for recording in the "pcm" and
"adpcm" algorithms. The file is saved in
this format.

clocktime Indicates the time specified in the "over"
flag is in milliseconds. This time is
absolute and not in step with the playing
of the workspace.

input Modifies the "bass", "treble", or "volume"
flag so that it affects the input signal and
modifies what is recorded. If possible,
this is the default when monitoring the
input.

left off
left on

Enables or disables audio output on the
left channel. The audio presentation
source can be the external input or the
workspace. The default is "left on". If
there is only one channel, that channel is
set on or off.

left volume to factor Sets the audio volume of the left audio
channel. If there is only one channel it
sets its volume.

monitor to type number
number

Controls which source input will be
passed to the VCR output without
changing the recording source input
selection. Type can be "output," or one of
the valid input sources. If number is not
specified, then the first input of that type
will be chosen.

off
on

Enables or disables audio. The audio
presentation source can either be the
external input or the workspace. This
command affects the left and right audio
channels simultaneously. The default is
setaudio "on".

output Modifies the "bass", "treble", or "volume"
flag so that it modifies only the played
signal and not what is recorded. If
possible, this is the default when
monitoring a file.

over duration Specifies how long it should take to make
a change that uses a factor variable. The
units for duration are in the current time
format. Changes occur in step with the
playing of the workspace. When playing
is suspended, the change is also
suspended until the play continues. If
"over" is not specified or not supported,
the change occurs immediately.

quality descriptor Specifies the characteristics of the audio
compression performed when audio is
recorded to a file. All devices support the
three descriptors "low", "medium", and
"high". The default is device specific.
If the "algorithm" flag is not specified, the
"quality" adjustment applies to the current
algorithm.
The quality command can be used to
define additional descriptor names.

record off Clears the audio-source selection so that
no audio will be recorded with the next
record command.

record on Enables recording of audio data. The
default is to record audio data.

record track track_number
off

Clears the audio-source selection so that
no audio will be recorded with the next
record command. "Track" allows
independent track selection. Track 2
corresponds to the PCM track in Hi8. If
"track" is not specified, a default value of
1 is assumed.

record track track_number
on

Selects the audio source to be recorded
with the next record command. "Track"
allows independent track selection. Track
2 corresponds to the PCM track in Hi8. If
"track" is not specified, a default value of
1 is assumed.

right off
right on

Enables or disables audio output on the
right channel. The audio presentation
source can be the external input or the
workspace. The default is "right on". If
there is only one channel, this flag has no
effect.

right volume to factor Sets the audio volume to the right audio
channel. If there is only one channel, it
has no effect.

samplespersec to integer Sets the sample rate for recording with
the "pcm" and "adpcm" algorithms. The
file is saved in this format.

source to sourcename Specifies the source for the audio input
digitizer. The constants defined for
sourcename include: "left", "right",

"average", and "stereo". The first three
specify monophonic recording using the
left input only, the right input only, and the
average of the two inputs.

source to type number
number

Selects the audio source to be recorded
on the tape. Type must be "tuner", "line",
"svideo", "aux", "generic", or "mute".

stream to number Specifies the audio stream played back
from the workspace. If the stream is not
specified and the file format does not
define a default, then the interleaved
audio stream that is physically first will be
played.

track track_number off Disables an individual track.
track track_number on Enables an individual track.
treble to factor Sets the audio high-frequency level.
volume to factor Sets the average audio volume for both

audio channels. If the left and right
volumes have been set to different
values, then the ratio of left-to-right
volume is approximately unchanged.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

For VCR devices, using setaudio with a flag that turns off an individual track ("track track_number off")
might cause your application to receive a status message indicating that the command could not be
carried out. Some VCRs can turn off only combinations of tracks, not individual tracks; for example, the
first audio track and a video track of a video cassette. In this case, simply use setaudio and setvideo
to continue to turn off the other tracks that make up the combination. The driver will turn off the tracks
when it receives the command to turn off the last track in the combination.

 settimecode

wsprintf(lpstrCommand, "settimecode %s %s %s", lpszDeviceID,
 lpszTimecode, lpszFlags);

Enables or disables timecode recording for a VCR. VCR devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszTimecode

One of the following flags:
record
on

Sets the VCR to record timecode.

record
off

Disables timecode recording.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

 settuner

wsprintf(lpstrCommand, "settuner %s %s %s", lpszDeviceID, lpszTuner,
 lpszFlags);

Changes the current tuner or the channel setting of the current tuner. VCR devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszTuner

One of the following flags:
channel channel Sets the tuner to channel. You might not be able to

change the channel while recording, depending on
the VCR. A channel larger than the maximum sets
the tuner to the maximum channel.

channel seek up
channel seek
down

Seeks the next channel with a valid signal. "Seek
up" increments the channel number in its search.
"Seek down" decrements the channel number in its
search. The tuner wraps to channel 1 when the
maximum channel number is exceeded. Similarly,
when seeking down, the tuner wraps to the
maximum channel.

channel up
channel down

Increments or decrements the tuner channel. You
might not be able to change the channel while
recording, depending on the VCR. The tuner wraps
to channel 1 when the maximum channel number is
exceeded. Similarly, when seeking down, the tuner
wraps to the maximum channel.

number number Specifies the tuner to be affected by the settuner
command. If number is not given, the default value
of 1 is assumed.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

 setvideo

wsprintf(lpstrCommand, "setvideo %s %s %s", lpszDeviceID, lpszVideo,
 lpszFlags);

Sets values associated with video playback and capture. Digital-video and VCR devices recognize this
command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszVideo

Flag for video playback and capture. The following table lists device types that recognize the
setvideo command and the flags used by each type:
digitalvid
eo

algorithm algorithm
bitsperpel to count
brightness to factor
clocktime
color to factor
contrast to factor
gamma to value
halftone
input
key color to r:g:b
key index to index
off
on
output

over duration
palette color color over
index
 to newrgb
palette handle to handle
quality descriptor
record frame rate to rate
record on
record off
sharpness to factor
source to source number
value
still algorithm algorithm
still quality descriptor
stream to number
tint to factor

vcr off
on
monitor to type number
number
record off
record track track_number
off

record on
record track track_number
on
source to type number
number
track track_number off
track track_number on

The following table lists the flags that can be specified in the lpszVideo parameter and their
meanings:
algorithm algorithm Specifies a video compression algorithm for

use by a subsequent reserve or record
command. Algorithms supported by a
device are device specific. MCI defines the
constants "mpeg" and "h261" for algorithm.
If the specified algorithm conflicts with the
current file format, the file format is
changed to the default format for the
algorithm.

bitsperpel to count Sets the number of bits per pixel for saving
data with the capture or record command.

brightness to factor Sets the video brightness level.
clocktime Indicates that the time specified in the

"over" flag is in milliseconds. The time is
absolute and not in step with the playing of
the workspace.

color to factor Sets the color-saturation level.
contrast to factor Sets the video-contrast level.
gamma to value Specifies the gamma correction exponent

multiplied by 1000. For example, to specify
an exponent of 2.2, use 2200 for value. A
gamma value of 1.0 (1000) indicates no
gamma correction is applied. Gamma
correction adjusts the mapping between the
intensity encoded in the presentation
source and the displayed brightness.

halftone Causes the halftone palette to be used
instead of the default palette. This flag is
recognized only by the MCIAVI digital-video
driver.

input Modifies the "brightness", "color",
"contrast", "gamma", "sharpness", or "tint"
flag so that it affects the input signal and
modifies what is recorded. If possible, this
is the default when monitoring the input.

key color to r:g:b Sets the key color. The r:g:b variable is a
Windows RGB value. Colons (:) separate
the individual red, green, and blue values.

key index to index Sets the key index. The index variable is a
physical palette index.

monitor to type number
number

Controls which source input will be passed
to the VCR output, without changing the
recording source input selection. Type can
be "output", or one of the valid input
sources. If "number" is not specified, then
the first input of that type is chosen.

off
on

Enables or disables display of video.
Disabling video sets the pixels in the put
"destination" rectangle (or its default, the
client region of the current window) to a
solid color. It has no effect on the frame
buffer.
The video source, whether the workspace
or an external input, might continue to store
new images in the frame buffer. They are
not displayed until video is enabled. You
can use the window "state" command to
hide the window. The default is setvideo
"on".

output Modifies the "brightness", "color",
"contrast", "gamma", "sharpness", or "tint"
flag so that it modifies only the displayed
signal and not what is recorded. If possible,
this is the default when monitoring a file.

over duration Specifies how long it should take to make a

change that uses a factor variable. The
units for duration are in the current time
format. Changes occur in step with the
playing of the workspace. When playing is
suspended, the change is also suspended
until the play continues. If "over" is not used
or not supported, the change occurs
immediately.

palette color color over
index to newrgb

Sets a new palette color. The color and
palette index to be changed are specified
by the color and index parameters; the new
color is specified by newrgb. This flag is
recognized only by the MCIAVI digital-video
driver.

palette handle to handle Specifies the handle to a palette the device
must use for rendering. This item is
supported only by devices that use
palettes. If handle is zero, the default
palette is used.
Digital-video devices should not free the
palette passed with this command.
Applications should free it after they close
the device.

quality descriptor Specifies the characteristics of the video
compression performed when video is
recorded to a file. All devices support the
three descriptors: "low", "medium", and
"high". The default is device specific. The
significance of these names depends on
the algorithm and the device. Devices might
define additional descriptor names. The
quality command can be used to define
additional descriptor names.
If the "algorithm" flag is not used, the
descriptor applies to the current algorithm.

record frame rate to rate Sets the recording for motion video. The
recording rate is specified in units of frames
per second multiplied by 1000. For
example, the NTSC frame rate of 29.97
frames per second is represented as
29970.

record on
record off

Enables or disables recording of video
data. Recording video data is the default.

record track track_number
off

Clears the video-source selection so that
no video will be recorded with the next
record command. "Track" allows
independent track selection. If "track" is not
specified, a default value of 1 is assumed. It
might be necessary to first issue a set
"assemble record off" command before the
video recording can be turned off.

record track track_number Selects the video source to be recorded
with the next record command. "Track"

on allows independent track selection. Track 2
corresponds to the PCM track in Hi8. If
"track" is not specified, a default of 1 is
assumed.

sharpness to factor Sets the video sharpness level.
source to source number
value

Sets the source of the video input. This
usually corresponds to external connectors.
The constants defined for source include
"rgb", "pal", "ntsc", "svideo", and "secam". If
more than one input of the specified type
exists, the optional "number" value
indicates the desired input. For example,
setvideo "source to ntsc number 2"
specifies the second NTSC input.
If "to" source is omitted, then the absolute
source is used as defined by the list "video
source" command.

source to type number
number

Selects the video source to be recorded on
the tape. Type must be "tuner", "line",
"svideo", "aux", "generic", "mute", or "rgb".

still algorithm algorithm Specifies the still image compression
algorithm used by the capture command.
Every device must support an algorithm of
"none", which means no compression. This
is the default. In this case, digital-video
devices save still images as RGB format
device-independent bitmaps. Devices might
also support a device-specific list of
additional algorithms.

still quality descriptor Specifies the characteristics of the still-
image compression performed while
capturing a still image. All devices support
the descriptors "low", "medium", and "high".
The default is device specific.
If the "algorithm" flag is not used, the
descriptor applies to the current algorithm.
The quality command can be used to
define other descriptor names.

stream to number Specifies the video stream played back
from the workspace. If the stream is not
specified and a default stream is not
defined by the file format, then the
physically first interleaved video stream is
played.

tint to factor Sets the image tint. Typically, this
adjustment is modeled after the tint control
of many color television sets, with 250
meaning green, 750 meaning red, and 0 (or
1000) meaning blue. The nominal value is
always 500.

track track_number off Disables an individual video track.
track track_number on Enables an individual video track.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

For VCR devices, using setvideo with a flag that turns off an individual track ("track track_number off")
might cause your application to receive a status message indicating that the command could not be
carried out. Some VCRs can turn off only combinations of tracks, not individual tracks; for example, the
first audio track and a video track of a video cassette. In this case, simply use setaudio and setvideo
to continue to turn off the other tracks that make up the combination. The driver will turn off the tracks
when it receives the command to turn off the last track in the combination.

 signal

wsprintf(lpstrCommand, "signal %s %s %s", lpszDeviceID, lpszSignalFlags,
 lpszFlags);

Identifies a specified position in the workspace by sending the application an MM_MCISIGNAL
message. Digital-video devices recognize this command. MCIAVI supports only one active signal at a
time.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszSignalFlags

One of the following flags:
at position Specifies the frame to invoke a signal.
cancel Removes signals from the workspace. An individual

signal is specified by using the "uservalue" flag. If the
"uservalue" flag is not specified by using "cancel", the
device cancels all signals. The "cancel" flag is
incompatible with the "at", "every", and "return position"
flags.

every interval Specifies the period of the signals. The interval value is
specified in the current time format.
If used with "at" position, signals are placed throughout
the workspace with one signal mark placed at position.
Without the "at" flag, signals are placed throughout the
workspace with one signal at the current position.
If this flag is omitted, only the position indicated by the
"at" flag is marked.
If the interval value is less than the minimum frequency
supported by a device, it will use its minimum value.

return
position

Indicates the device should send the position value
instead of the "uservalue" identifier in the signaling
message. The "uservalue" identifier can still be used to
cancel or to redefine the signal marks.

uservalue id Specifies an identifier that is reported back with the
signaling message. This identifier acts as an identifier
that can be used with other signal commands to
reference this signal setting. If omitted, the default
value is zero.

lpszFlags
Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

 spin

wsprintf(lpstrCommand, "spin %s %s %s", lpszDeviceID, lpszUpDown,
 lpszFlags);

Starts spinning a disc or stops the disc from spinning. Videodisc devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszUpDown

One of the following flags:
down Stops the disc from spinning.
up Starts spinning the disc.

lpszFlags
Can be "wait", "notify", or both. For more information about these flags, see Chapter 3, "MCI
Overview."

The following command starts spinning a videodisc device:

spin videodisc up

 status

wsprintf(lpstrCommand, "status %s %s %s", lpszDeviceID, lpszRequest,
 lpszFlags);

Requests status information from a device. All devices recognize this command.

· Returns information in the lpstrReturnString parameter of mciSendString. The information is
dependent on the request type.

lpszDeviceID
Identifier of an MCI device. This identifier or alias is assigned when the device is opened.

lpszRequest
Flag for requesting status information. The following table lists device types that recognize the
status command and the flags used by each type:
animation current track

forward
length
length track number
media present
mode
number of tracks
palette handle

position
position track number
ready
speed
start position
stretch
time format
window handle

cdaudio cdaudio type track number
current track
length
length track number
media present
mode

number of tracks
position
position track number
ready
start position
time format

digitalvid
eo

audio
audio alignment
audio bitspersample
audio breaks
audio bytespersec
audio input
audio record
audio source
audio samplespersec
audio stream
bass
bitsperpel
brightness
color
contrast
current track
disk space drive
file completion
file format
file mode
forward
frames skipped
gamma
input
left volume
length

output
palette handle
pause mode
play speed
position
position track number
ready
record frame rate
reference frame
reserved size
right volume
seek exactly
sharpness
smpte
speed
start position
still file format
time format
tint
treble
unsaved
video
video key index
video key color
video record
video source

length track number
media present
mode
monitor
monitor method
nominal
nominal frame rate
nominal record frame rate
number of tracks

video source number
video stream
volume
window handle
window visible
window minimized
window maximized

overlay media present
mode
number of tracks

ready
stretch
window handle

sequence
r

current track
division type
length
length track number
master
media present
mode
number of tracks
offset

port
position
position track number
ready
slave
start position
tempo
time format

vcr assemble record
audio monitor
audio monitor number
audio record
audio record track number
audio source
audio source number
channel
channel tuner number
clock
clock id
counter
counter format
counter resolution
current track
frame rate
index
index on
length
length track number
media present
media type
mode
number of audio tracks
number of tracks
number of video tracks

pause timeout
play format
position
position start
position track number
postroll duration
power on
preroll duration
ready
record format
speed
time format
time mode
time type
timecode present
timecode record
timecode type
tuner number
video monitor
video monitor number
video record
video record track number
video source
video source number
write protected

videodisc current track
disc size
forward
length
length track number
media present
media type

number of tracks
position
position track number
ready
side
speed
start position

mode time format
waveaudi
o

alignment
bitspersample
bytespersec
channels
current track
format tag
input
length
length track number
level

media present
mode
number of tracks
output
position
position track number
ready
samplespersec
start position
time format

The following table lists the flags that can be specified in the lpszRequest parameter and their
meanings:
alignment Returns the block alignment of data, in

bytes.
assemble record Returns TRUE if the device is set to

assemble mode recording.
audio Returns "on" or "off" depending on the

most recent setaudio "on" or "off"
command. It returns "on" if either or both
speakers are enabled, and "off"
otherwise.

audio alignment Returns the alignment of data blocks
relative to the start of input waveform-
audio data.

audio bitspersample Returns the number of bits per sample
the device uses for recording. This flag
applies only to devices supporting the
"pcm" algorithm.

audio breaks Returns the number of times the audio
portion of the last AVI sequence broke
up. The system counts an audio break
whenever it attempts to write audio data
to the device driver and discovers that
the driver has already played all of the
available data. This flag is recognized
only by the MCIAVI digital-video driver. It
is meant for performance evaluation
only; the return value is difficult to
interpret.

audio bytespersec Returns the average number of bytes per
second used for recording.

audio input Returns the approximate instantaneous
audio level of the analog input audio
signal. A value greater than 1000 implies
clipping distortion. Some devices can
return this value only while recording
audio. The value has no associated set
or setaudio command.

audio monitor Returns "output", or one of the valid
source-input types. For more information,

see the setaudio "monitor" command.
audio monitor number Returns the monitored-video number of

the type specified by status "audio
monitor". For more information, see the
setaudio command.

audio record Returns "on" or "off", reflecting the state
set by setaudio "record".

audio record track number Returns TRUE if the VCR is set to record
audio. If no track number is given, the
default value of 1 is assumed.

audio samplespersec Returns the number of samples per
second recorded.

audio source Returns the current audio digitizer
source: "left", "right", "average", or
"stereo".

audio source number Returns the audio-source number of the
type returned by status "audio source".
For more information, see the setaudio
command.

audio stream Returns the current audio-stream
number.

bass Returns the current audio-bass level.
bitsperpel Returns the number of bits per pixel for

saving captured or recorded data.
bitspersample Returns the bits per sample.
brightness Returns the current video-brightness

level.
bytespersec Returns the average number of bytes per

second played or recorded.
cdaudio type track number Returns the type of the specified track

number. This can be "audio" or "other."
channel Returns the integer value of the channel

set on the tuner.
channel tuner number If "tuner" number is given, then the

currently selected channel on the logical
tuner number will be returned. Note that
there can be several logical tuners.

channels Returns the number of channels set (1
for mono, 2 for stereo).

clock Returns the external time. The time must
be an unsigned long integer expressing
total increments. For more information,
see the capability "clock increment rate"
command.

clock id Returns a unique integer identifying the
clock.

color Returns the current color level.
contrast Returns the current contrast level.
counter Returns the counter position, in the

current counter format.

counter format Returns the current counter format. For
more information, see the set "counter
format" command.

counter resolution Returns "frames" or "seconds", indicating
the counter's resolution. This is not the
same as accuracy.

current track Returns the current track. The MCISEQ
sequencer returns 1.

disc size Returns either 8 or 12, indicating the size
of the loaded disc in inches.

disk space drive Returns the approximate disk space, in
the current time format, that can be
obtained by a reserve command for the
specified disk drive. The drive is usually
specified as a single letter or a single
letter followed by a colon (:). Some
devices, however, might use a path.

division type Returns one of the following file division
types:
PPQN
SMPTE 24 frame
SMPTE 25 frame
SMPTE 30 drop frame
SMPTE 30 frame
Use this information to determine the
format of the MIDI file and the meaning
of tempo and position information.

file completion Returns the estimated percentage a
load, save, capture, cut, copy, delete,
paste, or undo operation has
progressed. (Applications can use this to
provide a visual indicator of progress.)

file format Returns the current file format for record
or save commands.

file mode Returns "loading", "saving", "editing", or
"idle". During a load operation, it returns
"loading". During save and capture
operations, it returns "saving". During
cut, copy, delete, paste, or undo
operations, it returns "editing".

format tag Returns the format tag.
forward Returns TRUE if the play direction is

forward or if the device is not playing.
frame rate Returns the number of frames per

second that the device will use by
default. NTSC devices return 30, PAL 25,
and so on.

frames skipped Returns the number of frames that were
not drawn when the last AVI sequence
was played. This flag is recognized only
by the MCIAVI digital-video driver. It is

meant for performance evaluation only;
the return value is difficult to interpret.

gamma Returns the value set with setvideo
"gamma to" value.

index Returns the current index display. For
more information, see the set "index"
command.

index on Returns TRUE if the index is on.
input Returns the input set. If one is not set,

the error returned indicates that any
device can be used.
For digital-video devices, modifies the
"bass", "treble", "volume", "brightness",
"color", "contrast", "gamma",
"sharpness", or "tint" flag so that it
applies only to the input. This is the
default when monitoring the input.

left volume Returns the volume set for the left audio
channel.

length Returns the total length of the media, in
the current time format.
For PPQN files, the length is returned in
song pointer units. For SMPTE files, it is
returned as hh:mm:ss:ff, where hh is
hours, mm is minutes, ss is seconds, and
ff is frames. For VCR devices, the length
is 2 hours (unless the length has been
explicitly changed using the set
command).

length track number Returns the length of the track, in time or
frames, specified by number.
For PPQN files, the length is returned in
song pointer units. For SMPTE files, it is
returned as hh:mm:ss:ff, where hh is
hours, mm is minutes, ss is seconds, and
ff is frames.

level Returns the current PCM audio sample
value.

master Returns "midi", "none", or "smpte"
depending on the type of synchronization
set.

media present Returns TRUE if the media is inserted in
the device or FALSE otherwise.
Sequencer, video-overlay, digital-video,
and waveform-audio devices return
TRUE.

media type Returns the type of the media. For
VCRS, this is "8mm", "vhs", "svhs",
"beta", "Hi8", "edbeta", or "other". For
videodiscs, this is "CAV", "CLV", or
"other", depending on the type of

videodisc.
mode Returns the current mode of the device.

All devices can return the "not ready",
"paused", "playing", and "stopped"
values. Some devices can return the
additional "open", "parked", "recording",
and "seeking" values.

monitor Returns "file" or "input". The returned
value indicates the current presentation
source.

monitor method Returns "pre", "post", or "direct". The
returned value indicates the method
used for input monitoring.

nominal The item modifies the "bass",
"brightness", "color", "contrast",
"gamma", "sharpness", "tint", "treble,"
and "volume" flags to return the nominal
value instead of the current setting.

nominal frame rate Returns the nominal frame rate
associated with the file. The units are in
frames per second multiplied by 1000.

nominal record frame rate Returns the nominal frame rate
associated with the input video signal.
The units are in frames per second
multiplied by 1000.

number of audio tracks Returns the number of audio tracks on
the media.

number of tracks Returns the number of tracks on the
media. The MCISEQ and MCIWAVE
devices return 1, as do most VCR
devices. The MCIPIONR device does not
support this flag.

number of video tracks Returns the number of video tracks on
the media.

offset Returns the offset of a SMPTE-based
file. The offset is the start time of a
SMPTE-based sequence. The time is
returned as hh:mm:ss:ff, where hh is
hours, mm is minutes, ss is seconds, and
ff is frames.

output Returns the currently set output. If no
output is set, the error returned indicates
that any device can be used.
For digital-video devices, modifies the
"bass", "treble", "volume", "brightness",
"color", "contrast", "gamma",
"sharpness", or "tint" flag so that it
applies only to the output. This is the
default when monitoring a file.

palette handle Returns the handle of the palette used
for the animation in the low-order word of

the return value.
pause mode Returns "recording" if the device is

paused while recording. It returns
"playing" if the device is paused while
playing. It returns the error "Action not
applicable in current mode" if the device
is not paused.

pause timeout Returns the maximum duration, in
milliseconds, of a pause command.

play format Returns a code indicating the format that
the videotape will be played back in, if
detectable: "lp", "ep", "sp", or "other". For
more information, see the "record format"
flag.

play speed Returns a value representing how closely
the actual playing time of the last AVI
sequence matched the target playing
time. The value 1000 indicates that the
target time and the actual time were the
same. A value of 2000, for example,
would indicate that the AVI sequence
took twice as long to play as it should
have. This flag is recognized only by the
MCIAVI digital-video driver. It is meant
for performance evaluation only; the
return value is difficult to interpret.

port Returns the MIDI port number assigned
to the sequence.

position Returns the current position.
For PPQN files, the position is returned
in song pointer units. For SMPTE files, it
is returned as hh:mm:ss:ff, where hh is
hours, mm is minutes, ss is seconds, and
ff is frames.

position start Returns the position of the start of the
usable media.

position track number Returns the position of the start of the
track specified by number.
For PPQN files, the time format is
returned in song pointer units. For
SMPTE files, it is returned as
hh:mm:ss:ff, where hh is hours, mm is
minutes, ss is seconds, and ff is frames.
The MCISEQ sequencer returns zero.
The MCIPIONR device does not support
this flag. The MCIWAVE device returns
zero.

postroll duration Returns the length of videotape, in the
current time format, needed to brake the
VCR transport when a stop or pause
command is issued.

power on Returns TRUE if the VCR's power is on.

preroll duration Returns the length of videotape, in the
current time format, needed to stabilize
the VCR output.

ready Returns TRUE if the device is ready to
accept another command.

record format Returns a code indicating the format that
the videotape will be recorded in. The
current return types are "lp", "ep", "sp", or
"other". These formats are not VHS
specific and can be applied to any VCR
that has multiple selectable recording
formats. The "sp" type is the fastest,
highest quality recording format and is
used as default on single format VCRs.

record frame rate Returns the frame rate, in frames per
second multiplied by 1000, used for
compression.

reference frame Returns the frame number for the
nearest key frame image that precedes
the specified frame.

reserved size Returns the size, in the current time
format, of the reserved workspace. The
size corresponds to the approximate time
it would take to play the compressed
data from a full workspace. It returns
zero if there is no reserved disk space.
This flag returns the approximate size
because the precise disk space for
compressed data cannot, in general, be
predicted until after the data has been
compressed.

right volume Returns the volume set for the right
audio channel.

samplespersec Returns the number of samples per
second played or recorded.

seek exactly Returns "on" or "off", indicating whether
or not the "seek exactly" flag is set.

sharpness Returns the current sharpness level of
the device.

side Returns 1 or 2 to indicate which side of
the videodisc is loaded.

slave Returns "file", "midi", "none", or "smpte"
depending on the type of synchronization
set.

smpte Returns the SMPTE timecode associated
with the current position in the
workspace. This is a string with the form
dd:dd:dd:dd, where each d denotes a
digit from 0 to 9. If the workspace data
does not include timecode data, then this
flag returns 00:00:00:00.

speed Returns the current speed of the device

in frames per second (or in the same
format used by the set "speed"
command). The MCIPIONR videodisc
player does not support this flag.

start position Returns the starting position of the
media.

still file format Returns the current file format for the
capture command.

stretch Returns TRUE if stretching is enabled.
tempo Returns the current tempo of a MIDI

sequence in the current time format. For
files with PPQN format, the tempo is in
beats per minute. For files with SMPTE
format, the tempo is in frames per
second.

time format Returns the current time format. For
more information, see the time formats in
the set command.

time mode Returns the current position time mode.
It can be "detect", "timecode", or
"counter".

time type Returns the current position time in use:
"timecode" or "counter".

timecode present Returns TRUE if timecode has been
recorded at the current position on the
tape. The timecode must advance from
the current position. A VCR might need
to be played to check this condition.

timecode record Returns TRUE if the VCR is set to record
timecode.

timecode type Returns "smpte", "smpte drop", "other",
or "none". Note the frames per second
can be obtained from the status "frame
rate" command, and the accuracy of the
device can be returned by the capability
"seek accuracy" command.

tint Returns the current video-tint level.
treble Returns the current audio-treble level.
tuner number Returns the current logical-tuner number.
unsaved Returns TRUE if there is recorded data

in the workspace that might be lost as a
result of a close, load, record, reserve,
cut, delete, or paste command. Returns
FALSE otherwise.

video Returns "on" or "off", reflecting the state
set by the setvideo command.

video key color Returns the value for the key color.
video key index Returns the value for the key index.
video monitor Returns "output" or one of the valid

source-input types. For more information,

see the setvideo "monitor" command.
video monitor number Returns the monitored-video number of

the type returned by status "video
monitor". For more information, see the
setvideo command.

video record Returns "on" or "off", reflecting the
current state set by setvideo "record".

video record track number Return TRUE if the VCR is set to record
video. If no track number is given, the
default value of 1 is assumed.

video source Returns the video-source type. For more
information, see the setvideo command.

video source number Returns a number corresponding to the
video source of the type in use. For
example, it returns 2 if the second NTSC
video source input is being used.

video stream Returns the current video-stream
number.

volume Returns the average volume to the left
and right speaker. This returns an error if
the device has not been played or
volume has not been set.

window handle Returns ASCII decimal value for the
window handle in the low-order word of
the return value.

window maximized Returns TRUE if the window is
maximized.

window minimized Returns TRUE if the window is
minimized.

window visible Returns TRUE if the window is not
hidden.

write protected Returns TRUE if the device detects that
it cannot record (that is, if the write
protect is on). If it can record, or if it is
unable to determine whether or not it can
record (without actually writing), the
driver returns FALSE.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

Before issuing any commands that use position values, you should set the desired time format by using
the set command.

The following command returns the current mode of the "mysound" device:

status mysound mode

 step

wsprintf(lpstrCommand, "step %s %s %s", lpszDeviceID, lpszStepFlags,
 lpszFlags);

Steps the play one or more frames forward or reverse. The default action is to step forward one frame.
Animation, digital-video, VCR, and CAV-format videodisc devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszStepFlags

One or both of the following flags:
by
frames

Indicates the number of frames to step. If you specify a
negative frames value, you cannot specify the "reverse" flag.

reverse Step the frames in reverse.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The following command plays five frames of the animation file associated with the "movie" device,
starting at the current frame:

step movie by 5

 stop

wsprintf(lpstrCommand, "stop %s %s %s", lpszDeviceID, lpszStopFlags,
 lpszFlags);

Stops playback or recording. Animation, CD audio, digital-video, MIDI sequencer, videodisc, VCR, and
waveform-audio devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszStopFlags

For digital-video devices, it can be the following flag:
hold Prevents the release of resources required to redraw a still image

on the screen. The frame buffer remains available for use in
updating the display when, for example, the window is moved.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

For CD audio devices, the stop command stops playback and resets the current track position to zero.

The following command stops playback or recording on the "mysound" device:

stop mysound

 sysinfo

wsprintf(lpstrCommand, "sysinfo %s %s %s", lpszDeviceID, lpszRequest,
 lpszFlags);

Retrieves MCI system information. The sysinfo command is an MCI system command; it is interpreted
directly by MCI.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device or device type. If a device type is specified, it must be a standard MCI
device-type name, as listed in the reference material for the capability command. You can specify
"all" when the flag specified in lpszRequest allows that possibility.

lpszRequest
One of the following flags:
installname Returns the name listed in the registry or the

SYSTEM.INI file used to install the open device with
the specified device identifier.

quantity Returns the number of MCI devices listed in the
registry or the SYSTEM.INI file of the type specified in
the lpszDeviceID parameter. This device identifier
must be a standard MCI device-type name. Any digits
after the device type are ignored. Specifying "all" for
lpszDeviceID returns the total number of MCI devices
in the system.

quantity open Returns the number of open MCI devices of the type
specified in lpszDeviceID. This device identifier must
be a standard MCI device-type name. Specifying "all"
for lpszDeviceID returns the total number of open MCI
devices in the system.

name index Returns the name of an MCI device. The device
identifier must be a standard MCI device-type name.
The index ranges from 1 to the number of devices of
that type. If "all" is specified for lpszDeviceID, index
ranges from 1 to the total number of devices in the
system.

name index
open

Returns the name of an open MCI device. The device
identifier must be a standard MCI device-type name.
The index ranges from 1 to the number of open
devices of that device type. If "all" is specified for
lpszDeviceID, index ranges from 1 to the total number
of open devices in the system.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The following command returns the number of open waveform-audio devices:

sysinfo waveaudio quantity open

The following command returns the name (device alias) of the first open waveform-audio device:

sysinfo waveaudio name 1 open

 undo

wsprintf(lpstrCommand, "undo %s %s", lpszDeviceID, lpszFlags);

Reverses the action taken by the most recent successful copy, cut, delete, undo, or paste command.
Digital-video devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszFlags

Can be "wait", "notify", "test", or a combination of these. For more information about these flags, see
Chapter 3, "MCI Overview."

 unfreeze

wsprintf(lpstrCommand, "unfreeze %s %s %s", lpszDeviceID, lpszUnfreeze,
 lpszFlags);

Reenables video acquisition to the frame buffer after it has been disabled by the freeze command.
Digital-video, VCR, and video-overlay devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszUnfreeze

Flag for reenabling video acquisition to the frame buffer. The following table lists device types that
recognize the unfreeze command and the flags used by each type:
digitalvide
o

at rectangle

overlay at rectangle
vcr input

output

The following table lists the flags that can be specified in the lpszUnfreeze parameter and their
meanings:
at rectangle Specifies the region that will have video acquisition

reenabled. The rectangle is relative to the video buffer
origin and is specified as X1 Y1 X2 Y2. The coordinates
X1 Y1 specify the upper left corner of the rectangle, and
the coordinates X2 Y2 specify the width and height.

input Unfreeze the input image.
output Unfreeze the output image. If neither "input" nor "output"

is given, "output" is assumed.

lpszFlags
Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be specified. For
more information about these flags, see Chapter 3, "MCI Overview."

The following command unfreezes a region of the video buffer:

unfreeze vboard at 10 20 90 165

 update

wsprintf(lpstrCommand, "update %s %s %s", lpszDeviceID, lpszHDC,
 lpszFlags);

Repaints the current frame into the specified device context (DC). Animation and digital-video devices
recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszHDC

Handle of a DC. The following table lists device types that recognize the update command and the
flags used by each type:
animation hdc hdc hdc hdc at rect
digitalvideo hdc hdc

hdc hdc at rect
paint hdc hdc

The following table lists the flags that can be specified in the lpszHDC parameter and their
meanings:
hdc hdc Specifies the handle of the DC to paint.
hdc hdc at
rect

Specifies the clipping rectangle relative to the client
rectangle.

paint hdc hdc Paints the DC when the application receives a
WM_PAINT message intended for a DC.

To specify the handle of the DC, use the string "hdc" followed by an ASCII representation of the
handle. The rectangle is specified as X1 Y1 X2 Y2. The coordinates X1 Y1 specify the upper left
corner of the rectangle, and the coordinates X2 Y2 specify the width and height.

lpszFlags
Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more
information about these flags, see Chapter 3, "MCI Overview."

The following command updates the entire display window used by the "movie" device. The number
203 is a handle to a DC obtained from the BeginPaint function:

update movie hdc 203

 where

wsprintf(lpstrCommand, "where %s %s %s", lpszDeviceID, lpszRequestRect,
 lpszFlags);

Retrieves the rectangle specifying the source or destination area. This rectangle was specified using
the put command. Animation, digital-video, and video-overlay devices recognize this command.

· Returns a rectangle in the lpstrReturnString parameter of the mciSendString function. The
rectangle describes the area specified in the lpszRequestRect parameter of this command. The
rectangle is specified as X1 Y1 X2 Y2. The coordinates X1 Y1 specify the upper left corner of the
rectangle, and the coordinates X2 Y2 specify the width and height.

lpszDeviceID
Identifier of an MCI device. This identifier or alias is assigned when the device is opened.

lpszRequestRect
Flag that identifies the rectangle whose dimensions are retrieved. The following table lists device
types that recognize the where command and the flags used by each type:
animation destination source
digitalvideo destination

destination max
frame
frame max
source

source max
video
video max
window
window max

overlay destination
frame

source
video

The following table lists the flags that can be specified in the lpszRequestRect parameter and their
meanings:
destination Retrieves the destination offset and extent. For video-

overlay devices, the destination rectangle defines the
area of the display window client area that displays the
image data from the frame buffer.

destination
max

Retrieves the current size of the client rectangle.

frame Retrieves the offset and extent of the frame buffer
rectangle. The frame buffer rectangle defines the area
of the frame buffer that receives incoming video data.
Images from the "video" rectangle are scaled into this
region.

frame max Returns the maximum size of the frame buffer.
source Retrieves the source offset and extent. For video-

overlay devices, the source rectangle defines the region
of the frame buffer that is displayed in the destination
window. The device uses this rectangle to crop the
image before it is stretched to fit the destination
rectangle on the display.

source max Retrieves the maximum size of the frame buffer.
video Retrieves the offset and extent of the video rectangle.

The video rectangle defines the region of the incoming
video data that is transferred to the frame buffer.

video max Returns the maximum size of the input.
window Retrieves the current size and position of the display-

window frame.
window max Retrieves the size of the entire display.

lpszFlags
Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more
information about these flags, see Chapter 3, "MCI Overview."

The following command returns the display rectangle of the "movie" device:

where movie destination

 window

wsprintf(lpstrCommand, "window %s %s %s", lpszDeviceID, lpszWindowFlags,
 lpszFlags);

Controls the display window. You can use this command to change the display characteristics of the
window or provide a destination window for the driver to use in place of the default display window.
Animation, digital-video, and video-overlay devices recognize this command.

· Returns zero if successful or an error otherwise.
lpszDeviceID

Identifier of an MCI device. This identifier or alias is assigned when the device is opened.
lpszWindowFlags

Flag for controlling the display window. The following table lists device types that recognize the
window command and the flags used by each type:
animation fixed

handle default
handle hwnd
state hide
state iconic
state maximized
state minimize
state minimized
state no action
state no activate
state normal

state restore
state show
show maximized
show minimized
show min noactive
show na
show noactivate
show normal
stretch
text caption

digitalvideo handle hwnd
state hide
state minimize
state restore
state show
show maximized

show minimized
show min noactive
show na
show noactivate
show normal
text caption

overlay fixed
handle default
handle hwnd
state hide
state iconic
state maximized
state minimize
state minimized
state no action
state no activate
state normal

state restore
state show
show maximized
show minimized
show min noactive
show na
show noactivate
show normal
stretch
text caption

The following table lists the flags that can be specified in the lpszWindowFlags parameter and their
meanings:
fixed Disables stretching of the image.
handle default Specifies that the device should set the display

window back to the default window created during
the open operation. For video-overlay devices,
specifies that the device should create and manage
its own destination window.

handle hwnd Specifies the handle of the destination window to

use instead of the default window. The hwnd
parameter contains the ASCII numeric equivalent of
the window handle returned by the CreateWindow
function. Two device instances can use the same
window handle provided that each instance updates
the video and image pixels in the window as if the
other instance did not exist. When video output is
disabled with setvideo "off", an update command
will make the destination rectangle a solid color.

show maximized Maximizes the destination window.
show min
noactive

Displays the destination window as an icon.

show minimized Minimizes the destination window.
show na Displays the destination window in its current state;

the window that is currently active remains active.
show noactivate Displays the destination window in its most recent

size and position; the window that is currently active
remains active.

show normal Activates and displays the destination window in its
original size and position. (This is the same as the
"state restore" flag.)

state hide Hides the destination window.
state iconic Displays the destination window as an icon.
state maximized Maximizes the destination window.
state minimize Minimizes the destination window and activates the

top-level window in the window-manager's list.
state minimized Minimizes the destination window.
state no action Displays the destination window in its current state.

The window that is currently active remains active.
state no activate Displays the destination window in its most recent

size and state. The currently active window remains
active.

state normal Activates and displays the destination window in its
original size and position.

state restore Activates and displays the destination window in its
original size and position.

state show Shows the destination window.
stretch Enables stretching of the image.
text caption Specifies the caption for the destination window. If

this text contains embedded blanks, the entire
caption must be enclosed in quotation marks. The
default caption for the default window is blank.

lpszFlags
Can be "wait", "notify", or both. For digital-video devices, "test" can also be specified. For more
information about these flags, see Chapter 3, "MCI Overview."

Generally, animation devices create a window when opened but don't display the window until they
receive a play command. Video-overlay devices, on the other hand, typically create and display a
window when opened. If your application provides a window to the driver, your application is
responsible for managing the messages sent to the window.

Since you can use the status command to retrieve the handle to the driver display window, you can
also use the standard window manager functions (such as ShowWindow) to manipulate the window.

The following command displays and sets the caption for the "movie" playback window:

window movie text "Welcome to the Movies" state show

 Video Capture

You can easily incorporate video capture capabilities into your application by using the AVICap window
class. AVICap provides applications with a simple, message-based interface to access video and
waveform-audio acquisition hardware and to control the process of streaming video capture to disk.

AVICap supports streaming video capture and single-frame capture in real-time. In addition, AVICap
provides control of video sources that are Media Control Interface (MCI) devices so the user can
control (through an application) the start and stop positions of a video source, and augment the capture
operation to include step frame capture.

The windows you create by using the AVICap window class can perform the following tasks:

· Capture audio and video streams to an audo-video interleaved (AVI) file.
· Connect and disconnect video and audio input devices dynamically.
· View a live incoming video signal by using the overlay or preview methods.
· Specify a file to use when capturing and copy the contents of the capture file to another file.
· Set the capture rate.
· Display dialog boxes that control the video source and format.
· Create, save, and load palettes.
· Copy images and palettes to the clipboard.
· Capture and save a single image as a device-independent bitmap (DIB).

 Video Capture: A Minimal Approach

Video capture digitizes a stream of video and audio data, and stores it on a hard disk or some other
type of persistent storage device. This section describes how to add a simple form of video capture to
an application using three statements of code. It also describes how to end or abort a capture session
by sending messages to the capture window.

An AVICap capture window handles the details of streaming audio and video capture to AVI files. This
frees your application from involvement in the AVI file format, video and audio buffer management, and
the low-level access of video and audio device drivers. AVICap provides a flexible interface for
applications. You can add video capture to your application with only the following lines of code:

hWndC = capCreateCaptureWindow ("My Own Capture Window",
WS_CHILD | WS_VISIBLE , 0, 0, 160, 120, hwndParent, nID);

SendMessage (hWndC, WM_CAP_DRIVER_CONNECT, 0 /* wIndex */, 0L);
SendMessage (hWndC, WM_CAP_SEQUENCE, 0, 0L);

A macro interface is also available that provides an alternative to using the SendMessage function and
improves the readability of an application. The following example uses the macro interface to add video
capture to an application.

hWndC = capCreateCaptureWindow ("My Own Capture Window",
WS_CHILD | WS_VISIBLE , 0, 0, 160, 120, hwndParent, nID);

capDriverConnect (hWndC, 0);
capCaptureSequence (hWndC);

Once your application creates a capture window of the AVICap window class and connects it to a video
driver, the capture window is ready to capture data. At this point, your application can simply send the
WM_CAP_SEQUENCE message (or the capCaptureSequence macro) to begin capturing.

Using default settings, WM_CAP_SEQUENCE initiates capture of video and audio to a file named
CAPTURE.AVI. Capture continues until one of the following events occurs:

· The user presses the ESC key or a mouse button.
· Your application stops or aborts capture operation.
· The disk becomes full.

In an application, you can stop streaming captured data to a file by sending the WM_CAP_STOP (or
the capCaptureStop macro) message to a capture window. You can also abort the capture operation
by sending the WM_CAP_ABORT message (or the capCaptureAbort macro) to a capture window.

 Basic Capture Options

By modifying one or more of the capture parameters defined in the CAPTUREPARMS structure, you
can perform the following tasks:

· Change the frame capture rate.
· Specify keyboard or mouse control for ending a capture session.
· Specify a duration for a capture session.

 Capture Rate

The capture rate is the number of frames that are captured each second of a capture session. You can
retrieve the current capture rate by using the WM_CAP_GET_SEQUENCE_SETUP message (or the
capCaptureGetSetup macro). The current capture rate is stored in the
dwRequestMicroSecPerFrame member of the CAPTUREPARMS structure. You can set the capture
rate by specifying the number of microseconds between successive frames as the value of this
member, and then sending the updated CAPTUREPARMS structure to the capture window by using
the WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default
value of dwRequestMicroSecPerFrame is 66667, which corresponds to 15 frames per second.

 Keys Ending Capture

You can allow the user to abort a capture session by pressing a key or keystroke combination from the
keyboard, or by pressing the right or left mouse button. If the user aborts a real-time capture session,
the contents of the capture file are discarded. If the user aborts a step-frame capture session, the
contents of the capture file up to the point of aborting the capture are saved.

You can retrieve the settings for aborting a capture session by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The current
keystroke setting is stored in the vKeyAbort member of the CAPTUREPARAMS structure; the current
mouse settings are stored in the fAbortLeftMouse and fAbortRightMouse members. You can set a
new key or keystroke combination by specifying the keycode or keycode combination (as in a CTRL or
SHIFT key combination) as the value of vKeyAbort, or set the left or right mouse button as the abort
key by specifying the fAbortLeftMouse or fAbortRightMouse member. After you set these members,
send the updated CAPTUREPARMS structure to the capture window by using the
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default
value of vKeyAbort is VK_ESCAPE. The default values of fAbortLeftMouse and fAbortRightMouse
are TRUE.

 Time Limit

You can limit the duration of a capture operation by using the fLimitEnabled and wTimeLimit
members of the CAPTUREPARAMS structure. The fLimitEnabled member indicates whether the
capture operation is to be timed, while wTimeLimit specifies the maximum duration of the capture
operation.

You can retrieve the values for fLimitEnabled and wTimeLimit by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). You can enable
a timer for the capture operation by specifying TRUE as the value of fLimitEnabled, or you can set the
duration of the capture operation by specifying a value, in seconds, for wTimeLimit. After you set
these members, send the updated CAPTUREPARMS structure to the capture window by using the
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default
value of fLimitEnabled is FALSE.

 Capture Windows

Capture windows are conceptually similar to standard controls (such as buttons, list boxes, or scroll
bars) for the Microsoft Windows operating system. Typically, capture windows use the WS_CHILD and
WS_VISIBLE window styles.

 Creating an AVICap Capture Window

You can create a capture window of the AVICap window class by using the capCreateCaptureWindow
function. This function returns a window handle that identifies the capture window and is used by an
application to send subsequent messages to the window.

You can create one or more capture windows in an application and connect each capture window to a
different capture device.

 Connecting a Capture Window to a Capture Driver

You can dynamically connect or disconnect a capture window to a capture driver. You can connect or
associate a capture window with a capture driver by using the WM_CAP_DRIVER_CONNECT
message (or the capDriverConnect macro). After a capture window and capture driver are connected,
you can send device-specific messages to the capture driver associated with a capture window.

If you have more than one capture device installed on a system, you can connect a capture window to
a particular video capture device driver by specifying an integer for the wParam parameter of the
WM_CAP_DRIVER_CONNECT message. The integer is an index that identifies a video capture driver
listed in the registry or in the [drivers] section of the SYSTEM.INI file. Use zero for the first index entry.

You can retrieve the name and version of an installed capture driver by using the the
capGetDriverDescription function. Your application can use this function to enumerate the installed
capture devices and drivers, so the user can select a capture device to connect to a capture window.

You can retrieve the name of the capture device driver connected to a capture window by using the
WM_CAP_DRIVER_GET_NAME message (or the capDriverGetName macro). To retrieve the version
of an installed capture driver, use the WM_CAP_DRIVER_GET_VERSION message (or the
capDriverGetVersion macro).

You can disconnect a capture window from a capture driver by using the
WM_CAP_DRIVER_DISCONNECT message (or the capDriverDisconnect macro).

When an capture window is destroyed, any connected video capture device drivers are automatically
disconnected.

 Parent-Child Window Interaction

Some system-level messages, such as WM_PALETTECHANGED and WM_QUERYNEWPALETTE,
are sent only to top-level and overlapped windows. If a capture window is a child window, its parent
must forward these messages.

Similarly, if the parent window changes size, it might need to send notification messages to the capture
window. Conversely, if the dimensions of the captured video change, the capture window might need to
send notification messages to the parent window. The simplest way to manage this is to always keep
the capture window dimensions equal to the size of the captured video stream, notifying the parent
whenever these dimensions change.

 Capture Window Status

You can retrieve the current status of a capture window by using the WM_CAP_GET_STATUS
message (or the capGetStatus macro). This message retrieves a copy of the CAPSTATUS structure
with the current values of its members. The CAPSTATUS structure contains information regarding the
dimensions of the image, scroll position, and whether overlay or preview of the image is enabled.
Because the information represented in CAPSTATUS is dynamic, your application should refresh the
contents of the structure whenever the size or format of the captured video stream might have changed
(such as after displaying the video format of the capture driver).

Changing the dimensions of the capture window has no effect on the dimensions of the actual captured
video stream. The format dialog box displayed by the video capture device driver controls the
dimensions of the captured video stream.

 Capture and Audio Drivers

A capture driver and the underlying hardware can dictate several aspects of video capture, including
acceptable video sources, display options, formats, and compression options. An audio driver specifies
the audio format and possibly a compression option used with captured audio data.

 Capture Driver Capabilities

You can retrieve the hardware capabilities of the currently connected capture driver by using the
WM_CAP_DRIVER_GET_CAPS message (or the capDriverGetCaps macro). This message returns
the capabilities of the capture driver and underlying hardware in the CAPDRIVERCAPS structure.

 Video Dialog Boxes

Each capture driver can provide up to four dialog boxes to control aspects of the video digitization and
capture process, and to define compression attributes used in reducing the size of the video data. The
contents of these dialog boxes are defined by the video capture driver.

The Video Source dialog box controls the selection of video input channels and parameters affecting
the video image being digitized in the frame buffer. This dialog box enumerates the types of signals that
connect the video source to the capture card (typically SVHS and composite inputs), and provides
controls to change hue, contrast or saturation. If the dialog box is supported by a video capture driver,
you can display and update it by using the WM_CAP_DLG_VIDEOSOURCE message (or the
CapDlgVideoSource macro).

The Video Format dialog box controls selection of the digitized video frame dimensions and image-
depth, and compression options of the captured video. If the dialog box is supported by a video capture
driver, you can display and update it by using the WM_CAP_DLG_VIDEOFORMAT message (or the
capDlgVideoFormat macro).

The Video Display dialog box controls the appearance of the video on the monitor during capture. The
controls in this dialog box have no effect on the digitized video data, but they might affect the
presentation of the digitized signal. For example, capture devices that support overlay might allow
altering hue and saturation, key color, or alignment of the overlay. If the dialog box is supported by a
video capture driver, you can display and update it by using the WM_CAP_DLG_VIDEODISPLAY
message (or the capDlgVideoDisplay macro).

The Video Compression dialog box controls the post-capture video compression attributes. If the dialog
box is supported by a video capture driver, you can display and update it by using the
WM_CAP_DLG_VIDEOCOMPRESSION message (or the capDlgVideoCompression macro).

 Preview and Overlay Modes

A capture driver can implement two methods for viewing an incoming video stream: preview mode and
overlay mode. If a capture driver implements both methods, the user can choose which method to use.

Preview mode transfers digitized frames from the capture hardware to system memory and then
displays the digitized frames in the capture window by using graphics device interface (GDI) functions.
Applications might decrease the preview rate when the parent window loses focus, and increase the
preview rate when the parent window gains focus. This action improves general system
responsiveness because the preview operation is processor intensive.

Three messages control the preview operation. You can enable or disable preview mode by sending
the WM_CAP_SET_PREVIEW message (or the capPreview macro) to a capture window, or you can
set the rate at which frames are displayed in preview mode by sending the
WM_CAP_SET_PREVIEWRATE message (or the capPreviewRate macro), or you can enable or
disable scaling of the preview video by sending the WM_CAP_SET_SCALE message (or the
capPreviewScale macro). When preview and scaling are both enabled, the captured video frame is
stretched to the dimensions of the capture window. Enabling preview mode automatically disables
overlay mode.

Overlay mode is a hardware function that displays the contents of the capture buffer on the monitor
without using CPU resources. You can enable and disable overlay mode by sending the
WM_CAP_SET_OVERLAY message (or the capOverlay macro) to a capture window. Enabling
overlay mode automatically disables preview mode.

You can also set the scroll position of the video frame within the client area of the capture window for
preview mode or overlay mode by sending the WM_CAP_SET_SCROLL message (or the
capSetScrollPos macro) to a capture window.

 Video Format

You can retrieve the structure that specifies the video format or the size of that structure by sending the
WM_CAP_GET_VIDEOFORMAT message (or the capGetVideoFormat and
capGetVideoFormatSize macros) to a capture window. You can set the format of captured video data
by sending the WM_CAP_SET_VIDEOFORMAT message (or the capSetVideoFormat macro) to a
capture window.

 Video Capture Settings

The CAPTUREPARMS structure contains the control parameters for streaming video capture. This
structure controls several aspects of the capture process, and allows you to perform the following
tasks:

· Specify the frame rate.
· Specify the number of allocated video buffers.
· Disable and enable audio capture.
· Specify the time interval for the capture.
· Specify if an MCI device (VCR or videodisc) is used during capture.
· Specify keyboard or mouse control for ending streaming.
· Specify the type of video averaging applied during capture.

You can retrieve the current capture settings within the CAPTUREPARMS structure by sending the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro) to a capture
window. You can set one or more current capture settings by updating the appropriate members of the
CAPTUREPARMS structure and then sending the WM_CAP_SET_SEQUENCE_SETUP message (or
the capCaptureSetSetup macro) and CAPTUREPARMS to a capture window.

 Audio Format

You can retrieve the current capture format for audio data or the size of the audio format structure by
sending the WM_CAP_GET_AUDIOFORMAT message (or the capGetAudioFormat and
capGetAudioFormatSize macros) to a capture window. The default audio capture format is mono, 8-
bit, 11 kHz PCM (Pulse Code Modulation). When you retrieve the format by using
WM_CAP_GET_AUDIOFORMAT, always use the WAVEFORMATEX structure.

You can set the capture format for audio data by sending the WM_CAP_SET_AUDIOFORMAT
message (or the capSetAudioFormat macro) to a capture window. When setting the audio format, you
can pass a pointer to a WAVEFORMAT, WAVEFORMATEX, or PCMWAVEFORMAT structure,
depending on the specified audio format.

 Capture File and Buffers

This section describes tips and options for using the capture file and for specifying buffers for the
capture operation.

 Capture Filename

AVICap, by default, routes video and audio stream data from a capture window to a file named
CAPTURE.AVI in the root directory of the current drive. You can specify an alternate filename by
sending the WM_CAP_FILE_SET_CAPTURE_FILE message (or the capFileSetCaptureFile macro)
to a capture window. This message specifies the filename; it does not create, allocate, or open the file.
You can retrieve the current capture filename by sending the WM_CAP_FILE_GET_CAPTURE_FILE
message (or the capFileGetCaptureFile macro) to a capture window.

 Saving Captured Data to a New File

If the user wants to save captured data, you should save the contents of the capture file to another file
by using the WM_CAP_FILE_SAVEAS message (or the capFileSaveAs macro). This message does
not change the name or contents of the capture file. Your application must specify a name for the new
file because the capture file retains its original filename.

Typically, a capture file is preallocated for the largest capture segment anticipated and only a portion of
it might be used to capture data. This message copies only the portion of the capture file containing the
capture data.

 Disk Space Preallocation for the Capture File

Preallocating disk space for the capture file builds a file of a specified size on the disk before the start
of a capture operation. Preallocating a capture file reduces the processing required while capture is in
progress and results in fewer dropped frames. You can preallocate a capture file by using the
WM_CAP_FILE_ALLOCATE message (or the capFileAlloc macro).

Typically, your application should preallocate enough disk space to contain the largest capture file
anticipated. Preallocating disk space does not restrict the size of the captured file. The file size is
automatically enlarged if the captured data exceeds the allocated space. Subsequent write operations
to the capture file reuse the portions of disk space allocated for the file, preserving the size and state of
fragmentation of the file.

You can also improve capture performance by defragmenting the capture file. To defragment the file,
use a defragmentation utility such as Disk Defragmenter. If you use a defragmented capture file and
later enlarge it, you should defragment the enlarged file. Enlarging a defragmented capture file can
fragment the expanded portion of the file and reduce performance in the capture operation.

You might also improve performance by using an uncompressed disk for video capture. Compressing
data during capture can limit capture throughput to the disk.

An application can reserve a permanent capture file to eliminate the time required to preallocate and
defragment a file each time it is started. Because a capture file can require considerable disk space,
and preallocating a capture file removes all data from an existing capture file, an application should let
the user decide if the file is permanent or temporary.

 Index Size

Each AVI file uses an index of a specified size to locate video and audio data chunks within the file. An
entry in the index locates one video frame or waveform-audio buffer. Consequently, the value of the
index size indirectly sets the upper limit on the number of frames that can be captured in a file.

You can retrieve the current index size by using the WM_CAP_GET_SEQUENCE_SETUP message
(or the capCaptureGetSetup macro). The current index size is stored in the dwIndexSize member of
the CAPTUREPARAMS structure. You can specify a new index size as the value of dwIndexSize and
then send the updated CAPTUREPARMS structure to the capture window by using the
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default
index size is 34,952 entries (allowing 32K frames and a proportional number of audio buffers).

 Video and Audio Chunk Granularity

The chunk granularity is a logical block size for an AVI file that is used for writing and retrieving audio
and video data chunks. When writing audio and video chunks to disk, AVICap adds filler chunks (RIFF
"JUNK" chunks) as necessary to fill each logical block of data.

You can retrieve the current chunk granularity setting by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The current
chunk granularity is stored in the wChunkGranularity member of the CAPTUREPARMS structure.
You can specify a new chunk granularity as the value of wChunkGranularity and then send the
updated CAPTUREPARMS structure to the capture window by using the
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). You can also
specify zero for this member to set the chunk granularity to the sector size of the disk.

 Video Buffers

The buffers used with video capture reside in the memory heap. The number of buffers used in a
capture operation can vary and depend on the value of the wNumVideoRequested member of the
CAPTUREPARMS structure and available system memory.

You can retrieve the current value of requested video buffers by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The current
requested number of video buffers is stored in the wNumVideoRequested member of the
CAPTUREPARMS structure. You can request the placement and number of buffers by updating this
member, and then sending the updated CAPTUREPARMS structure to the capture window by using
the WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro).

 Audio Buffers

You can control the audio portion of a capture operation in three ways:

· Include or exclude audio from the capture operation.
· Request a specific number of audio buffers.
· Request audio buffers be a specific size.

You can retrieve the settings for audio buffers by using the WM_CAP_GET_SEQUENCE_SETUP
message (or the capCaptureGetSetup macro). The fCaptureAudio member of the
CAPTUREPARMS structure specifies whether audio is included or excluded from the capture
operation. The current requested number of audio buffers is stored in the wNumAudioRequested
member, and the current audio buffer size is stored in the dwAudioBufferSize member. You can
specify whether to include audio capture, and the size and number of audio buffers by updating these
members, and then sending the updated CAPTUREPARMS structure to the capture window by using
the WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro).

By default, audio is included in the capture operation and four audio buffers are allocated. The default
value of fCaptureAudio is TRUE. The default buffer size (the value of dwAudioBufferSize) can
contain 0.5 seconds of audio data or 10K, whichever is greater.

 Capture Variations

In addition to streaming capture based on a constant time interval, AVICap supports the following types
of capture:

· Manual frame capture (programmable control frames that are captured)
· Still-image capture
· Capture without using disk storage
· Streaming capture from an MCI device (real-time and step-frame)

 Manual Frame Capture

If you want to individually specify the frames to capture in a video stream, you can control the
sequence by using the WM_CAP_SINGLE_FRAME_OPEN, WM_CAP_SINGLE_FRAME, and
WM_CAP_SINGLE_FRAME_CLOSE messages (or the capCaptureSingleFrameOpen,
capCaptureSingleFrame, and capCaptureSingleFrameClose macros). Typically, these messages
are used to create animation by appending individual frames to the capture file.
WM_CAP_SINGLE_FRAME_OPEN opens a file for a manually-driven capture operation.
WM_CAP_SINGLE_FRAME captures an individual frame and appends it to the capture file.
WM_CAP_SINGLE_FRAME_CLOSE closes the file used for manual frame capture.

Note This capture method does not support simultaneous audio capture with video capture.

 Still-Image Capture

If you want to capture a single frame as a still image, you can use the
WM_CAP_GRAB_FRAME_NOSTOP or WM_CAP_GRAB_FRAME message (or the
capGrabFrameNoStop or capGrabFrame macro) to capture the digitized image in an internal frame
buffer. You can freeze the display on the captured image by using WM_CAP_GRAB_FRAME.
Otherwise, use WM_CAP_GRAB_FRAME_NOSTOP.

Once captured, you can copy the image for use by other applications. You can copy an image from the
frame buffer to the clipboard by using the WM_CAP_EDIT_COPY message (or the capEditCopy
macro). You can also copy the image from the frame buffer to a device-independent bitmap (DIB) by
using the WM_CAP_FILE_SAVEDIB message (or the capFileSaveDIB macro).

Your application can also use the two single-frame capture messages to edit a sequence frame by
frame, or to create a time-lapse photography sequence.

 Capture Without Using Disk Storage

You can use capture services without writing the data to a disk file by using the
WM_CAP_SEQUENCE_NOFILE message (or the capCaptureSequenceNoFile macro). This
message is useful only in conjunction with callback functions that allow your application to use the
video and audio data directly. For example, videoconferencing applications might use this message to
obtain streaming video frames. The callback functions would transfer the captured images to the
remote computer.

 Streaming Capture from an MCI Device

MCI devices augment the capture operation in real-time capture and step-frame capture. You can
specify the MCI device, such as a videodisc or video-cassette recorder (VCR), acting as the video
source for your capture operation by using the WM_CAP_SET_MCI_DEVICE message (or the
capSetMCIDeviceName macro) and specifying the name of the device. You can also retrieve the
device name currently set by using the WM_CAP_GET_MCI_DEVICE message (or the
capGetMCIDeviceName macro).

In real-time capture, the capture window synchronizes the capture operation and compensates for
delays associated with positioning the MCI video source and initializing the resources (such as capture
buffers) required for capturing data. The capture window expects a valid MCI video device to be
installed in the system for capturing data this way.

Specifications for controlling an MCI device are stored in the members of the CAPTUREPARMS
structure. MCI-compatible video sources include VCRs and laserdiscs. If the fMCIControl member of
this structure is set to TRUE, the capture window coordinates MCI operation. The capture window uses
the parameters specified in the dwMCIStartTime and dwMCIStopTime members to obtain the starting
and stopping positions, in milliseconds, of the sequence. If the value of fMCIControl is FALSE, the
video source is not treated as an MCI device and the contents of dwMCIStartTime and
dwMCIStopTime are ignored.

You can use Media Player to quickly verify that an MCI video device is properly connected to the
system. Playing a device with Media Player verifies that the MCI configuration for the device is correct.
If an image appears on the video display, the video source is connected properly to the capture
hardware.

In step-frame capture, the capture window synchronizes the capture operation and compensates for
the delays associated with positioning the MCI video source and initializing the resources required for
capturing data. In addition, the capture window ensures that no frames are dropped; it steps through
the video frames individually, ensuring that the frame is captured and stored before capturing the next
frame in the video stream.

Specifications for controlling step-frame capture are stored in the members of the CAPTUREPARMS
structure. Step-frame capture uses the following members in addition to the members used for real-
time capture: fStepMCIDevice, fStepCaptureAt2x, and wStepCaptureAverageFrames. If the
fStepMCIDevice member is set to TRUE, the capture window coordinates step-frame capture. The
capture window uses the parameters specified in the dwMCIStartTime and dwMCIStopTime
members for the starting and stopping positions, in milliseconds, of the sequence. The capture window
uses fStepCaptureAt2x to determine if the capture hardware should capture video frames at twice the
normal resolution and uses wStepCaptureAverageFrames to specify the number of times each frame
in the capture operation is sampled.

If fStepMCIDevice is FALSE, real-time capture is used instead of step-frame capture and the contents
of fStepCaptureAt2x, and wStepCaptureAverageFrames are ignored.

If a step-frame capture is specified and fStepCaptureAt2x is set to TRUE, the capture hardware
captures at twice the specified resolution. (The resolutions of both the height and width are doubled.)
The software interpolates the pixels in the higher resolution image to produce the image at the
specified resolution. This form of averaging can improve the edge definition of images in a frame. You
can enable this option if the hardware does not support hardware-based decimation and you are
capturing in the RGB format.

Note If your hardware supports hardware-based decimation, it can capture samples at a higher rate
than specified and use these additional samples to obtain color definitions that are more consistent
with the original image. The additional samples are discarded after they are used, and the hardware
passes samples to the capture driver at the specified rate.

If a step-frame capture is specified, the wStepCaptureAverageFrames member specifies the number
of times a frame is sampled when creating a frame based on the average sample. This averaging
technique reduces the random digitization noise appearing in a frame. A typical value for the number of
averages is 5.

For more information about MCI, see Chapter 3, "MCI Overview."

 Advanced Capture Options

This section describes other options you can include in a capture operation.

 Measuring Video Quality

One way to measure video quality is to limit the number of captured frames that are dropped during the
capture operation. When streaming capture has finished, the quality value is compared with the ratio of
dropped frames to total frames. If the percentage of dropped frames is greater than the value of the
wPercentDropForError member of the CAPTUREPARMS structure, AVICap sends an error message
to the error callback function if it is installed.

You can retrieve the current limit of dropped frames (expressed as a percentage) by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). You can set a
new limit by specifying a percentage as the value of the wPercentDropForError member of the
CAPTUREPARAMS structure, and then sending the updated structure to the capture window by using
the WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default
value of wPercentDropForError is 10 percent.

 User-Initiated Capture

You can retrieve the current value of the user-initiated capture flag by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The value of
the flag is stored in the fMakeUserHitOKToCapture member of the CAPTUREPARAMS structure. You
can provide the user with precise control over when to start a capture session by setting this member
to TRUE. AVICap displays a dialog box after allocating all video and audio buffers for a capture
session. This lets the user eliminate capture delays because of software initialization. If your
applications uses a small number of video buffers, this dialog box is probably unnecessary. The default
value is FALSE.

 Working with Palettes

Initially, if the video capture format requires a palette, the capture window uses the palette supplied by
the capture driver. This palette might consist of gray-scale values for black-and-white reproduction, or a
broad selection of color values. You can retrieve an existing palette to replace the default palette by
using the WM_CAP_PAL_PASTE or WM_CAP_PAL_OPEN message (or the capPalettePaste or
capPaletteOpen macro). Alternatively, you can create a custom palette to replace the default palette
by using the WM_CAP_PAL_AUTOCREATE or WM_CAP_PAL_MANUALCREATE message (or the
capPaletteAuto or capPaletteManual macro). After you replace the default palette, the capture
window and driver use the replacement palette until you create or open another palette.

The WM_CAP_PAL_AUTOCREATE or WM_CAP_PAL_MANUALCREATE message creates an
optimized palette based on the current video input. This custom palette gives a video sequence the
best color fidelity because it is based on colors that exist in the sequence. The capture window creates
a three-dimensional histogram of the colors it samples. It reduces the number of colors by examining
the absolute error between adjacent colors and consolidating those with the smallest error value.

When sending WM_CAP_PAL_AUTOCREATE, you must specify the number of frames for AVICap to
sample and the size of the color palette. When specifying the number of frames, include enough
frames to ensure that all colors in the sequence are sampled.

You can sample the current frame by using WM_CAP_PAL_MANUALCREATE. By using this message
with several manually selected frames, you can create a palette that contains the colors you want to
appear in the palette.

A palette can contain up to 256 colors. If you merge palettes or if the video sequence is to be displayed
simultaneously with other video or images, you should use a smaller color selection so that colors from
each image or video clip can coexist.

You save a new palette by using the WM_CAP_PAL_SAVE message (or the capPaletteSave macro)
and later retrieve it by using the WM_CAP_PAL_OPEN message. You can save a palette for post-
processing of the palette or for use in another application.

You can paste a palette from the clipboard into the capture window by using the
WM_CAP_PAL_PASTE message. The capture window passes the palette to the capture driver. Other
applications can copy palettes to the clipboard. You can also copy a palette to the clipboard by using
the WM_CAP_EDIT_COPY message (or the capEditCopy macro). This message copies the video
frame buffer, including the palette, onto the clipboard.

 Embedding Information Chunks in an AVI File

You can insert information chunks, such as text or custom data, in an AVI file by using the
WM_CAP_FILE_SET_INFOCHUNK message (or the capFileSetInfoChunk macro). You can also use
this message to clear information chunks from an AVI file.

 User Data Messages

You can associate data with a capture window by using the WM_CAP_GET_USER_DATA and
WM_CAP_SET_USER_DATA messages (or the capGetUserData and capSetUserData macros). You
can retrieve a LONG data value by using the WM_CAP_GET_USER_DATA message and set a LONG
data value by using the WM_CAP_SET_USER_DATA message.

 AVICap Callback Functions

Your application can register callback functions with a capture window to have it notify your application
when the status changes, when errors occur, when video frame and audio buffers become available,
and to yield during streaming capture. The following messages set the callback function.

Message Description
WM_CAP_SET_CALLBACK_CAPCONTR
OL

Specifies the callback function in
the application called to give
precise control over capture start
and end. You can also use the
capSetCallbackOnCapControl
macro to send this message.

WM_CAP_SET_CALLBACK_ERROR Specifies the callback function in
the application called when an
error occurs. You can also use the
capSetCallbackOnError macro to
send this message.

WM_CAP_SET_CALLBACK_FRAME Specifies the callback function in
the application called when
preview frames are captured. You
can also use the
capSetCallbackOnFrame macro
to send this message.

WM_CAP_SET_CALLBACK_STATUS Specifies the callback function in
the application called when the
status changes. You can also use
the capSetCallbackOnStatus
macro to send this message.

WM_CAP_SET_CALLBACK_VIDEOSTRE
AM

Specifies the callback function in
the application called during
streaming capture when a new
video buffer becomes available.
You can also use the
capSetCallbackOnVideoStream
macro to send this message.

WM_CAP_SET_CALLBACK_WAVESTRE
AM

Specifies the callback function in
the application called during
streaming capture when a new
audio buffer becomes available.
You can also use the
capSetCallbackOnWaveStream
macro to send this message.

WM_CAP_SET_CALLBACK_YIELD Specifies the callback function in
the application called when
yielding during streaming capture.
You can also use the
capSetCallbackOnYield macro to
send this message.

The following sections describe the different callback functions, the notifications sent to the functions,
and their uses.

 Precise Capture Control

A capture window can provide the capture-control callback function with precise control over the
moments that streaming capture begin and end. The first message sent from the capture driver to the
callback procedure sets the nState parameter to CONTROLCALLBACK_PREROLL after allocating all
buffers and all other capture preparations are complete. This message gives the application the ability
to preroll the video sources. (The callback function specifies nState as its second parameter.) The
callback function then returns at the exact moment recording is to begin. A return value of TRUE from
the callback function continues capture. A return value of FALSE aborts capture. Once capture begins,
the callback function is called frequently with nState set to CONTROLCALLBACK_CAPTURING to
allow the application to end capture by returning false.

 Error

A capture window uses error notification messages to notify your application of AVICap errors, such as
running out of disk space, attempting to write to a read-only file, failing to access hardware, or dropping
too many frames. The content of an error notification includes a message identifier and a formatted text
string ready for display. Your application can use the message identifier to filter the notifications and
limit the messages to present to the user. A message identifier of zero indicates a new operation is
starting and the callback function should clear any displayed error message.

 Frame

A capture window uses frame callback notification messages to notify your application when a new
video frame is available. The capture window enables these callback notifications only if the preview
rate is non-zero and streaming capture is not in progress.

 Status Callback Functions

A capture window can send messages to the status callback function while capturing video to disk or
during other lengthy operations to notify your application of the progress of an operation. The status
information includes a message identifier and a formatted text string ready for display. Your application
can use the message identifier to filter the notifications and limit the messages to present to the user.
During capture operations, the first message sent to the callback function is always IDS_CAP_BEGIN
and the last is always IDS_CAP_END. A message identifier of zero indicates a new operation is
starting and the callback function should clear the current status.

 Videostream

Applications can use videostream callback functions during streaming capture to process a captured
video frame. The capture window calls a videostream callback function just before writing each
captured frame to the disk.

 Wavestream

Applications use the wavestream callback functions during streaming capture to process audio buffers.
The capture window calls a wavestream callback function just before writing each audio buffer to the
disk.

 Yield Callback Functions

Applications can use yield callback functions during streaming capture. (A yield callback function
typically consists of a PeekMessage, TranslateMessage, DispatchMessage loop.) The capture
window calls the yield callback function at least once for every captured video frame, but the exact rate
depends on the frame rate and the overhead of the capture driver and disk.

 Disabling Callback Functions

You can permanently or temporarily disable any of the callback functions by specifying NULL in place
of the callback function when sending the appropriate message to set a callback function.

 Using Video Capture

This section contains examples demonstrating how to perform the following tasks:

· Create a capture window.
· Connect to a capture driver.
· Enumerate installed capture drivers.
· Obtain the capabilities of a capture driver.
· Obtain the status of a capture window.
· Display dialog boxes to set video characteristics.
· Obtain and setting the video format.
· Preview video.
· Enable video overlay.
· Name the capture file.
· Preallocate disk space for the capture file.
· Format audio capture.
· Change a video capture setting.
· Capture data.
· Adding an information chunk.
· Add callback functions to an application.
· Create a status callback function.
· Create an error callback function.
· Create a frame callback function.

 Creating a Capture Window

The following example creates a capture window by using the capCreateCaptureWindow function.

hWndC = capCreateCaptureWindow (
(LPSTR) "My Capture Window", // window name if pop-up
WS_CHILD | WS_VISIBLE, // window style
0, 0, 160, 120, // window position and dimensions
(HWND) hwndParent,
(int) nID /* child ID */);

 Connecting to a Capture Driver

The following example connects the capture window with the handle hWndC to the MSVIDEO driver
and then disconnects them:

fOK = SendMessage (hWndC, WM_CAP_DRIVER_CONNECT, 0, 0L);
//
// Or, use the macro to connect to the MSVIDEO driver:
// fOK = capDriverConnect(hWndC, 0);
// .
// . Place code to set up and capture video here.
// .
capDriverDisconnect (hWndC);

 Enumerating Installed Capture Drivers

The following example uses the capGetDriverDescription function to obtain the names and versions
of the installed capture drivers.

char szDeviceName[80];
char szDeviceVersion[80];

for (wIndex = 0; wIndex < 10; wIndex++) {
 if (capGetDriverDescription (wIndex, szDeviceName,
 sizeof (szDeviceName), szDeviceVersion,
 sizeof (szDeviceVersion))
 {
 \\ Append name to list of installed capture drivers
 \\ and then let the user select a driver to use.
 }
}

 Obtaining the Capabilities of a Capture Driver

The WM_CAP_DRIVER_GET_CAPS message returns the capabilities of the capture driver and
underlying hardware in the CAPDRIVERCAPS structure. Each time an application connects a new
capture driver to the capture window, it should update the CAPDRIVERCAPS structure. The following
example obtains the capture driver capabilities.

CAPDRIVERCAPS CapDrvCaps;
// .
// .
// .
SendMessage (hWndC, WM_CAP_DRIVER_GET_CAPS,

sizeof (CAPDRIVERCAPS), (LONG) (LPVOID) &CapDrvCaps);
//
// Or, use the macro to retrieve the driver capabilities.
// capDriverGetCaps(hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS));

 Obtaining the Status of a Capture Window

The following example sets the size of the capture window to the overall dimensions of the incoming
video stream based on information returned in the CAPSTATUS structure.

CAPSTATUS CapStatus;
// .
// .
// .
capGetStatus(hWndC, &CapStatus, sizeof (CAPSTATUS));
SetWindowPos(hWndC, NULL, 0, 0, CapStatus.uiImageWidth,
 CapStatus.uiImageHeight, SWP_NOZORDER | SWP_NOMOVE);

 Displaying Dialog Boxes to Set Video Characteristics

Each capture driver can provide up to three different dialog boxes used to control aspects of the video
digitization and capture process. The following example demonstrates how to display these dialog
boxes. Before displaying each dialog box, the example checks the CAPDRIVERCAPS structure to see
if the capture driver can display it.

CAPDRIVERCAPS CapDrvCaps;
// .
// .
// .
capDriverGetCaps(hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS));

// Video source dialog box.
if (CapDriverCaps.fHasDlgVideoSource)
 capDlgVideoSource(hWndC);

// Video format dialog box.
if (CapDriverCaps.fHasDlgVideoFormat) {
 capDlgVideoFormat(hWndC);

 // New image dimensions?
 capGetStatus(hWndC, &CapStatus, sizeof (CAPSTATUS));

 // If so, notify the parent of a size change.
}

// Video display dialog box.
if (CapDriverCaps.fHasDlgVideoDisplay)
 capDlgVideoDisplay(hWndC);

 Obtaining and Setting the Video Format

The BITMAPINFO structure is of variable length to accommodate standard and compressed data
formats. Because this structure is of variable length, applications must always query the size of the
structure and allocate memory before retrieving the current video format. The following example uses
the capGetVideoFormatSize macro to retrieve the buffer size and then calls the capGetVideoFormat
macro to retrieve the current video format.

LPBITMAPINFO lpbi;
DWORD dwSize;

dwSize = capGetVideoFormatSize(hWndC);
lpbi = GlobalAllocPtr (GHND, dwSize);
capGetVideoFormat(hWndC, lpbi, dwSize);

// Access the video format and then free the allocated memory.

Applications can use the capSetVideoFormat macro (or the WM_CAP_SET_VIDEOFORMAT
message) to send a BITMAPINFO header structure to the capture window. Because video formats are
device specific, your application should check the return value to determine if the format was accepted.

 Previewing Video

The following example sets the frame display rate for preview mode to 66 milliseconds per frame and
then places the capture window in preview mode.

capPreviewRate(hWndC, 66); // rate, in milliseconds
capPreview(hWndC, TRUE); // starts preview
// .
// .
// .
capPreview(hWnd, FALSE); // disables preview

 Enabling Video Overlay

The following example determines if a capture driver has overlay capabilities; if it does, it enables the
overlay.

CAPDRIVERCAPS CapDrvCaps;
// .
// .
// .
capDriverGetCaps(hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS));
if (CapDrvCaps.fHasOverlay)
 capOverlay(hWndC, TRUE);

 Naming the Capture File

The following example specifies an alternate filename (MYCAP.AVI) for the capture file and
preallocates the file to 5 MB.

char szCaptureFile[] = "MYCAP.AVI";

capFileSetCaptureFile(hWndC , szCaptureFile);
capFileAlloc(hWndC, (1024L * 1024L * 5));

 Formatting Audio Capture

The following example sets the audio format to 11-kHz PCM 8-bit, stereo.

WAVEFORMATEX wfex;
// .
// .
// .
wfex.wFormatTag = WAVE_FORMAT_PCM;
wfex.nChannels = 2; // Use stereo
wfex.nSamplesPerSec = 11025;
wfex.nAvgBytesPerSec = 22050;
wfex.nBlockAlign = 2;
wfex.wBitsPerSample = 8;
wfex.cbSize = 0;

capSetAudioFormat(hWndC, &wfex, sizeof(WAVEFORMATEX));

 Changing a Video Capture Setting

The following example changes the capture rate from the default value (15 frames per second) to 10
frames per second.

CAPTUREPARMS CaptureParms;
float FramesPerSec = 10.0;
// .
// .
// .
capCaptureGetSetup(hWndC, &CaptureParms, sizeof(CAPTUREPARMS));

CaptureParms.dwRequestMicroSecPerFrame = (DWORD) (1.0e6 / FramesPerSec);
capCaptureSetSetup(hWndC, &CaptureParms, sizeof (CAPTUREPARMS));

 Capturing Data

The following example starts video capture and copies the captured data from the capture file to the file
NEWFILE.AVI.

char szNewName[] = "NEWFILE.AVI";
// .
// . Set up the capture operation.
// .
capCaptureSequence(hWndC);
// .
// .
// .
capFileSaveAs(hWndC, szNewName);

 Adding an Information Chunk

If your application needs to include other information in addition to audio and video, you can create
information chunks and insert them into a capture file. Information chunks can contain several types of
information, including the details of a copyright notice, identification of the video source, or external
timing information. The following example stores external timing information ¾ a SMPTE (Society of
Motion Picture and Television Engineers) timecode ¾ in an information chunk and adds the chunk to a
capture file.

// This example assumes the application controls
// the video source for preroll and postroll.
CAPINFOCHUNK cic;
// .
// .
// .
cic.fccInfoID = infotypeSMPTE_TIME;
cic.lpData = "00:20:30:12";
cic.cbData = strlen (cic.lpData) + 1;
capFileSetInfo (hwndC, &cic);

 Adding Callback Functions to an Application

An application can register callback functions with the capture window to have it notify the application
when the status changes, when errors occur, when video frame and audio buffers become available,
and to yield during streaming capture.

The following example creates a capture window and registers status, error, video stream, and frame
callback functions in the message processing loop of an application. It also includes a sample
statement for disabling a callback function. Subsequent examples describe the status, error, and frame
callback functions.

case WM_CREATE:
{
 char achDeviceName[80] ;
 char achDeviceVersion[100] ;
 char achBuffer[100] ;
 WORD wDriverCount = 0 ;
 WORD wIndex ;
 WORD wError ;
 HMENU hMenu ;

 // Create the capture window.
 ghWndCap = capCreateCaptureWindow((LPSTR)"Capture Window",
 WS_CHILD | WS_VISIBLE, 0, 0, 160, 120, (HWND) hWnd, (int) 0);

 // Register the error callback function before connecting capture
 // driver.
 fpErrorCallback = MakeProcInstance((FARPROC)ErrorCallbackProc,
 ghInst);
 capSetCallbackOnError(ghWndCap, fpErrorCallback);

 // Register the status callback function.
 fpStatusCallback = MakeProcInstance((FARPROC)StatusCallbackProc,
 ghInst);
 capSetCallbackOnStatus(ghWndCap, fpStatusCallback);

 // Register the video-stream callback function.
 fpVideoCallback = MakeProcInstance((FARPROC)VideoCallbackProc,
 ghInst);
 capSetCallbackOnVideoStream(ghWndCap, fpVideoCallback);

 // Register the frame callback function.
 fpFrameCallback = MakeProcInstance((FARPROC)FrameCallbackProc,
 ghInst);
 capSetCallbackOnFrame(ghWndCap, fpFrameCallback);

// .
// . Connect to a capture driver
// .
break;

}
case WM_CLOSE:
{

// Use the following macro to disable the frame callback.

// Similar macros exist for disabling other callback functions.
//
// FreeProcInstance(fpFrameCallback);
// capSetCallbackOnFrame(hWndC, NULL);
break;
}

 Creating a Status Callback Function

The following example is a simple status callback function.

// StatusCallbackProc: Status Callback Function
// hWnd: capture window handle
// nID: status code for the current status
// lpStatusText: status text string for the current status
//
LRESULT FAR PASCAL StatusCallbackProc(HWND hWnd, int nID,
 LPSTR lpStatusText)
{
 if (!ghWndMain)
 return FALSE;

 if (nID == 0) { // Zero means clear old status messages
 SetWindowText(ghWndMain, (LPSTR) gachAppName);
 return (LRESULT) TRUE;
 }
 // Show the status ID and status text...
 wsprintf(gachBuffer, "Status# %d: %s", nID, lpStatusText);

 SetWindowText(ghWndMain, (LPSTR)gachBuffer);
 return (LRESULT) TRUE;
}

 Creating an Error Callback Function

The following example is a simple error callback function.

// ErrorCallbackProc: Error Callback Function
// hWnd: capture window handle
// nErrID: error code for the encountered error
// lpErrorText: error text string for the encountered error
//
LRESULT FAR PASCAL ErrorCallbackProc(HWND hWnd, int nErrID,
 LPSTR lpErrorText)
{

 if (!ghWndMain)
 return FALSE;

 if (nErrID == 0) // starting a new major function
 return TRUE; // clear out old errors

 // Show the error identifier and text
 wsprintf(gachBuffer, "Error# %d", nErrID);

 MessageBox(hWnd, lpErrorText, gachBuffer,
 MB_OK | MB_ICONEXCLAMATION);

 return (LRESULT) TRUE;
}

 Creating a Frame Callback Function

The following example is a simple frame callback function.

// FrameCallbackProc: Frame Callback Function
// Called whenever a new frame is captured but not streaming
// hWnd: capture window handle
// lpVHdr: long pointer to VideoHdr struct containing captured
// frame information
//
LRESULT FAR PASCAL FrameCallbackProc(HWND hWnd, LPVIDEOHDR lpVHdr)
{
 if (!ghWndMain)
 return FALSE;

 wsprintf(gachBuffer, "Preview frame# %ld ", gdwFrameNum++);
 SetWindowText(ghWndMain, (LPSTR)gachBuffer);
 return (LRESULT) TRUE ;
}

 Video Capture Reference

This section describes the functions, messages and macros, and structures associated with the
AVICap window class. These elements are grouped as follows.

Basic Capture Operations

capCreateCaptureWindow
WM_CAP_ABORT
WM_CAP_DRIVER_CONNECT
WM_CAP_SEQUENCE
WM_CAP_STOP
Capture Windows

CAPSTATUS
capGetDriverDescription
WM_CAP_DRIVER_CONNECT
WM_CAP_DRIVER_DISCONNECT
WM_CAP_GET_STATUS
Capture Drivers

CAPDRIVERCAPS
WM_CAP_DRIVER_GET_CAPS
WM_CAP_DRIVER_GET_NAME
WM_CAP_DRIVER_GET_VERSION
WM_CAP_GET_AUDIOFORMAT
WM_CAP_GET_VIDEOFORMAT
WM_CAP_SET_AUDIOFORMAT
WM_CAP_SET_VIDEOFORMAT
Capture Driver Preview and Overlay Modes

WM_CAP_SET_OVERLAY
WM_CAP_SET_PREVIEW
WM_CAP_SET_PREVIEWRATE
WM_CAP_SET_SCALE
WM_CAP_SET_SCROLL
Capture Driver Video Dialog Boxes

WM_CAP_DLG_VIDEOCOMPRESSION
WM_CAP_DLG_VIDEODISPLAY
WM_CAP_DLG_VIDEOFORMAT
WM_CAP_DLG_VIDEOSOURCE
Audio Format

WM_CAP_GET_AUDIOFORMAT
WM_CAP_SET_AUDIOFORMAT
Video Capture Settings

CAPTUREPARMS
WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_SET_SEQUENCE_SETUP
Capture File and Buffers

CAPTUREPARMS
WM_CAP_FILE_ALLOCATE
WM_CAP_FILE_GET_CAPTURE_FILE
WM_CAP_FILE_SAVEAS

WM_CAP_FILE_SET_CAPTURE_FILE
Directly Using Capture Data

WM_CAP_SEQUENCE_NOFILE
Capture from MCI Device

WM_CAP_SET_MCI_DEVICE
Manual Frame Capture

WM_CAP_SINGLE_FRAME
WM_CAP_SINGLE_FRAME_CLOSE
WM_CAP_SINGLE_FRAME_OPEN
Still-Image Capture

WM_CAP_EDIT_COPY
WM_CAP_FILE_SAVEDIB
WM_CAP_GRAB_FRAME
WM_CAP_GRAB_FRAME_NOSTOP
Advanced Capture Options

WM_CAP_FILE_SET_INFOCHUNK
WM_CAP_GET_USER_DATA
WM_CAP_SET_USER_DATA
Working with Palettes

WM_CAP_EDIT_COPY
WM_CAP_PAL_AUTOCREATE
WM_CAP_PAL_MANUALCREATE
WM_CAP_PAL_OPEN
WM_CAP_PAL_PASTE
WM_CAP_PAL_SAVE
Yielding to Other Applications

WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_SEQUENCE_SETUP
AVICap Callback Functions

capControlCallback
capErrorCallback
capStatusCallback
capVideoStreamCallback
capWaveStreamCallback
capYieldCallback
WM_CAP_SET_CALLBACK_CAPCONTROL
WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_FRAME
WM_CAP_SET_CALLBACK_STATUS
WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM
WM_CAP_SET_CALLBACK_YIELD

 Video Capture Functions

An application uses the AVICap functions to create a capture window and to retrieve information about
the capture driver. A capture window uses standard window styles.

 capCreateCaptureWindow

HWND VFWAPI capCreateCaptureWindow(LPCSTR lpszWindowName,
 DWORD dwStyle, int x, int y, int nWidth, int nHeight,
 HWND hWnd, int nID);

Creates a capture window.

· Returns a handle of the capture window if successful or NULL otherwise.
lpszWindowName

Null-terminated string containing the name used for the capture window.
dwStyle

Window styles used for the capture window. Window styles are described with the
CreateWindowEx function.

x and y
The x- and y-coordinates of the upper left corner of the capture window.

nWidth and nHeight
Width and height of the capture window.

hWnd
Handle of the parent window.

nID
Window identifier.

 capControlCallback

LRESULT CALLBACK capControlCallback(HWND hWnd, int nState);

Callback function used for precision control to begin and end streaming capture. The
capControlCallback callback function is a placeholder for the application-supplied function name.

· When nState is set to CONTROLCALLBACK_PREROLL, this callback function must return TRUE to
start capture or FALSE to abort it. When nState is set to CONTROLCALLBACK_CAPTURING, this
callback function must return TRUE to continue capture or FALSE to end it.

hWnd
Handle of the capture window associated with the callback function.

nState
Current state of the capture operation. The CONTROLCALLBACK_PREROLL value is sent initially
to enable prerolling of the video sources and to return control to the capture application at the exact
moment recording is to begin. The CONTROLCALLBACK_CAPTURING value is sent once per
captured frame to indicate that streaming capture is in progress and to enable the application to end
capture.

The first message sent to the callback procedure sets the nState parameter to
CONTROLCALLBACK_PREROLL after allocating all buffers and all other capture preparations are
complete.

 capGetDriverDescription

BOOL VFWAPI capGetDriverDescription(WORD wDriverIndex,
 LPSTR lpszName, INT cbName, LPSTR lpszVer, INT cbVer);

Retrieves the version description of the capture driver.

· Returns TRUE if successful or FALSE otherwise.
wDriverIndex

Index of the capture driver. The index can range from 0 through 9.
Plug-and-Play capture drivers are enumerated first, followed by capture drivers listed in the registry,
which are then followed by capture drivers listed in SYSTEM.INI.

lpszName
Address of a buffer containing a null-terminated string corresponding to the capture driver name.

cbName
Length, in bytes, of the buffer pointed to by lpszName.

lpszVer
Address of a buffer containing a null-terminated string corresponding to the description of the
capture driver.

cbVer
Length, in bytes, of the buffer pointed to by lpszVer.

If the information description is longer than its buffer, the description is truncated. The returned string is
always null-terminated. If a buffer size is zero, its corresponding description is not copied.

 capErrorCallback

LRESULT CALLBACK capErrorCallback(HWND hWnd, int nID, LPCSTR lpsz);

Error callback function used with video capture. The capErrorCallback error callback function is a
placeholder for the application-supplied function name.

hWnd
Handle of the capture window associated with the callback function.

nID
Error identification number.

lpsz
Address of a textual description of the returned error.

A message identifier of zero indicates a new operation is starting and the callback function should clear
the current error.

 capStatusCallback

LRESULT CALLBACK capStatusCallback(HWND hWnd, int nID, LPCSTR lpsz);

Status callback function used with video capture. The capStatusCallback status callback function is a
placeholder for the application-supplied function name.

hWnd
Handle of the capture window associated with the callback function.

nID
Message identification number.

lpsz
Address of a textual description of the returned status.

During capture operations, the first message sent to the callback function is always IDS_CAP_BEGIN
and the last is always IDS_CAP_END. A message identifier of zero indicates a new operation is
starting and the callback function should clear the current status.

 capVideoStreamCallback

LRESULT CALLBACK capVideoStreamCallback(HWND hWnd, LPVIDEOHDR lpVHdr);

Callback function used with streaming capture to optionally process a frame of captured video. The
capVideoStreamCallback callback function is a placeholder for the application-supplied function
name.

hWnd
Handle of the capture window associated with the callback function.

lpVHdr
Address of a VIDEOHDR structure containing information about the captured frame.

The capture window calls a videostream callback function when a video buffer is marked done by the
capture driver. When capturing to disk, this will preceed the disk write operation.

 capWaveStreamCallback

LRESULT CALLBACK capWaveStreamCallback(HWND hWnd, LPWAVEHDR lpWHdr);

Callback function used with streaming capture to optionally process buffers of audio data. The
capWaveStreamCallback callback function is a placeholder for the application-supplied function
name.

hWnd
Handle of the capture window associated with the callback function.

lpWHdr
Address of a WAVEHDR structure containing information about the captured audio data.

The capture window calls a wavestream callback function when an audio buffer is marked done by the
waveform-audio driver. When capturing to disk, this will preceed the disk write operation.

 capYieldCallback

LRESULT CALLBACK capYieldCallback(HWND hWnd);

Yield callback function used with video capture. The capYieldCallback yield callback function is a
placeholder for the application-supplied function name.

hWnd
Handle of the capture window associated with the callback function.

The capture window calls the yield callback function at least once for every captured video frame, but
the exact rate depends on the frame rate and the overhead of the capture driver and disk.

 Video Capture Messages and Macros

Applications communicate with capture windows through messages. AVICap macros provide a
shorthand method of sending these messages, and they isolate your application from the
SendMessage function. AVICap macros are identified with the prefix cap. Definitions of the AVICap
macros are included with the message definitions.

 WM_CAP_ABORT

WM_CAP_ABORT
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capCaptureAbort(hwnd);

Stops the capture operation. In the case of step capture, the image data collected up to the point of the
WM_CAP_ABORT message will be retained in the capture file, but audio will not be captured.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

The capture operation must yield to use this message.

Use the WM_CAP_STOP message to halt step capture at the current position, and then capture audio.

 WM_CAP_DLG_VIDEOCOMPRESSION

WM_CAP_DLG_VIDEOCOMPRESSION
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capDlgVideoCompression(hwnd);

Displays a dialog box in which the user can select a compressor to use during the capture process.
The list of available compressors can vary with the video format selected in the capture driver's Video
Format dialog box.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

Use this message with capture drivers that provide frames only in the BI_RGB format. This message is
most useful in the step capture operation to combine capture and compression in a single operation.
Compressing frames with a software compressor as part of a real-time capture operation is most likely
too time-consuming to perform.

Compression does not affect the frames copied to the clipboard.

 WM_CAP_DLG_VIDEODISPLAY

WM_CAP_DLG_VIDEODISPLAY
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capDlgVideoDisplay(hwnd);

Displays a dialog box in which the user can set or adjust the video output. This dialog box might
contain controls that affect the hue, contrast, and brightness of the displayed image, as well as key
color alignment.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

The controls in this dialog box do not affect digitized video data; they affect only the output or redisplay
of the video signal.

The Video Display dialog box is unique for each capture driver. Some capture drivers might not support
a Video Display dialog box. Applications can determine if the capture driver supports this message by
checking the fHasDlgVideoDisplay member of CAPDRIVERCAPS.

 WM_CAP_DLG_VIDEOFORMAT

WM_CAP_DLG_VIDEOFORMAT
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capDlgVideoFormat(hwnd)

Displays a dialog box in which the user can select the video format. The Video Format dialog box might
be used to select image dimensions, bit depth, and hardware compression options.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

After this message returns, applications might need to update the CAPSTATUS structure because the
user might have changed the image dimensions.

The Video Format dialog box is unique for each capture driver. Some capture drivers might not support
a Video Format dialog box. Applications can determine if the capture driver supports this message by
checking the fHasDlgVideoFormat member of CAPDRIVERCAPS.

 WM_CAP_DLG_VIDEOSOURCE

WM_CAP_DLG_VIDEOSOURCE
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capDlgVideoSource(hwnd);

Displays a dialog box in which the user can control the video source. The Video Source dialog box
might contain controls that select input sources; alter the hue, contrast, brightness of the image; and
modify the video quality before digitizing the images into the frame buffer.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

The Video Source dialog box is unique for each capture driver. Some capture drivers might not support
a Video Source dialog box. Applications can determine if the capture driver supports this message by
checking the fHasDlgVideoSource member of the CAPDRIVERCAPS structure.

 WM_CAP_DRIVER_CONNECT

WM_CAP_DRIVER_CONNECT
wParam = (WPARAM) (iIndex);
lParam = 0L;

// Corresponding macro
capDriverConnect(hwnd, iIndex);

Connects a capture window to a capture driver.

· Returns TRUE if successful or FALSE if the specified capture driver cannot be connected to the
capture window.

iIndex
Index of the capture driver. The index can range from 0 through 9.

hwnd
Handle of a capture window.

Connecting a capture driver to a capture window automatically disconnects any previously connected
capture driver.

 WM_CAP_DRIVER_DISCONNECT

WM_CAP_DRIVER_DISCONNECT
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capDriverDisconnect(hwnd);

Disconnects a capture driver from a capture window.

· Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.

 WM_CAP_DRIVER_GET_CAPS

WM_CAP_DRIVER_GET_CAPS
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPCAPDRIVERCAPS) (psCaps);

// Corresponding macro
capDriverGetCaps(hwnd, psCaps, wSize);

Returns the hardware capabilities of the capture driver currently connected to a capture window.

· Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.
hwnd

Handle of a capture window.
wSize

Size, in bytes, of the structure referenced by s.
psCaps

Address of the CAPDRIVERCAPS structure to contain the hardware capabilities.

The capabilities returned in CAPDRIVERCAPS are constant for a given capture driver. Applications
need to retrieve this information once when the capture driver is first connected to a capture window.

 WM_CAP_DRIVER_GET_NAME

WM_CAP_DRIVER_GET_NAME
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capDriverGetName(hwnd, szName, wSize);

Returns the name of the capture driver connected to the capture window.

· Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.
hwnd

Handle of a capture window.
wSize

Size, in bytes, of the buffer referenced by szName.
szName

Address of an application-defined buffer used to return the device name as a null-terminated string.

The name is a text string retrieved from the driver's resource area. Applications should allocate
approximately 80 bytes for this string. If the driver does not contain a name resource, the full path
name of the driver listed in the registry or in the SYSTEM.INI file is returned.

 WM_CAP_DRIVER_GET_VERSION

WM_CAP_DRIVER_GET_VERSION
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPSTR) (szVer);

// Corresponding macro
capDriverGetVersion(hwnd, szVer, wSize);

Returns the version information of the capture driver connected to a capture window.

· Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.
wSize

Size, in bytes, of the application-defined buffer referenced by szVer.
szVer

Address of an application-defined buffer used to return the version information as a null-terminated
string.

The version information is a text string retrieved from the driver's resource area. Applications should
allocate approximately 40 bytes for this string. If version information is not available, a NULL string is
returned.

 WM_CAP_EDIT_COPY

WM_CAP_EDIT_COPY
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capEditCopy(hwnd);

Copies the contents of the video frame buffer and associated palette to the clipboard.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

 WM_CAP_FILE_ALLOCATE

WM_CAP_FILE_ALLOCATE
wParam = (WPARAM) 0;
lParam = (LPARAM) (DWORD) (dwSize);

// Corresponding macro
capFileAlloc(hwnd, dwSize);

Creates (preallocates) a capture file of a specified size.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

dwSize
Size, in bytes, to create the capture file.

You can improve streaming capture performance significantly by preallocating a capture file large
enough to store an entire video clip and by defragmenting the capture file before capturing the clip.

 WM_CAP_FILE_GET_CAPTURE_FILE

WM_CAP_FILE_GET_CAPTURE_FILE
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capFileGetCaptureFile(hwnd, szName, wSize);

Returns the name of the current capture file.

· Returns TRUE if successful or FALSE otherwise.
wSize

Size, in bytes, of the application-defined buffer referenced by szName.
szName

Address of an application-defined buffer used to return the name of the capture file as a null-
terminated string.

The default capture filename is C:\CAPTURE.AVI.

 WM_CAP_FILE_SAVEAS

WM_CAP_FILE_SAVEAS
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capFileSaveAs(hwnd, szName);

Copies the contents of the capture file to another file.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

szName
Address of the null-terminated string that contains the name of the destination file used to copy the
file.

This message does not change the name or contents of the current capture file.

If the copy operation is unsuccessful due to a disk full error, the destination file is automatically deleted.

Typically, a capture file is preallocated for the largest capture segment anticipated and only a portion of
it might be used to capture data. This message copies only the portion of the file containing the capture
data.

 WM_CAP_FILE_SAVEDIB

WM_CAP_FILE_SAVEDIB
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capFileSaveDIB(hwnd, szName);

Copies the current frame to a DIB file.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

szName
Address of the null-terminated string that contains the name of the destination DIB file.

If the capture driver supplies frames in a compressed format, this call attempts to decompress the
frame before writing the file.

 WM_CAP_FILE_SET_CAPTURE_FILE

WM_CAP_FILE_SET_CAPTURE_FILE
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capFileSetCaptureFile(hwnd, szName);

Names the file used for video capture.

· Returns TRUE if successful or FALSE if the filename is invalid, or if streaming or single-frame
capture is in progress.

hwnd
Handle of a capture window.

szName
Address of the null-terminated string that contains the name of the capture file to use.

This message stores the filename in an internal structure. It does not create, allocate, or open the
specified file. The default capture filename is C:\CAPTURE.AVI.

 WM_CAP_FILE_SET_INFOCHUNK

WM_CAP_FILE_SET_INFOCHUNK
wParam = (WPARAM)0;
lParam = (LPARAM) (LPCAPINFOCHUNK) (lpInfoChunk);

// Corresponding macro
capFileSetInfoChunk(hwnd, lpInfoChunk);

Sets and clears information chunks. Information chunks can be inserted in an AVI file during capture to
embed text strings or custom data.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

lpInfoChunk
Address of a CAPINFOCHUNK structure defining the information chunk to be created or deleted.

Multiple registered information chunks can be added to an AVI file. After an information chunk is set, it
continues to be added to subsequent capture files until either the entry is cleared or all information
chunk entries are cleared. To clear a single entry, specify the information chunk in the fccInfoID
member and NULL in the lpData member of the CAPINFOCHUNK structure. To clear all entries,
specify NULL in fccInfoID.

 WM_CAP_GET_AUDIOFORMAT

WM_CAP_GET_AUDIOFORMAT
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPWAVEFORMATEX) (psAudioFormat);

// Corresponding macros
capGetAudioFormat(hwnd, psAudioFormat, wSize);
capGetAudioFormatSize(hwnd);

Obtains the audio format or the size of the audio format.

· Returns the size, in bytes, of the audio format.
hwnd

Handle of a capture window.
wSize

Size, in bytes, of the structure referenced by s.
psAudioFormat

Address of a WAVEFORMATEX structure, or NULL. If the value is NULL, the size, in bytes, required
to hold the WAVEFORMATEX structure is returned.

Because compressed audio formats vary in size requirements applications must first retrieve the size,
then allocate memory, and finally request the audio format data.

 WM_CAP_GET_MCI_DEVICE

WM_CAP_GET_MCI_DEVICE
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capGetMCIDeviceName(hwnd, szName, wSize);

Retrieves the name of an MCI device previously set with the WM_CAP_SET_MCI_DEVICE message.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
wSize

Length, in bytes, of the buffer referenced by szName .
szName

Address of a null-terminated string that contains the MCI device name.

 WM_CAP_GET_SEQUENCE_SETUP

WM_CAP_GET_SEQUENCE_SETUP
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPCAPTUREPARMS) (s);

// Corresponding macro
capCaptureGetSetup(hwnd, s, wSize);

Retrieves the current settings of the streaming capture parameters.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
wSize

Size, in bytes, of the structure referenced by s.
s

Address of a CAPTUREPARMS structure.

For information about the parameters used to control streaming capture, see the CAPTUREPARMS
structure.

 WM_CAP_GET_STATUS

WM_CAP_GET_STATUS
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPCAPSTATUS) (s);

// Corresponding macro
capGetStatus(hwnd, s, wSize);

Retrieves the status of the capture window.

· Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.
hwnd

Handle of a capture window.
wSize

Size, in bytes, of the structure referenced by s.
s

Address of a CAPSTATUS structure.

The CAPSTATUS structure contains the current state of the capture window. Since this state is
dynamic and changes in response to various messages, the application should initialize this structure
after sending the WM_CAP_DLG_VIDEOFORMAT message (or using the capDlgVideoFormat
macro) and whenever it needs to enable menu items or determine the actual state of the window.

 WM_CAP_GET_USER_DATA

WM_CAP_GET_USER_DATA
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capGetUserData(hwnd);

Retrieves a LONG data value associated with a capture window.

· Returns a value previously saved by using the WM_CAP_SET_USER_DATA message.
hwnd

Handle of a capture window.

 WM_CAP_GET_VIDEOFORMAT

WM_CAP_GET_VIDEOFORMAT
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (psVideoFormat);

// Corresponding macros
capGetVideoFormat(hwnd, psVideoFormat, wSize);
capGetVideoFormatSize(hwnd);

Retrieves a copy of the video format in use or the size required for the video format.

· Returns the size, in bytes, of the video format or zero if the capture window is not connected to a
capture driver. For video formats that require a palette, the current palette is also returned.

hwnd
Handle of a capture window.

wSize
Size, in bytes, of the structure referenced by s.

psVideoFormat
Address of a BITMAPINFO structure. You can also specify NULL to retrieve the number of bytes
needed by BITMAPINFO.

Because compressed video formats vary in size requirements applications must first retrieve the size,
then allocate memory, and finally request the video format data.

 WM_CAP_GRAB_FRAME

WM_CAP_GRAB_FRAME
wParam = (WPARAM)0;
lParam = (LPARAM)0L;

// Corresponding macro
capGrabFrame(hwnd);

Retrieves and displays a single frame from the capture driver. After capture, overlay and preview are
disabled.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and
WM_CAP_SET_CALLBACK_FRAME messages.

 WM_CAP_GRAB_FRAME_NOSTOP

WM_CAP_GRAB_FRAME_NOSTOP
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capGrabFrameNoStop(hwnd);

Fills the frame buffer with a single uncompressed frame from the capture device and displays it. Unlike
with the WM_CAP_GRAB_FRAME message, the state of overlay or preview is not altered by this
message.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and
WM_CAP_SET_CALLBACK_FRAME messages.

 WM_CAP_PAL_AUTOCREATE

WM_CAP_PAL_AUTOCREATE
wParam = (WPARAM) (iFrames);
lParam = (LPARAM) (DWORD) (iColors);

// Corresponding macro
capPaletteAuto(hwnd, iFrames, iColors);

Requests that the capture driver sample video frames and automatically create a new palette.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

iFrames
Number of frames to sample.

iColors
Number of colors in the palette. The maximum value for this parameter is 256.

The sampled video sequence should include all the colors you want in the palette. To obtain the best
palette, you might have to sample the whole sequence rather than a portion of it.

 WM_CAP_PAL_MANUALCREATE

WM_CAP_PAL_MANUALCREATE
wParam = (WPARAM) (fGrab);
lParam = (LPARAM) (DWORD) (iColors);

// Corresponding macro
capPaletteManual(hwnd, fGrab, iColors);

Requests that the capture driver manually sample video frames and create a new palette.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

fGrab
Palette histogram flag. Set this parameter to TRUE for each frame included in creating the optimal
palette. After the last frame has been collected, set this parameter to FALSE to calculate the optimal
palette and send it to the capture driver.

iColors
Number of colors in the palette. The maximum value for this parameter is 256. This value is used
only during collection of the first frame in a sequence.

 WM_CAP_PAL_OPEN

WM_CAP_PAL_OPEN
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capPaletteOpen(hwnd, szName);

Loads a new palette from a palette file and passes it to a capture driver. Palette files typically use the
filename extension .PAL. A capture driver uses a palette when required by the specified digitized image
format.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

szName
Address of a null-terminated string containing the palette filename.

 WM_CAP_PAL_PASTE

WM_CAP_PAL_PASTE
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capPalettePaste(hwnd);

Copies the palette from the clipboard and passes it to a capture driver.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

A capture driver uses a palette when required by the specified digitized video format.

 WM_CAP_PAL_SAVE

WM_CAP_PAL_SAVE
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capPaletteSave(hwnd, szName);

Saves the current palette to a palette file. Palette files typically use the filename extension .PAL.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

szName
Address of a null-terminated string containing the palette filename.

 WM_CAP_SEQUENCE

WM_CAP_SEQUENCE
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capCaptureSequence(hwnd);

Initiates streaming video and audio capture to a file.

· Returns TRUE if successful or FALSE otherwise. Also, if an error occurs and an error callback
function is set using the WM_CAP_SET_CALLBACK_ERROR message, the error callback function
is called.

hwnd
Handle of a capture window.

If you want to alter the parameters controlling streaming capture, use the
WM_CAP_SET_SEQUENCE_SETUP message prior to starting the capture.

By default, the capture window does not allow other applications to continue running during capture. To
override this, either set the fYield member of the CAPTUREPARMS structure to TRUE, or install a
yield callback function.

During streaming capture, the capture window can optionally issue notifications to your application of
specific types of conditions. To install callback procedures for these notifications, use the following
messages:

WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_STATUS
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM

 WM_CAP_SEQUENCE_NOFILE

WM_CAP_SEQUENCE_NOFILE
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capCaptureSequenceNoFile(hwnd);

Initiates streaming video capture without writing data to a file.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
This message is useful in conjunction with video stream or waveform-audio stream callback functions
that let your application use the video and audio data directly.

If you want to alter the parameters controlling streaming capture, use the
WM_CAP_SET_SEQUENCE_SETUP message prior to starting the capture.

By default, the capture window does not allow other applications to continue running during capture. To
override this, either set the fYield member of the CAPTUREPARMS structure to TRUE, or install a
yield callback function.

During streaming capture, the capture window can optionally issue notifications to your application of
specific types of conditions. To install callback procedures for these notifications, use the following
messages:

WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_STATUS
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM

 WM_CAP_SET_AUDIOFORMAT

WM_CAP_SET_AUDIOFORMAT
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPWAVEFORMATEX) (psAudioFormat);

// Corresponding macro
capSetAudioFormat(hwnd, psAudioFormat, wSize);

Sets the audio format to use when performing streaming or step capture.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
wSize

Size, in bytes, of the structure referenced by s.
psAudioFormat

Address of a WAVEFORMATEX or PCMWAVEFORMAT structure that defines the audio format.

 WM_CAP_SET_CALLBACK_CAPCONTROL

WM_CAP_SET_CALLBACK_CAPCONTROL
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

// Corresponding macro
capSetCallbackOnCapControl(hwnd, fpProc);

Sets a callback function in the application giving it precise recording control.

· Returns TRUE if successful or FALSE if a streaming capture or a single-frame capture session is in
progress.

hwnd
Handle of a capture window.

fpProc
Address of the callback function. Specify NULL for this parameter to disable a previously installed
callback function.

A single callback function is used to give the application precise control over the moments that
streaming capture begins and completes. The capture window first calls the procedure with nState set
to CONTROLCALLBACK_PREROLL after all buffers have been allocated and all other capture
preparations have finished. This gives the application the ability to preroll video sources, returning from
the callback function at the exact moment recording is to begin. A return value of TRUE from the
callback function continues capture, and a return value of FALSE aborts capture. After capture begins,
this callback function will be called frequently with nState set to CONTROLCALLBACK_CAPTURING
to allow the application to end capture by returning FALSE.

 WM_CAP_SET_CALLBACK_ERROR

WM_CAP_SET_CALLBACK_ERROR
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

// Corresponding macro
capSetCallbackOnError(hwnd, fpProc);

Sets an error callback function in the client application. AVICap calls this procedure when errors occur.

· Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in
progress.

hwnd
Handle of a capture window.

fpProc
Address of the error callback function. Specify NULL for this parameter to disable a previously
installed error callback function.

Applications can optionally set an error callback function. If set, AVICap calls the error procedure in the
following situations:

· The disk is full.
· A capture window cannot be connected with a capture driver.
· A waveform-audio device cannot be opened.
· The number of frames dropped during capture exceeds the specified percentage.
· The frames cannot be captured due to vertical synchronization interrupt problems.

 WM_CAP_SET_CALLBACK_FRAME

WM_CAP_SET_CALLBACK_FRAME
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

// Corresponding macro
capSetCallbackOnFrame(hwnd, fpProc);

Sets a preview callback function in the application. AVICap calls this procedure when the capture
window captures preview frames.

· Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in
progress.

hwnd
Handle of a capture window.

fpProc
Address of the preview callback function. Specify NULL for this parameter to disable a previously
installed callback function.

The capture window calls the callback function before displaying preview frames. This allows an
application to modify the frame if desired. This callback function is not used during streaming video
capture.

 WM_CAP_SET_CALLBACK_STATUS

WM_CAP_SET_CALLBACK_STATUS
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

// Corresponding macro
capSetCallbackOnStatus(hwnd, fpProc);

Sets a status callback function in the application. AVICap calls this procedure whenever the capture
window status changes.

· Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in
progress.

hwnd
Handle of a capture window.

fpProc
Address of the status callback function. Specify NULL for this parameter to disable a previously
installed status callback function.

Applications can optionally set a status callback function. If set, AVICap calls this procedure in the
following situations:

· A capture session is completed.
· A capture driver successfully connected to a capture window.
· An optimal palette is created.
· The number of captured frames is reported.

 WM_CAP_SET_CALLBACK_VIDEOSTREAM

WM_CAP_SET_CALLBACK_VIDEOSTREAM
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

// Corresponding macro
capSetCallbackOnVideoStream(hwnd, fpProc);

Sets a callback function in the application. AVICap calls this procedure during streaming capture when
a video buffer is filled.

· Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in
progress.

hwnd
Handle of a capture window.

fpProc
Address of the video-stream callback function. Specify NULL for this parameter to disable a
previously installed video-stream callback function.

The capture window calls the callback function before writing the captured frame to disk. This allows
applications to modify the frame if desired.

If a video stream callback function is used for streaming capture, the procedure must be installed
before starting the capture session and it must remain enabled for the duration of the session. It can be
disabled after streaming capture ends.

 WM_CAP_SET_CALLBACK_WAVESTREAM

WM_CAP_SET_CALLBACK_WAVESTREAM
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

// Corresponding macro
capSetCallbackOnWaveStream(hwnd, fpProc);

Sets a callback function in the application. AVICap calls this procedure during streaming capture when
a new audio buffer becomes available.

· Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in
progress.

hwnd
Handle of a capture window.

fpProc
Address of the wave stream callback function. Specify NULL for this parameter to disable a
previously installed wave stream callback function.

The capture window calls the procedure before writing the audio buffer to disk. This allows applications
to modify the audio buffer if desired.

If a wave stream callback function is used, it must be installed before starting the capture session and it
must remain enabled for the duration of the session. It can be disabled after streaming capture ends.

 WM_CAP_SET_CALLBACK_YIELD

WM_CAP_SET_CALLBACK_YIELD
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

// Corresponding macro
capSetCallbackOnYield(hwnd, fpProc);

Sets a callback function in the application. AVICap calls this procedure when the capture window yields
during streaming capture.

· Returns TRUE if successful or FALSE if streaming capture or a single-frame capture session is in
progress.

hwnd
Handle of a capture window.

fpProc
Address of the yield callback function. Specify NULL for this parameter to disable a previously
installed yield callback function.

Applications can optionally set a yield callback function. The yield callback function is called at least
once for each video frame captured during streaming capture. If a yield callback function is installed, it
will be called regardless of the state of the fYield member of the CAPTUREPARMS structure.

If the yield callback function is used, it must be installed before starting the capture session and it must
remain enabled for the duration of the session. It can be disabled after streaming capture ends.

Applications typically perform some type of message processing in the callback function consisting of a
PeekMessage, TranslateMessage, DispatchMessage loop, as in the message loop of a WinMain
function. The yield callback function must also filter and remove messages that can cause reentrancy
problems.

An application typically returns TRUE in the yield procedure to continue streaming capture. If a yield
callback function returns FALSE, the capture window stops the capture process.

 WM_CAP_SET_MCI_DEVICE

WM_CAP_SET_MCI_DEVICE
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (LPSTR) (szName);

// Corresponding macro
capSetMCIDeviceName(hwnd, szName);

Specifies the name of the MCI video device to be used to capture data.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
szName

Address of a null-terminated string containing the name of the device.

This message stores the MCI device name in an internal structure. It does not open or access the
device. The default device name is NULL.

 WM_CAP_SET_OVERLAY

WM_CAP_SET_OVERLAY
wParam = (WPARAM) (BOOL) (f);
lParam = 0L;

// Corresponding macro
capOverlay(hwnd, f);

Enables or disables overlay mode. In overlay mode, video is displayed using hardware overlay.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
f

Overlay flag. Specify TRUE for this parameter to enable overlay mode or FALSE to disable it.

Using an overlay does not require CPU resources.

The fHasOverlay member of the CAPDRIVERCAPS structure indicates whether the device is capable
of overlay. The fOverlayWindow member of the CAPSTATUS structure indicates whether overlay
mode is currently enabled.

Enabling overlay mode automatically disables preview mode.

 WM_CAP_SET_PREVIEW

WM_CAP_SET_PREVIEW
wParam = (WPARAM) (BOOL) (f);
lParam = 0L;

// Corresponding macro
capPreview(hwnd, f);

Enables or disables preview mode. In preview mode, frames are transferred from the capture hardware
to system memory and then displayed in the capture window using GDI functions.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
f

Preview flag. Specify TRUE for this parameter to enable preview mode or FALSE to disable it.

The preview mode uses substantial CPU resources. Applications can disable preview or lower the
preview rate when another application has the focus. The fLiveWindow member of the CAPSTATUS
structure indicates if preview mode is currently enabled.

Enabling preview mode automatically disables overlay mode.

 WM_CAP_SET_PREVIEWRATE

WM_CAP_SET_PREVIEWRATE
wParam = (WPARAM) (wMS);
lParam = 0L;

// Corresponding macro
capPreviewRate(hwnd, wMS);

Sets the frame display rate in preview mode.

· Returns TRUE if successful or FALSE if the capture window is not connected to a capture driver.
hwnd

Handle of a capture window.
wMS

Rate, in milliseconds, at which new frames are captured and displayed.

The preview mode uses substantial CPU resources. Applications can disable preview or lower the
preview rate when another application has the focus. During streaming video capture, the previewing
task is lower priority than writing frames to disk, and preview frames are displayed only if no other
buffers are available for writing.

 WM_CAP_SET_SCALE

WM_CAP_SET_SCALE
wParam = (WPARAM) (BOOL)f;
lParam = 0L;

// Corresponding macro
capPreviewScale(hwnd, f);

Enables or disables scaling of the preview video images. If scaling is enabled, the captured video
frame is stretched to the dimensions of the capture window.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
f

Preview scaling flag. Specify TRUE for this parameter to stretch preview frames to the size of the
capture window or FALSE to display them at their natural size.

Scaling preview images controls the immediate presentation of captured frames within the capture
window. It has no effect on the size of the frames saved to file.

Scaling has no effect when using overlay to display video in the frame buffer.

 WM_CAP_SET_SCROLL

WM_CAP_SET_SCROLL
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPPOINT) (lpP);

// Corresponding macro
capSetScrollPos(hwnd, lpP);

Defines the portion of the video frame to display in the capture window. This message sets the upper
left corner of the client area of the capture window to the coordinates of a specified pixel within the
video frame.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
lpP

Address to contain the desired scroll position.

The scroll position affects the image in both preview and overlay modes.

 WM_CAP_SET_SEQUENCE_SETUP

WM_CAP_SET_SEQUENCE_SETUP
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (LPCAPTUREPARMS) (psCapParms);

// Corresponding macro
capCaptureSetSetup(hwnd, psCapParms, wSize);

Sets the configuration parameters used with streaming capture.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
psCapParms

Address of a CAPTUREPARMS structure.
wSize

Size, in bytes, of the structure referenced by s.

For information about the parameters used to control streaming capture, see the CAPTUREPARMS
structure.

 WM_CAP_SET_USER_DATA

WM_CAP_SET_USER_DATA
wParam = (WPARAM) 0;
lParam = (LPARAM)lUser;

// Corresponding macro
capSetUserData(hwnd, lUser);

Associates a LONG data value with a capture window.

· Returns TRUE if successful or FALSE if streaming capture is in progress.
hwnd

Handle of a capture window.
lUser

Data value to associate with a capture window.

Typically this message is used to point to a block of data associated with a capture window.

 WM_CAP_SET_VIDEOFORMAT

WM_CAP_SET_VIDEOFORMAT
wParam = (WPARAM) (wSize);
lParam = (LPARAM) (LPVOID) (psVideoFormat);

// Corresponding macro
capSetVideoFormat(hwnd, psVideoFormat, wSize);

Sets the format of captured video data.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.
psVideoFormat

Address of a BITMAPINFO structure.
wSize

Size, in bytes, of the structure referenced by s.

Because video formats are device-specific, applications should check the return value from this
function to determine if the format is accepted by the driver.

 WM_CAP_SINGLE_FRAME

WM_CAP_SINGLE_FRAME
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capCaptureSingleFrame(hwnd);

Appends a single frame to a capture file that was opened using the
WM_CAP_SINGLE_FRAME_OPEN message.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

 WM_CAP_SINGLE_FRAME_CLOSE

WM_CAP_SINGLE_FRAME_CLOSE
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capCaptureSingleFrameClose(hwnd);

Closes the capture file opened by the WM_CAP_SINGLE_FRAME_OPEN message.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and
WM_CAP_SET_CALLBACK_FRAME messages.

 WM_CAP_SINGLE_FRAME_OPEN

WM_CAP_SINGLE_FRAME_OPEN
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capCaptureSingleFrameOpen(hwnd);

Opens the capture file for single-frame capturing. Any previous information in the capture file is
overwritten.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

For information about installing callback functions, see the WM_CAP_SET_CALLBACK_ERROR and
WM_CAP_SET_CALLBACK_FRAME messages.

 WM_CAP_STOP

WM_CAP_STOP
wParam = (WPARAM) 0;
lParam = 0L;

// Corresponding macro
capCaptureStop(hwnd);

Stops the capture operation.

In step frame capture, the image data that was collected before this message was sent is retained in
the capture file. An equivalent duration of audio data is also retained in the capture file if audio capture
was enabled.

· Returns TRUE if successful or FALSE otherwise.
hwnd

Handle of a capture window.

The capture operation must yield to use this message. Use the WM_CAP_ABORT message to
abandon the current capture operation.

 Video Capture Structures

The AVICap functions, messages, and macros use structures to describe, configure, and control the
capture operation. Some of the structures described in this section, such as BITMAPINFOHEADER,
are borrowed from other Win32 subsystems; others are specific to AVICap.

 CAPDRIVERCAPS

typedef struct {
UINT wDeviceIndex;
BOOL fHasOverlay;
BOOL fHasDlgVideoSource;
BOOL fHasDlgVideoFormat;
BOOL fHasDlgVideoDisplay;
BOOL fCaptureInitialized;
BOOL fDriverSuppliesPalettes;
HANDLE hVideoIn;
HANDLE hVideoOut;
HANDLE hVideoExtIn;
HANDLE hVideoExtOut;

} CAPDRIVERCAPS;

Defines the capabilities of the capture driver.

An application should use the WM_CAP_DRIVER_GET_CAPS message or capDriverGetCaps macro
to place a copy of the driver capabilities in a CAPDRIVERCAPS structure whenever the application
connects a capture window to a capture driver.

wDeviceIndex
Index of the capture driver. An index value can range from 0 to 9.

fHasOverlay
Video-overlay flag. The value of this member is TRUE if the device supports video overlay.

fHasDlgVideoSource
Video source dialog flag. The value of this member is TRUE if the device supports a dialog box for
selecting and controlling the video source.

fHasDlgVideoFormat
Video format dialog flag. The value of this member is TRUE if the device supports a dialog box for
selecting the video format.

fHasDlgVideoDisplay
Video display dialog flag. The value of this member is TRUE if the device supports a dialog box for
controlling the redisplay of video from the capture frame buffer.

fCaptureInitialized
Capture initialization flag. The value of this member is TRUE if a capture device has been
successfully connected.

fDriverSuppliesPalettes
Driver palette flag. The value of this member is TRUE if the driver can create palettes.

hVideoIn
Not used in Win32 applications.

hVideoOut
Not used in Win32 applications.

hVideoExtIn
Not used in Win32 applications.

hVideoExtOut
Not used in Win32 applications.

 CAPINFOCHUNK

typedef struct {
FOURCC fccInfoID;
LPVOID lpData;
LONG cbData;

} CAPINFOCHUNK;

Contains parameters that can be used to define an information chunk within an AVI capture file. The
WM_CAP_FILE_SET_INFOCHUNK message or capSetInfoChunk macro is used to send a
CAPINFOCHUNK structure to a capture window.

fccInfoID
Four-character code that identifies the representation of the chunk data. If this value is NULL and
lpData is NULL, all accumulated information chunks are deleted.

lpData
Address of the data. If this value is NULL, all fccInfoID information chunks are deleted.

cbData
Size, in bytes, of the data pointed to by lpData. If lpData specifies a
null-terminated string, use the string length incremented by one to save the NULL with the string.

 CAPSTATUS

typedef struct {
UINT uiImageWidth; // image width, in pixels
UINT uiImageHeight; // image height, in pixels
BOOL fLiveWindow; // see below
BOOL fOverlayWindow; // see below
BOOL fScale; // see below
POINT ptScroll; // see below
BOOL fUsingDefaultPalette; // see below
BOOL fAudioHardware; // see below
BOOL fCapFileExists; // see below
DWORD dwCurrentVideoFrame; // see below
DWORD dwCurrentVideoFramesDropped; // see below
DWORD dwCurrentWaveSamples; // see below
DWORD dwCurrentTimeElapsedMS; // see below
HPALETTE hPalCurrent; // handle of current pallette
BOOL fCapturingNow; // see below
DWORD dwReturn; // see below
UINT wNumVideoAllocated; // see below
UINT wNumAudioAllocated; // see below

} CAPSTATUS;

Defines the current state of the capture window.

fLiveWindow
Live window flag. The value of this member is TRUE if the window is displaying video using the
preview method.

fOverlayWindow
Overlay window flag. The value of this member is TRUE if the window is displaying video using
hardware overlay.

fScale
Input scaling flag. The value of this member is TRUE if the window is scaling the input video to the
client area when displaying video using preview. This parameter has no effect when displaying video
using overlay.

ptScroll
The x- and y-offset of the pixel displayed in the upper left corner of the client area of the window.

fUsingDefaultPalette
Default palette flag. The value of this member is TRUE if the capture driver is using its default
palette.

fAudioHardware
Audio hardware flag. The value of this member is TRUE if the system has waveform-audio hardware
installed.

fCapFileExists
Capture file flag. The value of this member is TRUE if a valid capture file has been generated.

dwCurrentVideoFrame
Number of frames processed during the current (or most recent) streaming capture. This count
includes dropped frames.

dwCurrentVideoFramesDropped
Number of frames dropped during the current (or most recent) streaming capture. Dropped frames
occur when the capture rate exceeds the rate at which frames can be saved to file. In this case, the
capture driver has no buffers available for storing data. Dropping frames does not affect
synchronization because the previous frame is displayed in place of the dropped frame.

dwCurrentWaveSamples
Number of waveform-audio samples processed during the current (or most recent) streaming
capture.

dwCurrentTimeElapsedMS
Time, in milliseconds, since the start of the current (or most recent) streaming capture.

fCapturingNow
Capturing flag. The value of this member is TRUE when capturing is in progress.

dwReturn
Error return values. Use this member if your application does not support an error callback function.

wNumVideoAllocated
Number of video buffers allocated. This value might be less than the number specified in the
wNumVideoRequested member of the CAPTUREPARMS structure.

wNumAudioAllocated
Number of audio buffers allocated. This value might be less than the number specified in the
wNumAudioRequested member of the CAPTUREPARMS structure.

Because the state of a capture window changes in response to various messages, an application
should update the information in this structure whenever it needs to enable menu items, determine the
actual state of the capture window, or call the video format dialog box. If the application yields during
streaming capture, this structure returns the progress of the capture in the dwCurrentVideoFrame,
dwCurrentVideoFramesDropped, dwCurrentWaveSamples, and dwCurrentTimeElapsedMS
members. Use the WM_CAP_GET_STATUS message or capGetStatus macro to update the contents
of this structure.

 CAPTUREPARMS

typedef struct {
DWORD dwRequestMicroSecPerFrame;
BOOL fMakeUserHitOKToCapture;
UINT wPercentDropForError;
BOOL fYield;
DWORD dwIndexSize;
UINT wChunkGranularity;
BOOL fUsingDOSMemory;
UINT wNumVideoRequested;
BOOL fCaptureAudio;
UINT wNumAudioRequested;
UINT vKeyAbort;
BOOL fAbortLeftMouse;
BOOL fAbortRightMouse;
BOOL fLimitEnabled;
UINT wTimeLimit;
BOOL fMCIControl;
BOOL fStepMCIDevice;
DWORD dwMCIStartTime;
DWORD dwMCIStopTime;
BOOL fStepCaptureAt2x;
UINT wStepCaptureAverageFrames;
DWORD dwAudioBufferSize;
BOOL fDisableWriteCache;
UINT AVStreamMaster;

} CAPTUREPARMS;

Contains parameters that control the streaming video capture process. This structure is used to get
and set parameters that affect the capture rate, the number of buffers to use while capturing, and how
capture is terminated.

dwRequestMicroSecPerFrame
Requested frame rate, in microseconds. The default value is 66667, which corresponds to 15 frames
per second.

fMakeUserHitOKToCapture
User-initiated capture flag. If this member is TRUE, AVICap displays a dialog box prompting the user
to initiate capture. The default value is FALSE.

wPercentDropForError
Maximum allowable percentage of dropped frames during capture. Values range from 0 to 100. The
default value is 10.

fYield
Yield flag. If this member is TRUE, the capture window spawns a separate background thread to
perform step and streaming capture. The default value is FALSE.
Applications that set this flag must handle potential reentry issues because the controls in the
application are not disabled while capture is in progress.

dwIndexSize
Maximum number of index entries in an AVI file. Values range from 1800 to 324,000. If set to 0, a
default value of 34,952 (32K frames plus a proportional number of audio buffers) is used.
Each video frame or buffer of waveform-audio data uses one index entry. The value of this entry
establishes a limit for the number of frames or audio buffers that can be captured.

wChunkGranularity

Logical block size, in bytes, of an AVI file. The value 0 indicates the current sector size is used as
the granularity.

fUsingDOSMemory
Not used in Win32 applications.

wNumVideoRequested
Maximum number of video buffers to allocate. The memory area to place the buffers is specified with
fUsingDOSMemory. The actual number of buffers allocated might be lower if memory is
unavailable.

fCaptureAudio
Capture audio flag. If this member is TRUE, audio is captured during streaming capture. This is the
default value if audio hardware is installed.

wNumAudioRequested
Maximum number of audio buffers to allocate. The maximum number of buffers is 10.

vKeyAbort
Virtual keycode used to terminate streaming capture. The default value is VK_ESCAPE.
You can combine keycodes that include CTRL and SHIFT keystrokes by using the logical OR operator
with the keycodes for CTRL (0x8000) and SHIFT (0x4000).

fAbortLeftMouse
Abort flag for left mouse button. If this member is TRUE, streaming capture stops if the left mouse
button is pressed. The default value is TRUE.

fAbortRightMouse
Abort flag for right mouse button. If this member is TRUE, streaming capture stops if the right mouse
button is pressed. The default value is TRUE.

fLimitEnabled
Time limit enabled flag. If this member is TRUE, streaming capture stops after the number of
seconds in wTimeLimit has elapsed. The default value is FALSE.

wTimeLimit
Time limit for capture, in seconds. This parameter is used only if fLimitEnabled is TRUE.

fMCIControl
MCI device capture flag. If this member is TRUE, AVICap controls an
MCI-compatible video source during streaming capture. MCI-compatible video sources include
VCRs and laserdiscs.

fStepMCIDevice
MCI device step capture flag. If this member is TRUE, step capture using an MCI device as a video
source is enabled. If it is FALSE, real-time capture using an MCI device is enabled. (If fMCIControl
is FALSE, this member is ignored.)

dwMCIStartTime
Starting position, in milliseconds, of the MCI device for the capture sequence. (If fMCIControl is
FALSE, this member is ignored.)

dwMCIStopTime
Stopping position, in milliseconds, of the MCI device for the capture sequence. When this position in
the content is reached, capture ends and the MCI device stops. (If fMCIControl is FALSE, this
member is ignored.)

fStepCaptureAt2x
Double-resolution step capture flag. If this member is TRUE, the capture hardware captures at twice
the specified resolution. (The resolution for the height and width is doubled.)
Enable this option if the hardware does not support hardware-based decimation and you are
capturing in the RGB format.

wStepCaptureAverageFrames
Number of times a frame is sampled when creating a frame based on the average sample. A typical
value for the number of averages is 5.

dwAudioBufferSize
Audio buffer size. If the default value of zero is used, the size of each buffer will be the maximum of
0.5 seconds of audio or 10K bytes.

fDisableWriteCache
Not used in Win32 applications.

AVStreamMaster
Indicates whether the audio stream controls the clock when writing an AVI file. If this member is set
to AVSTREAMMASTER_AUDIO, the audio stream is considered the master stream and the video
stream duration is forced to match the audio duration. If this member is set to
AVSTREAMMASTER_NONE, the durations of audio and video streams can differ.

The WM_CAP_GET_SEQUENCE_SETUP message or capCaptureGetSetup macro is used to
retrieve the current capture parameters. The WM_CAP_SET_SEQUENCE_SETUP message or
capCaptureSetSetup macro is used to set the capture parameters.

The WM_CAP_GET_SEQUENCE_SETUP message or capCaptureGetSetup macro is used to
retrieve the current capture parameters. The WM_CAP_SET_SEQUENCE_SETUP message or
capCaptureSetSetup macro is used to set the capture parameters.

 Video Compression Manager

The video compression manager (VCM) provides access to the interface used by installable
compressors to handle real-time data. Applications can use installable compressors to perform the
following tasks:

· Compress and decompress video data.
· Send a renderer compressed video data and have it draw it to the display.
· Compress, decompress, or draw data with application-defined renderers.
· Use renderers to handle text and custom data.

Typically, installable compressors operate with video-image data stored in audio-video interleaved (AVI)
files. This chapter explains the programming techniques used to access installable compressors
through VCM and covers the following topics:

· VCM and the Video for Windows architecture
· Compressing and decompressing image data from your application
· Using VCM renderers to draw data from your application
· VCM functions and structures

Before you read this chapter, you should be familiar with the Microsoft Win32 graphic services. In
particular, bitmaps and bitmap-related structures, such as BITMAPINFO and BITMAPINFOHEADER,
are used extensively by VCM. For additional information about the BITMAPINFO and
BITMAPINFOHEADER structures, see Chapter 29, "Bitmaps."

Note The audio compression manager (ACM) provides system-level support for audio compression
and decompression drivers. For a description of the audio compression services, see Chapter 12,
"Audio Compression Manager."

 VCM Architecture

VCM is an intermediary between an application and compression and decompression drivers. The
compression and decompression drivers compress and decompress individual frames of data.

When an application makes a call to VCM, VCM translates the call into a message. The message is
sent by using the ICSendMessage function to the appropriate compressor or decompressor, which
compresses or decompresses the data. VCM receives the return value from the compression or
decompression driver and then returns control to the application.

If a macro is defined for a message, the macro expands to an ICSendMessage function call supplying
appropriate parameters for that message. If a macro is defined for a message, your application should
use it rather than the message. In this chapter, these macros follow messages in parentheses.

 System Entries for Compressors, Decompressors, and Renderers

The system uses entries in the registry to find VCM drivers. These entries are in the form of 2 four-
character codes separated by a period. The first four-character code is defined by the system and can
be one of the following:

Four-character
code

Description

"VIDC" Identifies compressors and decompressors.
"VIDS" Identifies video-stream renderers.
"TXTS" Identifies text-stream renderers.
"AUDS" Identifies audio-stream handlers.

Custom renderers can define their own four-character codes.

The second four-character code is defined by the driver. Typically, the second four-character code
corresponds to the type of data the driver can handle.

When opening a VCM driver, an application specifies the type of driver and the type of data handler it
needs. Typically, this information comes from the stream header. The system tries to open the specified
data handler, but if it fails, the system searches the registry for a driver that has the required handler.

When searching for the driver, the system tries to match the four-character codes specified for the
driver type and data handler with those specified in the driver entry. For example, if an application
specifies the compressor MSSQ, the system searches the registry for the driver entry VIDC.MSSQ. If it
cannot find a match, it opens each driver corresponding to the driver type and locates one that can
handle the type of data your application specifies. In the previous example, if the system could not find
VIDC.MSSQ, it would open all drivers with the "VIDC" four-character code and locate one that can
handle the data.

 VCM Services

In general, an application uses VCM to perform the following tasks:

· Locate, open, or install a compressor or decompressor.
· Configure or obtain configuration information about the compressor or decompressor.
· Use a series of functions to compress, decompress, or draw the data.

The functions and macros of the DrawDib library perform these tasks implicitly and might provide the
most convenient way to use VCM. For more information about the DrawDib library, see Chapter 10,
"DrawDib Functions ."

The following sections describe tasks you can perform by using VCM.

 Compressor and Decompressor Basics

To open and locate a compressor, you can use the ICLocate and ICOpen functions. You can use
ICLocate to find a compressor of a specific type and to obtain a handle of it for use in other VCM
functions. To open a compressor, you can use ICOpen. Your application uses the handle returned by
this function to identify the opened compressor when it uses other VCM functions.

To open and locate a decompressor, applications can use the ICDecompressOpen and ICDrawOpen
macros. These macros use ICLocate for operation.

When your application is finished using a compressor or decompressor, it must close it to free any
resources used for compression or decompression. Your application can use the ICClose function to
close the compressor or decompressor.

Also, your application can enumerate the compressors or decompressors on a system by using the
ICInfo function.

Note The stream header in an AVI file contains information about the stream type and the specific
handler for that stream. Within the stream header, the fccType and fccHandler members identify the
stream type and the stream handler specified for the stream.

 User-Selected Compressors

When compressing data, your application can use the ICCompressorChoose function to create a
dialog box in which the user can select the compressor. You can specify flags for this function to allow
the user to specify the key-frame frequency and the movie-data rate, or to display a preview window.

The compressor selected by the user is automatically opened and its handle is returned in the hic
member of the COMPVARS structure specified in ICCompressorChoose.

If you use ICCompressorChoose, use the ICCompressorFree function to close the compressor and
free any resources associated with the COMPVARS structure.

 Compressor and Decompressor Installation and Removal

An application can use compressors and decompressors that are already installed on a system running
the Microsoft Windows operating system. An application can also install compressors and
decompressors for general or special uses. Most applications will not need to install or remove
compressors or decompressors because they are usually installed by a setup program. An application
might, however, install a compressor directly or install a function as a compressor.

An application can install a compressor or decompressor (or a function used as a compressor or
decompressor) by using the ICInstall function. This function creates an entry in the registry identifying
the compressor or decompressor. Your application or another application can search the registry to
determine if the system contains a compressor or decompressor suitable for its data. Use ICInstall to
install all compression and decompression drivers.

An application can locate and open an installed compressor or decompressor by using the ICLocate
and ICOpen functions. When an application finishes using a compressor or decompressor, it closes it
by using the ICClose function.

An application can remove the registry entry for an installed compressor or decompressor by using the
ICRemove function. This function removes the registry entry of a compressor or decompressor that is
not currently loaded in memory.

An application can restrict the use of a compressor or decompressor by installing, opening, closing,
and removing the compressor.

Alternatively, an application can use a function internally as a compressor or decompressor without
installing the function in the registry by using the ICOpenFunction function. This function requires the
calling application to have the address of the function. When the application finishes using the function,
it must close it by using ICClose. Because the function was not installed, the application does not need
to remove the function from the registry.

The internal structure of a function used as a compressor or decompressor should be the same as the
DriverProc entry-point function used by installable drivers. For more information about the DriverProc
entry-point function, see Chapter 0, "Installable Drivers."

Note An application installing a function as a compressor or decompressor must remove the function
before the application is closed so other applications do not try to use the function. When removing a
function, the application must identify it with the four-character code used to install it.

 Compressor and Decompressor Configuration

Your application can configure the compressor or decompressor automatically, or it can allow the user
to configure them. If it is practical, you should allow the user to configure the compressor or
decompressor because it frees you from considering all the compressor's or decompressor's options.

The user can configure the compressor or decompressor by using a configuration dialog box. You can
send the ICM_CONFIGURE message to VCM or use the ICQueryConfigure macro to determine if a
compressor or decompressor can display a configuration dialog box. If so, you can send the
ICM_CONFIGURE message (or the ICConfigure macro) to display it.

Your application can send the ICM_GETSTATE and ICM_SETSTATE messages (or the
ICGetStateSize, ICGetState, and ICSetState macros) to get and set the status for a compressor or
decompressor. If your application creates or modifies the status, it must obtain the layout of the
compressor or decompressor data before restoring its status. Alternatively, if your application obtains
the status from a compressor or decompressor and uses it to restore the status in a subsequent
session, it must ensure that it restores only status information obtained from the compressor or
decompressor it is currently using.

 Getting Information About Compressors and Decompressors

To get general information about a compressor or decompressor, your application can use the
ICGetInfo function. This function fills an ICINFO structure with information about the compressor or
decompressor. Your application must allocate the memory for the ICINFO structure and pass a pointer
to it in ICGetInfo. Unless your application searches for a particular compressor or decompressor, the
flags in the ICINFO structure provide the most useful information about the capabilities of a compressor
or decompressor.

To get the default key-frame rate and default quality value of a compressor or decompressor, your
application can send the ICM_GETDEFAULTKEYFRAMERATE and ICM_GETDEFAULTQUALITY
messages (or the ICGetDefaultKeyFrameRate and ICGetDefaultQuality macros).

To determine the best display format of a compressor or decompressor, your application can use the
ICGetDisplayFormat function.

You can determine if a compressor or decompressor can display an About dialog box by sending the
ICM_ABOUT message (or the ICQueryAbout macro). You can also display the About dialog box of a
compressor or decompressor by sending the ICM_ABOUT message and changing the value of the
wParam parameter (or by using the ICAbout macro).

 Single-Image Compression

You can use the ICImageCompress function to compress a single image. This function returns a
handle of the compressed device-independent bitmap (DIB). The compressed DIB is packed using the
CF_DIB format.

 Sequence Compression

Your application can use the ICSeqCompressFrame, ICSeqCompressFrameStart, and
ICSeqCompressFrameEnd functions to compress a sequence of frames. These functions use the
data stored in the COMPVARS structure. Applications use the ICCompressorChoose function to allow
the user to select a compressor, open it, and set the compression parameters in the COMPVARS
structure; however, applications can set the parameters in the structure manually.

Before an application can begin compressing a sequence of frames, it must use
ICSeqCompressFrameStart to allocate the necessary resources. After the resources are allocated,
the application can use ICSeqCompressFrame to compress each frame individually. The frame rate
and key-frame frequency used in compressing the sequence are specified in members of the
COMPVARS structure. The return value for ICSeqCompressFrame points to the compressed data.

When an application finishes compressing a sequence, it can use ICSeqCompressFrameEnd to free
system resources allocated for ICSeqCompressFrameStart, and ICCompressorFree to free the
resources allocated for the COMPVARS structure.

 Image-Data Compression

Your application can use a series of ICCompress functions and macros to compress data. The
functions and macros can help you perform the following tasks:

· Determine the compression format to use for a specified input format.
· Prepare the compressor.
· Compress the data.
· End compression.

Your application can increase control over the compression process by using the ICCompress
functions and macros. This group of functions and macros deals with individual frames, rather than the
sequence as a whole. For example, your application can identify the frames to compress as key frames
by using the ICCompress function.

A compressor receives data in one format, compresses the data, and returns a compressed version of
the data using a specified format. The typical input format specifies DIBs using the BITMAPINFO
structure. The typical output format specifies compressed DIBs, also using the BITMAPINFO structure.

Note To minimize image and audio degradation during playback, avoid compressing an AVI file more
than once. Combine uncompressed pieces of video in your editing system and then compress the final
product.

Compressor and Compression Format Selection

If you want to compress data and your application requires a specific output format, you can send the
ICM_COMPRESS_QUERY message (or the ICCompressQuery macro) to query the compressor to
determine if it supports the input and output formats.

If the output format is not important to your application, you need only find a compressor that can
handle the input format. To determine if a compressor can handle the input format, you can send
ICM_COMPRESS_QUERY, specifying NULL for the lParam parameter. This message does not return
the output format to your application. Your application can determine the buffer size needed for the
data specifying the compression format by sending the ICM_COMPRESS_GET_FORMAT message
(or the ICCompressGetFormatSize macro). You can also retrieve the format data by sending
ICM_COMPRESS_GET_FORMAT (or the ICCompressGetFormat macro).

If you want to determine the largest buffer that the compressor could require for compression, send the
ICM_COMPRESS_GET_SIZE message (or the ICCompressGetSize macro). You can use the number
of bytes returned by the ICSendMessage function to allocate a buffer for subsequent image
compressions.

Compressor Initialization

After your application selects a compressor that can handle the input and output formats it needs, you
can initialize the compressor by using the ICM_COMPRESS_BEGIN message (or the
ICCompressBegin macro). This message requires the compressor handle and the input and output
formats.

Data Compression

You can use the ICCompress function to compress a frame. Your application must use this function
repeatedly until all the frames in a sequence are compressed. Your application must also track and
increment the number of each frame compressed with ICCompress. The compressor uses this value
to check if frames are sent out of order during fast temporal compression (storing differences between
successive frames). If your application recompresses a frame, it should use the same frame number as
when the frame was first compressed. If your application compresses a still-frame image, it can specify

a frame number of zero.

Your application can use the ICCOMPRESS_KEYFRAME flag to make the frame compressed by
ICCompress a key frame.

When VCM returns control to your application after compressing a frame, VCM stores the compressed
data in the structures referenced by the lpbiOutput and lpData parameters. If your application needs to
move the compressed data, it can find its size in the biSizeImage member of the BITMAPINFO
structure specified in lpbiOutput.

Note Your application must allocate the structures and buffers that store the uncompressed and
compressed data. If the compressor supports temporal compression, your application must also
allocate a structure and buffer to hold the format and data for the previous frame of information.

Ending Compression

After your application has compressed the data, it can use the ICCompressEnd macro to notify the
compressor that it has finished. If you want to restart compression after using this function, your
application must reinitialize the compressor by sending the ICM_COMPRESS_BEGIN message (or the
ICCompressBegin macro).

 Single-Image Decompression

You can use the ICImageDecompress function to decompress a single image. This function returns a
handle of the decompressed DIB. The decompressed DIB is stored in the CF_DIB format.

 Image-Data Decompression

Your application uses a series of ICDecompressEx functions to control the decompressor. The
functions can help you perform the following tasks:

· Select a decompressor.
· Prepare the decompressor.
· Decompress the data.
· End decompression.

Your application handles decompression similarly to compression except that the input format is a
compressed format and the output format is a displayable format. The input format for decompression
is usually obtained from the stream header. After determining the input format, your application can use
the ICLocate or ICOpen functions to find a decompressor that can handle it.

The ICDecompressEx functions and macros are a superset of the ICDecompress function group and
provide more capabilities. The functionality of ICDecompressEx, ICDecompressExBegin,
ICDecompressExEnd, and ICDecompressExQuery replaces that of the ICDecompress,
ICDecompressBegin, ICDecompressEnd, and ICDecompressQuery. Use the ICDecompressEx
functions and macros in place of the ICDecompress equivalents.

Decompressor and Decompression Format Selection

If you want to decompress data and your application requires a specific output format, you can use the
ICDecompressExQuery function to query the decompressor to determine if it supports the input and
output formats.

If the output format is not important in your application, you need only find a decompressor that can
handle the input format. To determine if a decompressor can handle the input format, use
ICDecompressExQuery and specify NULL for the lpbiDst parameter. Your application can determine
the buffer size needed for the data specifying the decompression format by sending the
ICM_DECOMPRESS_GET_FORMAT message (or the ICDecompressGetFormatSize macro). You
can also send ICM_DECOMPRESS_GET_FORMAT (or the ICDecompressGetFormat macro) to
retrieve the format data. The decompressor returns its suggested format in a BITMAPINFO structure.
This format typically preserves the most information during decompression. Your application should
ensure that the decompressor returns successfully before it decompresses the information.

Because your application allocates the memory required for decompression, it needs to determine the
maximum memory the decompressor can require for the output format. The
ICM_DECOMPRESS_GET_FORMAT message obtains the number of bytes the decompressor uses
for the default format.

If your application defines its own format by using ICDecompressExQuery, it must also obtain a
palette for the bitmap; ICDecompressExQuery does not provide palette definitions. (Most applications
use standard formats and do not need to obtain a palette.) Your application can obtain the palette by
sending the ICM_DECOMPRESS_GET_PALETTE message (or the ICDecompressGetPalette
macro).

Decompressor Initialization

After your application selects a decompressor that can handle the input and output formats it needs,
you can initialize the decompressor by using the ICDecompressExBegin function. This function
requires the decompressor handle and the input and output formats.

Data Decompression

You can use the ICDecompressEx function to decompress a frame. Your application must use this
function repeatedly until all the frames in a sequence are decompressed.

If your video stream lags behind other components (such as audio) during playback, your application
can specify the ICDECOMPRESS_HURRYUP flag to speed decompression. To do this, a
decompressor might extract only the information it needs to decompress the next frame and not fully
decompress the current frame. Therefore, your application should not try to draw the decompressed
data when it uses this flag.

After your application has decompressed the data, it can send the ICM_DECOMPRESSEX_END
message (or the ICDecompressExEnd macro) to notify the decompressor that it has finished. If you
want to restart decompression after using this function, your application must reinitialize the
decompressor by using ICDecompressExBegin.

 Monitoring the Progress of Compressors and Decompressors

Your application can monitor the progress of a lengthy operation performed by a compressor or
decompressor by sending it the address of a callback function. You can use the ICSetStatusProc
function to send the address to the compressor or decompressor. When the compressor or
decompressor receives this address, it sends status messages to the function. These messages
indicate whether the operation is starting, stopping, yielding, or proceeding.

 Hardware Drawing Capabilities

Some renderers can draw directly to video hardware as they decompress video frames. These
renderers return the VIDCF_DRAW flag in response to the ICGetInfo function. When using this type of
renderer, your application does not have to handle the decompressed data. It lets the renderer retain
the decompressed data for drawing.

If your application uses a renderer with drawing capabilities, it must handle the following tasks:

· Select a renderer.
· Specify image formats.
· Initialize the renderer.
· Draw the data.
· Control drawing parameters.

Renderer Selection

The ICDrawOpen macro opens a renderer that can draw images with the specified format. It returns a
handle of a renderer if it is successful or zero otherwise. This macro uses the ICLocate function to
open the renderer.

Specifying Image Formats

Because your application does not need to draw the decompressed data, it does not require a specific
output format. It must, however, ensure that the renderer can draw using the input format by using the
ICM_DRAW_QUERY message (or the ICDrawQuery macro). This message cannot determine if a
renderer can draw a bitmap. If your application must determine if the renderer can draw the bitmap,
use this message with the ICDrawBegin function.

Your application can have a renderer suggest an input format by using the ICDrawSuggestFormat
function. This function is used when a renderer separates the drawing capabilities from the
decompressing capabilities. Most applications using the drawing functions will not need to determine
the output format.

Renderer Initialization

The ICDrawBegin function initializes a renderer and tells it the drawing destination. This function can
also perform the following tasks:

· Determine whether the renderer supports a specific input format.
· Specify whether the drawing operation occupies a window or the entire screen.
· Specify the part of the image to display using the source rectangle.
· Define the playback rate of the image sequence.

Some renderers buffer the compressed data to operate more efficiently. Your application can send the
ICM_GETBUFFERSWANTED message (or the ICGetBuffersWanted macro) to determine the number
of buffers the renderer requests. Your application should preload these buffers and send them to the
renderer before drawing.

Drawing the Data

You can use the ICDraw function to decompress the data for drawing. The renderer, however, does not
start drawing data until your application sends the ICM_DRAW_START message (or the ICDrawStart
macro). When your application calls this function, the renderer begins to draw the frames at the rate
specified by the dwRate parameter divided by the dwScale parameter; these parameters were supplied
when the application initialized the renderer by using the ICDrawBegin function. Drawing continues
until your application stops the renderer drawing clock by sending the ICM_DRAW_STOP message (or

the ICDrawStop macro).

Note If a renderer buffers the data before drawing, your application should not use ICDrawStart until
it has sent the number of frames the renderer returned for the ICGetBuffersWanted macro.

The lTime parameter of ICDraw specifies the time to draw a frame. The renderer divides this integer by
the time scale specified with ICDrawBegin to obtain the actual time. Times for ICDraw functions are
relative to ICDrawStart. ICDrawStart sets the clock to zero. For example, if your application specifies
1000 for the time scale and 75 for lTime, the renderer draws the frame 75 milliseconds into the
sequence.

Controlling Drawing Parameters

You can monitor the clock of a renderer by sending the ICM_DRAW_GETTIME message (or the
ICDrawGetTime macro), and you can set the clock of a renderer that can draw data by sending the
ICM_DRAW_SETTIME message (or the ICDrawSetTime macro).

To change the current position while a renderer is drawing, your application can send the
ICM_DRAW_WINDOW message (or the ICDrawWindow macro) for repositioning the window.
Applications typically use this message whenever the window changes.

If the playback window gets a palette-realize message, your application must send the
ICM_DRAW_REALIZE message (or the ICDrawRealize macro) to have the renderer realize the palette
again for playback. Applications can change the palette by sending the
ICM_DRAW_CHANGEPALETTE message (or the ICDrawChangePalette macro) and obtain the
current palette by sending the ICM_DRAW_GET_PALETTE message.

Some renderers must be specifically instructed to display frames passed to them. Sending the
ICM_DRAW_RENDERBUFFER message (or the ICDrawRenderBuffer macro) causes these
renderers to draw the frame.

 Using the Video Compression Manager

This section contains examples demonstrating how to perform the following tasks:

· Locate and open compressors and decompressors.
· Install compressors and decompressors.
· Configure compressors and decompressors.
· Get information about compressors and decompressors.
· Determine a compressor's output format.
· Compress data.
· Determine a decompressor's output format.
· Decompress data.
· Determine if a driver can handle the input format.
· Prepare to draw data.
· Draw data.
· Monitor compressor and decompressor progress.

 Locating and Opening Compressors and Decompressors

The following example attempts to find a compressor that can compress an 8-bits-per-pixel bitmap:

BITMAPINFOHEADER bih;
HIC hIC

// Initialize the bitmap structure.
bih.biSize = sizeof(BITMAPINFOHEADER);
bih.biWidth = bih.biHeight = 0;
bih.biPlanes = 1;
bih.biCompression = BI_RGB; // standard RGB bitmap
bih.biBitcount = 8; // 8 bits-per-pixel format
bih.biSizeImage = 0;
bih.biXPelsPerMeter = bih.biYPelsPerMeter = 0;
bih.biClrUsed = bih.biClrImportant = 256;

hIC = ICLocate (ICTYPE_VIDEO, 0L, (LPBITMAPINFOHEADER) &bih,
 NULL, ICMODE_COMPRESS);

The following example enumerates the decompressors in the system to find one that can handle the
format of its images. This example uses ICTYPE_VIDEO (which is equivalent to the "VIDC" four-
character code) and the ICDecompressQuery macro to determine if a compressor or decompressor
supports the image format.

for (i=0; ICInfo(fccType, i, &icinfo); i++)
{
 hic = ICOpen(icinfo.fccType, icinfo.fccHandler, ICMODE_QUERY);
 if (hic)
 {
 // Skip this compressor if it can't handle the specified format.
 if (fccType == ICTYPE_VIDEO && pvIn != NULL &&
 ICDecompressQuery(hic, pvIn, NULL) != ICERR_OK)
 {
 ICClose(hic);
 continue;
 }

 // Find out the compressor name.
 ICGetInfo(hic, &icinfo, sizeof(icinfo));

 // Add it to the combo box.
 n = ComboBox_AddString(hwndC,icinfo.szDescription);
 ComboBox_SetItemData(hwndC, n, hic);
 }
}

The following example attempts to locate a specific compressor to compress the 8-bit RGB format to
an 8-bit RLE format.

BITMAPINFOHEADER bihIn, bihOut;
HIC hIC

// Initialize the bitmap structure.
biSize = bihOut.biSize = sizeof(BITMAPINFOHEADER);
bihIn.biWidth = bihIn.biHeight = bihOut.biWidth = bihOut.biHeight = 0;

bihIn.biPlanes = bihOut.biPlanes= 1;
bihIn.biCompression = BI_RGB; // standard RGB bitmap for input
bihOut.biCompression = BI_RLE8; // 8-bit RLE for output format
bihIn.biBitcount = bihOut.biBitCount = 8; // 8 bits-per-pixel format
bihIn.biSizeImage = bihOut.biSizeImage = 0;
bihIn.biXPelsPerMeter = bih.biYPelsPerMeter =
 bihOut.biXPelsPerMeter = bihOut.biYPelsPerMeter = 0;
bihIn.biClrUsed = bih.biClrImportant =
 bihOut.biClrUsed = bihOut.biClrImportant = 256;
hIC = ICLocate (ICTYPE_VIDEO, 0L,
 (LPBITMAPINFOHEADER)&bihIn,
 (LPBITMAPINFOHEADER)&bihOut, ICMODE_COMPRESS);

 Installing Compressors and Decompressors

The following example shows how an application can install a function as a compressor or
decompressor.

// This function looks like a DriverProc entry point.
LRESULT MyCodecFunction(DWORD dwID, HDRVR hDriver,
 UINT uiMessage, LPARAM lParam1, LPARAM lParam2);

// This function installs the MyCodecFunction as a compressor.
result = ICInstall (ICTYPE_VIDEO, mmioFOURCC('s','a','m','p'),

(LPARAM)(FARPROC)&MyCodecFunction, NULL, ICINSTALL_FUNCTION);

 Configuring Compressors and Decompressors

The following example demonstrates how to test if a compressor supports the configuration dialog box
and to display it if it does.

// If the compressor handles a configuration dialog box, display it
// using our application window as the parent window.
if (ICQueryConfigure(hIC)) ICConfigure(hIC, hwndApp);

The following example shows how to obtain the state data.

dwStateSize = ICGetStateSize(hIC); // gets size of buffer required
h = GlobalAlloc(GHND, dwStateSize); // allocates buffer
ICGetState(hIC, (LPVOID)lpData, dwStateSize); // gets the state data

// Store the state data as required.

The following example shows how to restore state data. State data restored by applications should not
contain any changes to the state data obtained from a driver.

ICSetState(hIC, (LPVOID)lpData, dwStateSize); // sets the new state data

 Obtaining Information About Compressors and Decompressors

The following example shows how to obtain information about a compressor or decompressor.

ICINFO ICInfo;
ICGetInfo(hIC, &ICInfo, sizeof(ICInfo));

The following example uses the ICGetDefaultKeyFrameRate and ICGetDefaultQuality macros to
obtain the default values:

DWORD dwKeyFrameRate, dwQuality;
dwKeyFrameRate = ICGetDefaultKeyFrameRate(hIC);
dwQuality = ICGetDefaultQuality(hIC);

The following example uses the ICQueryAbout and ICAbout macros to display an About dialog box
for the compressor or decompressor, if the dialog box exists.

// If the compressor has an About dialog box, display it.
if (ICQueryAbout(hIC)) ICAbout(hIC, hwndApp);

 Determining a Compressor's Output Format

The following example determines the buffer size needed for the data specifying the compression
format, allocates a buffer of the appropriate size, and retrieves the compression format information.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;
.
. // *lpbiIn must be initialized to the input format.
.
dwFormatSize = ICCompressGetFormatSize(hIC, lpbiIn);
h = GlobalAlloc(GHND, dwFormatSize);
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h);
ICCompressGetFormat(hIC, lpbiIn, lpbiOut);

The following example uses the ICCompressQuery macro to determine if a compressor can handle
the input and output formats.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// Both *lpbiIn and *lpbiOut must be initialized to the respective
// formats.
if (ICCompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK){
.
. // Format is supported; use the compressor.
.
}

The following example determines the buffer size and allocates a buffer of that size.

// Find the worst-case buffer size.
dwCompressBufferSize = ICCompressGetSize(hIC, lpbiIn, lpbiOut);

// Allocate a buffer and get lpOutput to point to it.
h = GlobalAlloc(GHND, dwCompressBufferSize);
lpOutput = (LPVOID)GlobalLock(h);

 Compressing Data

The following example compresses image data for use in an AVI file. It assumes the compressor does
not support the VIDCF_CRUNCH or VIDCF_TEMPORAL flags, but it does support VIDCF_QUALITY.

DWORD dwCkID;
DWORD dwCompFlags;
DWORD dwQuality;
LONG lNumFrames, lFrameNum;
// Assume dwNumFrames is initialized to the total number of frames.
// Assume dwQuality holds the proper quality value (0-10000).
// Assume lpbiOut, lpOut, lpbiIn, and lpIn are initialized properly.

// If OK to start, compress each frame.
if (ICCompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK){
 for (lFrameNum = 0; lFrameNum < lNumFrames; lFrameNum++){
 if (ICCompress(hIC, 0, lpbiOut, lpOut, lpbiIn, lpIn,
 &dwCkID, &dwCompFlags, lFrameNum,
 0, dwQuality, NULL, NULL) == ICERR_OK){
 // Write compressed data to the AVI file.
 .
 . // Set lpIn to the next frame in the sequence.
 .
 }
 else {
 // Handle compressor error.
 }
 }
 ICCompressEnd(hIC); // terminate compression
}
else {
 // Handle the error identifying the unsupported format.
}

 Determining a Decompressor's Output Format

The following example determines the buffer size needed for the data specifying the decompression
format, allocates a buffer of the appropriate size, and retrieves the decompression format information.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// Assume *lpbiIn points to the input (compressed) format.
dwFormatSize = ICDecompressGetFormatSize(hIC, lpbiIn);
h = GlobalAlloc(GHND, dwFormatSize);
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h);
ICDecompressGetFormat(hIC, lpbiIn, lpbiOut);

The following example shows how an application can use the ICDecompressQuery macro to
determine if a decompressor can handle the input and output formats.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;
// Assume *lpbiIn & *lpbiOut are initialized to the respective
// formats.
if (ICDecompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK){
 .
 . // Format is supported - use the decompressor.
 .
}

The following fragment shows how to get the palette information:

ICDecompressGetPalette(hIC, lpbiIn, lpbiOut);

// Move up to the palette.
lpPalette = (LPBYTE)lpbiOut + lpbi->biSize;

 Decompressing Data

The following example shows how an application can initialize a decompressor, decompress a frame
sequence, and terminate decompression.

LPBITMAPINFOHEADER lbpiIn, lpbiOut;
LPVOID lpIn, lpOut;
LONG lNumFrames, lFrameNum;

// Assume lpbiIn and lpbiOut are initialized to the input and output
// format and lpIn and lpOut are pointing to the buffers.
if (ICDecompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK){
 for (lFrameNum = 0; lFrameNum < lNumFrames, lFrameNum++){
 if (ICDecompress(hIC, 0, lpbiIn, lpIn, lpbiOut,
 lpOut) == ICERR_OK)
 {
 // Frame decompressed OK so we can process it as required.
 } else {
 // Handle the decompression error that occurred.
 }
 }
 ICDecompressEnd(hIC);
} else {
 // Handle the error identifying an unsupported format.
}

 Determining If a Driver Can Handle the Input Format

The following example shows how to check the input format with the ICDrawQuery macro.

// lpbiIn points to BITMAPINFOHEADER structure indicating the input
// format.
if (ICDrawQuery(hIC, lpbiIn) == ICERR_OK)
{
 // Driver recognizes the input format.
} else {
 // Need a different decompressor.
}

 Preparing to Draw Data

The following example shows the initialization sequence that instructs the decompressor to draw full-
screen.

// Assume lpbiIn has the input format, dwRate has the data rate.
if (ICDrawBegin(hIC, ICDRAW_QUERY | ICDRAW_FULLSCREEN, NULL, NULL,
 NULL, 0, 0, 0, 0, lpbiIn, 0, 0, 0, 0, dwRate,
 dwScale) == ICERR_OK)
{
 // Decompressor supports this drawing so set up to draw.
 ICDrawBegin(hIC, ICDRAW_FULLSCREEN, hPal, NULL, NULL, 0, 0, 0,
 0, lpbiIn, 0, 0, lbpi->biWidth, lpbi->biHeight, dwRate,
 dwScale);
 .
 . // Start decompressing and drawing frames.
 .

 // Drawing done. Terminate procedure.
 ICDrawEnd(hIC);
} else {
 .
 . // Use another renderer to draw data on the screen;
 . // ICDraw does not support the format.
}

 Drawing Data

The following example uses the ICDraw functions to draw data on the screen.

DWORD dwNumBuffers;

// Find out how many buffers need filling before drawing starts.
ICGetBuffersWanted(hIC, &dwNumBuffers);
for (dw = 0; dw < dwNumBuffers; dw++){
 ICDraw(hIC, 0, lpFormat, lpData, cbData, dw); // fill the pipeline
 .
 . // Point lpFormat and lpData to next format and buffer.
 .
}
ICDrawStart(hIC); // starts the clock
dw = 0;
while (fPlaying) {
 ICDraw(hIC, 0, lpFormat, lpData, chData, dw); // fill more buffers
 .
 . // Point lpFormat and lpData to next format and buffer,
 . // update dw.
}

ICDrawStop(hIC); // stops drawing and decompressing when done
ICDrawFlush(hIC); // flushes any existing buffers
ICDrawEnd(hIC); // ends decompression

 Monitoring Compressor and Decompressor Progress

The following example shows how the ICSetStatusProc function is used to inform the compressor or
decompressor of the callback function address:

ICSetStatusProc(compvars.hic, 0, (LPARAM) (UINT) hwndApp,
 &PreviewStatusProc);

The following example shows the callback function installed by the previous fragment:

LONG CALLBACK export PreviewStatusProc(LPARAM lParam,
 UINT message, LONG l)
{
 switch (message) {
 MSG msg;
 case ICSTATUS_START:
 .
 . // Create and display status dialog box.
 .
 break;
 case ICSTATUS_STATUS:
 ProSetBarPos((int) l); // sets status bar positions

 // Watch for abort message
 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 if (msg.message == WM_KEYDOWN && msg.wParam == VK_ESCAPE)
 return 1;
 if (msg.message == WM_SYSCOMMAND &&
 (msg.wParam & 0xFFF0) == SC_CLOSE)
 return 1;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 break;
 case ICSTATUS_END:
 .
 . // Close and destroy status dialog box.
 .
 break;
 case ICSTATUS_YIELD:
 .
 .
 .
 break;
 }
 return 0;
}

 Video Compression Manager Reference

This section describes the functions, messages and macros, notifications, and structures associated
with VCM. These elements are grouped as follows.

Compressor Installation and Removal

ICInstall
ICLocate
ICOPEN
ICClose
ICRemove
ICOpenFunction
Locating and Opening a Compressor

ICLocate
ICOPEN
ICDecompressOpen
ICDrawOpen
ICINFO
ICClose
Selecting Compressors

ICCompressorChoose
ICCompressorFree
COMPVARS
Configuring Compressors

ICM_CONFIGURE
ICM_CONFIGURE
ICM_GETSTATE
ICM_GETSTATE
ICM_SETSTATE
ICSendMessage
Compressor Information

ICGetInfo
ICINFO
ICM_GETDEFAULTKEYFRAMERATE
ICGetDisplayFormat
ICM_GETDEFAULTQUALITY
ICM_ABOUT
ICM_ABOUT
Single Image Compression

ICImageCompress
Sequence Compression

ICSeqCompressFrame
ICSeqCompressFrameStart
ICSeqCompressFrameEnd
COMPVARS

ICCompressorChoose
Image Data Compression

ICM_COMPRESS_GET_FORMAT

ICM_COMPRESS_GET_FORMAT
ICM_COMPRESS_QUERY
ICM_COMPRESS_GET_SIZE
ICM_COMPRESS_BEGIN
ICCOMPRESS
ICM_COMPRESS_END
ICM_COMPRESS_BEGIN
Compressor Monitoring

ICSETSTATUSPROC
Decompressing Single Images

ICImageDecompress
Decompressing Image Data

ICDECOMPRESSEX
ICDecompressExBegin
ICM_DECOMPRESSEX_END
ICM_DECOMPRESS_GET_FORMAT
ICM_DECOMPRESS_GET_FORMAT
ICM_DECOMPRESS_GET_PALETTE
ICDecompressExQuery
ICDECOMPRESS
ICM_DECOMPRESS_BEGIN
ICM_DECOMPRESS_END
ICM_DECOMPRESS_QUERY
Using Hardware-Drawing Capabilities

ICGetInfo
ICDRAWBEGIN
ICM_DRAW_END
ICM_DRAW_FLUSH
ICM_DRAW_QUERY
ICDrawSuggestFormat
ICM_DRAW_START
ICM_DRAW_STOP
ICM_GETBUFFERSWANTED
ICM_DRAW_REALIZE
ICDrawOpen
ICDRAW
ICM_DRAW_GETTIME
ICM_DRAW_SETTIME
ICM_DRAW_WINDOW
ICM_DRAW_REALIZE
ICM_DRAW_CHANGEPALETTE
ICM_DRAW_RENDERBUFFER

 Video Compression Manager Functions and Macros

An application uses VCM functions to initialize and control compression and decompression
operations. These macros extend the feature set.

 ICClose

LRESULT ICClose(HIC hic);

Closes a compressor or decompressor.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a compressor or decompressor.

 ICCompress

DWORD ICCompress(HIC hic, DWORD dwFlags, LPBITMAPINFOHEADER lpbiOutput,
 LPVOID lpData, LPBITMAPINFOHEADER lpbiInput, LPVOID lpBits,
 LPDWORD lpckid, LPDWORD lpdwFlags, LONG lFrameNum,
 DWORD dwFrameSize, DWORD dwQuality, LPBITMAPINFOHEADER lpbiPrev,
 LPVOID lpPrev);

Compresses a single video image.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the compressor to use.
dwFlags

Compression flag. The following value is defined:
ICCOMPRESS_KEYFRAME

Compressor should make this frame a key frame.
lpbiOutput

Address of a BITMAPINFO structure containing the output format.
lpData

Address of an output buffer large enough to contain a compressed frame.
lpbiInput

Address of a BITMAPINFO structure containing the input format.
lpBits

Address of the input buffer.
lpckid

Reserved; do not use.
lpdwFlags

Address of the return flags used in the AVI index. The following value is defined:
AVIIF_KEYFRAME

Current frame is a key frame.
lFrameNum

Frame number.
dwFrameSize

Requested frame size, in bytes. Specify a nonzero value if the compressor supports a suggested
frame size, as indicated by the presence of the VIDCF_CRUNCH flag returned by the ICGetInfo
function. If this flag is not set or a data rate for the frame is not specified, specify zero for this
parameter.
A compressor might have to sacrifice image quality or make some other trade-off to obtain the size
goal specified in this parameter.

dwQuality
Requested quality value for the frame. Specify a nonzero value if the compressor supports a
suggested quality value, as indicated by the presence of the VIDCF_QUALITY flag returned by
ICGetInfo. Otherwise, specify zero for this parameter.

lpbiPrev
Address of a BITMAPINFO structure containing the format of the previous frame.

lpPrev
Address of the uncompressed image of the previous frame. This parameter is not used for fast
temporal compression. Specify NULL for this parameter when compressing a key frame, if the
compressor does not support temporal compression, or if the compressor does not require an
external buffer to store the format and data of the previous image.

You can obtain the required by size of the output buffer by sending the ICM_COMPRESS_GET_SIZE
message (or by using the ICCompressGetSize macro).

The compressor sets the contents of lpdwFlags to AVIIF_KEYFRAME when it creates a key frame. If
your application creates AVI files, it should save the information returned for lpckid and lpdwFlags in
the file.

Compressors use lpbiPrev and lpPrev to perform temporal compression and require an external buffer
to store the format and data of the previous frame. Specify NULL for lpbiPrev and lpPrev when
compressing a key frame, when performing fast compression, or if the compressor has its own buffer to
store the format and data of the previous image. Specify non-NULL values for these parameters if
ICGetInfo returns the VIDCF_TEMPORAL flag, the compressor is performing normal compression,
and the frame to compress is not a key frame.

 ICCompressorChoose

BOOL ICCompressorChoose(HWND hwnd, UINT uiFlags, LPVOID pvIn,
 LPVOID lpData, PCOMPVARS pc, LPSTR lpszTitle);

Displays a dialog box in which a user can select a compressor. This function can display all registered
compressors or list only the compressors that support a specific format.

· Returns TRUE if the user chooses a compressor and presses OK. Returns FALSE on error or if the
user presses CANCEL.

hwnd
Handle of a parent window for the dialog box.

uiFlags
Applicable flags. The following values are defined:
ICMF_CHOOSE_ALLCOMPRESSORS

All compressors should appear in the selection list. If this flag is not specified, only the
compressors that can handle the input format appear in the selection list.

ICMF_CHOOSE_DATARATE
Displays a check box and edit box to enter the data rate for the movie.

ICMF_CHOOSE_KEYFRAME
Displays a check box and edit box to enter the frequency of key frames.

ICMF_CHOOSE_PREVIEW
Displays a button to expand the dialog box to include a preview window. The preview window
shows how frames of your movie will appear when compressed with the current settings.

pvIn
Uncompressed data input format. Only compressors that support the specified data input format are
included in the compressor list. This parameter is optional.

lpData
Address of an AVI stream interface to use in the preview window. You must specify a video stream.
This parameter is optional.

pc
Address of a COMPVARS structure. The information returned initializes the structure for use with
other functions.

lpszTitle
Address of a null-terminated string containing a title for the dialog box. This parameter is optional.

Before using this function, set the cbSize member of the COMPVARS structure to the size of the
structure. Initialize the rest of the structure to zeros unless you want to specify some valid defaults for
the dialog box. If specifying defaults, set the dwFlags member to ICMF_COMPVARS_VALID and
initialize the other members of the structure. For more information about initializing the structure, see
the ICSeqCompressFrameStart function and COMPVARS.

 ICCompressorFree

void ICCompressorFree(PCOMPVARS pc);

Frees the resources in the COMPVARS structure used by other VCM functions.

pc
Address of the COMPVARS structure containing the resources to be freed.

Use this function to release the resources in the COMPVARS structure after using the
ICCompressorChoose, ICSeqCompressFrameStart, ICSeqCompressFrame, and
ICSeqCompressFrameEnd functions.

 ICDecompress

DWORD ICDecompress(HIC hic, DWORD dwFlags,
 LPBITMAPINFOHEADER lpbiFormat, LPVOID lpData,
 LPBITMAPINFOHEADER lpbi, LPVOID lpBits);

Decompresses a single video frame.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the decompressor to use.
dwFlags

Applicable decompression flags. The following values are defined:
ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME
Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME
Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL
Current frame precedes the point in the movie where playback starts and, therefore, will not be
drawn.

ICDECOMPRESS_UPDATE
Screen is being updated or refreshed.

lpbiFormat
Address of a BITMAPINFO structure containing the format of the compressed data.

lpData
Address of the input data.

lpbi
Address of a BITMAPINFO structure containing the output format.

lpBits
Address of a buffer that is large enough to contain the decompressed data.

 ICDecompressEx

DWORD ICDecompressEx(HIC hic, DWORD dwFlags, LPBITMAPINFOHEADER lpbiSrc,
 LPVOID lpSrc, int xSrc, int ySrc, int dxSrc, int dySrc,
 LPBITMAPINFOHEADER lpbiDst, LPVOID lpDst, int xDst, int yDst,
 int dxDst, int dyDst);

Decompresses a single video frame.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the decompressor.
dwFlags

Decompression flags. The following values are defined:
ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME
Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME
Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL
Current frame precedes the point in the movie where playback starts and, therefore, will not be
drawn.

ICDECOMPRESS_UPDATE
Screen is being updated or refreshed.

lpbiSrc
Address of a BITMAPINFOHEADER structure containing the format of the compressed data.

lpSrc
Address of the input data.

xSrc, ySrc
The x- and y- coordinates of the source rectangle for the DIB specified by lpbiSrc.

dxSrc, dySrc
Width and height of the source rectangle.

lpbiDst
Address of a BITMAPINFOHEADER structure containing the output format.

lpDst
Address of a buffer that is large enough to contain the decompressed data.

xDst, yDst
The x- and y-coordinates of the destination rectangle for the DIB specified by lpbiDst.

dxDst, dyDst
Width and height of the destination rectangle.

Typically, applications use the ICDECOMPRESS_PREROLL flag to seek to a key frame in a
compressed stream. The flag is sent with the key frame and with subsequent frames required to
decompress the desired frame.

 ICDecompressExBegin

DWORD ICDecompressExBegin(HIC hic, DWORD dwFlags,
 LPBITMAPINFOHEADER lpbiSrc, LPVOID lpSrc, int xSrc, int ySrc,
 int dxSrc, int dySrc, LPBITMAPINFOHEADER lpbiDst, LPVOID lpDst,
 int xDst, int yDst, int dxDst, int dyDst);

Prepares a decompressor for decompressing data.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the decompressor to use.
dwFlags

Decompression flags. The following values are defined:
ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME
Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME
Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL
Current frame precedes the point in the movie where playback starts and, therefore, will not be
drawn.

ICDECOMPRESS_UPDATE
Screen is being updated or refreshed.

lpbiSrc
Address of a BITMAPINFOHEADER structure containing the format of the compressed data.

lpSrc
Address of the input data.

xSrc, ySrc
The x- and y-coordinates of the source rectangle for the DIB specified by lpbiSrc.

dxSrc, dySrc
Width and height of the source rectangle.

lpbiDst
Address of a BITMAPINFOHEADER structure containing the output format.

lpDst
Address of a buffer that is large enough to contain the decompressed data.

xDst, yDst
The x- and y-coordinates of the destination rectangle for the DIB specified by lpbiDst.

dxDst, dyDst
Width and height of the destination rectangle.

 ICDecompressExQuery

DWORD ICDecompressExQuery(HIC hic, DWORD dwFlags,
 LPBITMAPINFOHEADER lpbiSrc, LPVOID lpSrc, int xSrc, int ySrc,
 int dxSrc, int dySrc, LPBITMAPINFOHEADER lpbiDst, LPVOID lpDst,
 int xDst, int yDst, int dxDst, int dyDst);

Determines if a decompressor can decompress data with a specific format.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the decompressor to use.
dwFlags

Reserved; do not use.
lpbiSrc

Address of a BITMAPINFOHEADER structure containing the format of the compressed data to
decompress.

lpSrc
Reserved; must be NULL.

xSrc, ySrc
The x- and y-coordinates of the source rectangle for the DIB specified by lpbiSrc.

dxSrc, dySrc
Width and height of the source rectangle.

lpbiDst
Address of a BITMAPINFOHEADER structure containing the output format. If the value of this
parameter is NULL, the function determines whether the input format is supported and this
parameter is ignored.

lpDst
Address of a buffer that is large enough to contain the decompressed data.

xDst, yDst
The x- and y-coordinates of the destination rectangle for the DIB specified by lpbiDst.

dxDst, dyDst
Width and height of the destination rectangle.

 ICDecompressOpen

HIC ICDecompressOpen(DWORD fccType, DWORD fccHandler,
 LPBITMAPINFOHEADER lpbiIn, LPBITMAPINFOHEADER lpbiOut)

Opens a decompressor that is compatible with the specified formats.

· Returns a handle of a decompressor if successful or zero otherwise.
fccType

Four-character code indicating the type of compressor to open. For video streams, the value of this
parameter is "VIDC" or ICTYPE_VIDEO.

fccHandler
Four-character code indicating the preferred stream handler to use. Typically, this information is
stored in the stream header in an AVI file.

lpbiIn
Address of a structure defining the input format. A decompressor handle is not returned unless it can
decompress this format. For bitmaps, this parameter refers to a BITMAPINFOHEADER structure.

lpbiOut
Address of a structure defining an optional decompression format. You can also specify zero to use
the default output format associated with the input format.
If this parameter is nonzero, a compressor handle is not returned unless it can create this output
format. For bitmaps, this parameter refers to a BITMAPINFOHEADER structure.

The ICDecompressOpen macro is defined as follows:

#define ICDecompressOpen(fccType, fccHandler, lpbiIn, lpbiOut) \
 ICLocate(fccType, fccHandler, lpbiIn, lpbiOut, ICMODE_DECOMPRESS);

 ICDraw

DWORD ICDraw(HIC hic, DWORD dwFlags, LPVOID lpFormat,
 LPVOID lpData, DWORD cbData, LONG lTime);

Decompresses an image for drawing.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of an decompressor.
dwFlags

Decompression flags. The following values are defined:
ICDRAW_HURRYUP

Data is buffered and not drawn to the screen. Use this flag for fastest decompression.
ICDRAW_NOTKEYFRAME

Current frame is not a key frame.
ICDRAW_NULLFRAME

Current frame does not contain any data and the previous frame should be redrawn.
ICDRAW_PREROLL

Current frame of video occurs before playback should start. For example, if playback will begin on
frame 10, and frame 0 is the nearest previous key frame, frames 0 through 9 are sent to the driver
with the ICDRAW_PREROLL flag set. The driver needs this data to display frame 10 properly.

ICDRAW_UPDATE
Updates the screen based on previously received data. Set lpData to NULL when this flag is
used.

lpFormat
Address of a BITMAPINFOHEADER structure containing the input format of the data.

lpData
Address of the input data.

cbData
Size of the input data, in bytes.

lTime
Time, in samples, to draw this frame. The units for video data are frames. For a definition of the
playback rate, see the dwRate and dwScale members of the ICDRAWBEGIN structure.

You can initiate drawing the frames by sending the ICM_DRAW_START message (or by using the
ICDrawStart macro). The application should be sure to buffer the required number of frames before
drawing is started. Send the KM_GETBUFFERSWANTED message (or use the ICGetBuffersWanted
macro) to obtain this value.

 ICDrawBegin

DWORD ICDrawBegin(HIC hic, DWORD dwFlags, HPALETTE hpal, HWND hwnd,
 HDC hdc, int xDst, int yDst, int dxDst, int dyDst,
 LPBITMAPINFOHEADER lpbi, int xSrc, int ySrc, int dxSrc,
 int dySrc, DWORD dwRate, DWORD dwScale);

Initializes the renderer and prepares the drawing destination for drawing.

· Returns ICERR_OK if the renderer can decompress the data or ICERR_UNSUPPORTED
otherwise.

hic
Handle of the decompressor to use.

dwFlags
Decompression flags. The following values are defined:
ICDRAW_ANIMATE

Application can animate the palette.
ICDRAW_CONTINUE

Drawing is a continuation of the previous frame.
ICDRAW_FULLSCREEN

Draws the decompressed data on the full screen.
ICDRAW_HDC

Draws the decompressed data to a window or a DC.
ICDRAW_MEMORYDC

DC is off-screen.
ICDRAW_QUERY

Determines if the decompressor can decompress the data. The driver does not decompress the
data.

ICDRAW_UPDATING
Current frame is being updated rather than played.

hpal
Handle of the palette used for drawing.

hwnd
Handle of the window used for drawing.

hdc
DC used for drawing.

xDst, yDst
The x- and y-coordinates of the upper right corner of the destination rectangle.

dxDst, dyDst
Width and height of the destination rectangle.

lpbi
Address of a BITMAPINFO structure containing the format of the input data to be decompressed.

xSrc, ySrc
The x- and y-coordinates of the upper right corner of the source rectangle.

dxSrc, dySrc
Width and height of the source rectangle.

dwRate
Frame rate numerator. The frame rate, in frames per second, is obtained by dividing dwRate by
dwScale.

dwScale

Frame rate denominator. The frame rate, in frames per second, is obtained by dividing dwRate by
dwScale.

The ICDRAW_HDC and ICDRAW_FULLSCREEN flags are mutually exclusive. If an application sets
the ICDRAW_HDC flag in dwFlags, the decompressor uses hwnd, hdc, and the parameters defining
the destination rectangle (xDst, yDst, dxDst, and dyDst). Your application should set these parameters
to the size of the destination rectangle. Specify destination rectangle values relative to the current
window or DC.

If an application sets the ICDRAW_FULLSCREEN flag in dwFlags, the hwnd and hdc parameters are
not used and should be set to NULL. Also, the destination rectangle is not used and its parameters can
be set to zero.

The source rectangle is relative to the full video frame. The portion of the video frame specified by the
source rectangle is stretched or shrunk to fit the destination rectangle.

The dwRate and dwScale parameters specify the decompression rate. The integer value specified for
dwRate divided by the integer value specified for dwScale defines the frame rate in frames per second.
This value is used by the renderer when it is responsible for timing frames during playback.

 ICDrawOpen

HIC ICDrawOpen(DWORD fccType, DWORD fccHandler,
 LPBITMAPINFOHEADER lpbiIn)

Opens a driver that can draw images with the specified format.

· Returns a handle of a driver if successful or zero otherwise.
fccType

Four-character code indicating the type of driver to open. For video streams, the value of this
parameter is "VIDC" or ICTYPE_VIDEO.

fccHandler
Four-character code indicating the preferred stream handler to use. Typically, this information is
stored in the stream header in an AVI file.

lpbiIn
Address of the structure defining the input format. A driver handle will not be returned unless it can
decompress this format. For images, this parameter refers to a BITMAPINFOHEADER structure.

The ICDrawOpen macro is defined as follows:

#define ICDrawOpen(fccType, fccHandler, lpbiIn) \
 ICLocate(fccType, fccHandler, lpbiIn, NULL, ICMODE_DRAW);

 ICDrawSuggestFormat

DWORD ICDrawSuggestFormat(HIC hic, LPBITMAPINFOHEADER lpbiIn,
 LPBITMAPINFOHEADER lpbiOut, int dxSrc, int dySrc, int dxDst,
 int dyDst, HIC hicDecompressor);

Notifies the drawing handler to suggest the input data format.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the driver to use.
lpbiIn

Address of a structure containing the format of the compressed data. For bitmaps, this is a
BITMAPINFOHEADER structure.

lpbiOut
Address of a structure to return the suggested format. The drawing handler can receive and draw
data from this format. For bitmaps, this is a BITMAPINFOHEADER structure.

dxSrc, dySrc
Width and height of the source rectangle.

dxDst, dyDst
Width and height of the destination rectangle.

hicDecompressor
Decompressor that can use the format of data in lpbiIn.

Applications can use this function to determine alternative input formats that a drawing handler can
decompress and if the drawing handler can stretch data. If the drawing handler cannot stretch data as
requested, the application might have to stretch the data.

If the drawing handler cannot decompress a format provided by an application, use the
ICDecompress, ICDecompressEx, ICDecompressExBegin, ICDecompressExQuery, and
ICDecompressOpen functions to obtain alternate formats.

 ICGetDisplayFormat

HIC ICGetDisplayFormat(HIC hic, LPBITMAPINFOHEADER lpbiIn,
 LPBITMAPINFOHEADER lpbiOut, int BitDepth, int dx, int dy);

Determines the best format available for displaying a compressed image. The function also opens a
compressor if a handle of an open compressor is not specified.

· Returns a handle of a decompressor if successful or zero otherwise.
hic

Handle of the compressor to use. Specify NULL to have VCM select and open an appropriate
compressor.

lpbiIn
Address of BITMAPINFOHEADER structure containing the compressed format.

lpbiOut
Address of a buffer to return the decompressed format. The buffer should be large enough for a
BITMAPINFOHEADER structure and 256 color entries.

BitDepth
Preferred bit depth, if nonzero.

dx, dy
Width and height multipliers to stretch the image. If this parameter is zero, that dimension is not
stretched.

 ICGetInfo

LRESULT ICGetInfo(HIC hic, ICINFO FAR * lpicinfo, DWORD cb);

Obtains information about a compressor.

· Returns the number of bytes copied into the structure or zero if an error occurs.
hic

Handle of a compressor.
lpicinfo

Address of the ICINFO structure to return information about the compressor.
cb

Size, in bytes, of the structure pointed to by lpicinfo.

 ICImageCompress

HANDLE ICImageCompress(HIC hic, UINT uiFlags, LPBITMAPINFO lpbiIn,
 LPVOID lpBits, LPBITMAPINFO lpbiOut, LONG lQuality,
 LONG FAR * plSize);

Compresses an image to a given size. This function does not require initialization functions.

· Returns a handle of a compressed DIB. The image data follows the format header.
hic

Handle of a compressor opened with the ICOpen function. Specify NULL to have VCM select an
appropriate compressor for the compression format. An application can have the user select the
compressor by using the ICCompressorChoose function, which opens the selected compressor
and returns a handle of the compressor in this parameter.

uiFlags
Reserved; must be zero.

lpbiIn
Address of the BITMAPINFO structure containing the input data format.

lpBits
Address of input data bits to compress. The data bits exclude header and format information.

lpbiOut
Address of the BITMAPINFO structure containing the compressed output format. Specify NULL to
have the compressor use an appropriate format.

lQuality
Quality value used by the compressor. Values range from 0 to 10,000.

plSize
Maximum size desired for the compressed image. The compressor might not be able to compress
the data to fit within this size. When the function returns, this parameter points to the size of the
compressed image. Image sizes are specified in bytes.

To obtain the format information from the LPBITMAPINFOHEADER structure, use the GlobalLock
function to lock the data. Use the GlobalFree function to free the DIB when you are finished.

 ICImageDecompress

HANDLE ICImageDecompress(HIC hic, UINT uiFlags, LPBITMAPINFO lpbiIn,
 LPVOID lpBits, LPBITMAPINFO lpbiOut);

Decompresses an image without using initialization functions.

· Returns a handle of an uncompressed DIB in the CF_DIB format if successful or NULL otherwise.
Image data follows the format header.

hic
Handle of a decompressor opened with the ICOpen function. Specify NULL to have VCM select an
appropriate decompressor for the compressed image.

uiFlags
Reserved; must be zero.

lpbiIn
Compressed input data format.

lpBits
Address of input data bits to compress. The data bits exclude header and format information.

lpbiOut
Decompressed output format. Specify NULL to let decompressor use an appropriate format.

To obtain the format information from the LPBITMAPINFOHEADER structure, use the GlobalLock
function to lock the data. Use the GlobalFree function to free the DIB when you are finished.

 ICInfo

BOOL ICInfo(DWORD fccType, DWORD fccHandler, ICINFO FAR * lpicinfo);

Retrieves information about specific installed compressors or enumerates the installed compressors.

· Returns TRUE if successful or FALSE otherwise.
fccType

Four-character code indicating the type of compressor. Specify zero to match all compressor types.
fccHandler

Four-character code identifying a specific compressor or a number between zero and the number of
installed compressors of the type specified by fccType.

lpicinfo
Address of a ICINFO structure to return information about the compressor.

To enumerate the compressors or decompressors, specify an integer for fccHandler. This function
returns information for integers between zero and the number of installed compressors or
decompressors of the type specified for fccType.

 ICInstall

BOOL ICInstall(DWORD fccType, DWORD fccHandler, LPARAM lParam,
 LPSTR szDesc, UINT wFlags);

Installs a new compressor or decompressor.

· Returns TRUE if successful or FALSE otherwise.
fccType

Four-character code indicating the type of data used by the compressor or decompressor. Specify
"VIDC" for a video compressor or decompressor.

fccHandler
Four-character code identifying a specific compressor or decompressor.

lParam
Address of a null-terminated string containing the name of the compressor or decompressor, or the
address of a function used for compression or decompression. The contents of this parameter are
defined by the flags set for wFlags.

szDesc
Reserved; do not use.

wFlags
Flags defining the contents of lParam. The following values are defined:
ICINSTALL_DRIVER

The lParam parameter contains the address of a
null-terminated string that names the compressor to install.

ICINSTALL_FUNCTION
The lParam parameter contains the address of a compressor function. This function should be
structured like the DriverProc entry point function used by compressors.

Applications must open an installed compressor or decompressor before using it.

If your application installs a function as a compressor or decompressor, it should remove the function
with the ICRemove function before it terminates. This prevents other applications from trying to access
the function when it is not available.

 ICLocate

HIC ICLocate(DWORD fccType, DWORD fccHandler, LPBITMAPINFOHEADER lpbiIn,
 LPBITMAPINFOHEADER lpbiOut, WORD wFlags);

Finds a compressor or decompressor that can handle images with the specified formats, or finds a
driver that can decompress an image with a specified format directly to hardware.

· Returns a handle of a compressor or decompressor if successful or zero otherwise.
fccType

Four-character code indicating the type of compressor or decompressor to open. For video streams,
the value of this parameter is "VIDC".

fccHandler
Preferred handler of the specified type. Typically, the handler type is stored in the stream header in
an AVI file. Specify NULL if your application can use any handler type or it does not know the
handler type to use.

lpbiIn
Address of a BITMAPINFOHEADER structure defining the input format. A compressor handle is not
returned unless it supports this format.

lpbiOut
Address of a BITMAPINFOHEADER structure defining an optional decompressed format. You can
also specify zero to use the default output format associated with the input format.
If this parameter is nonzero, a compressor handle is not returned unless it can create this output
format.

wFlags
Flags that describe the search criteria for a compressor or decompressor. The following values are
defined:
ICMODE_COMPRESS

Finds a compressor that can compress an image with a format defined by lpbiIn to the format
defined by lpbiOut.

ICMODE_DECOMPRESS
Finds a decompressor that can decompress an image with a format defined by lpbiIn to the
format defined by lpbiOut.

ICMODE_DRAW
Finds a decompressor that can decompress an image with a format defined by lpbiIn and draw it
directly to hardware.

ICMODE_FASTCOMPRESS
Has the same meaning as ICMODE_COMPRESS except the compressor is used for a real-time
operation and emphasizes speed over quality.

ICMODE_FASTDECOMPRESS
Has the same meaning as ICMODE_DECOMPRESS except the decompressor is used for a real-
time operation and emphasizes speed over quality.

 ICOpen

HIC ICOpen(DWORD fccType, DWORD fccHandler, UINT wMode);

Opens a compressor or decompressor.

· Returns a handle of a compressor or decompressor if successful or zero otherwise.
fccType

Four-character code indicating the type of compressor or decompressor to open. For video streams,
the value of this parameter is "VIDC".

fccHandler
Preferred handler of the specified type. Typically, the handler type is stored in the stream header in
an AVI file.

wMode
Flag defining the use of the compressor or decompressor. The following values are defined:
ICMODE_COMPRESS

Compressor will perform normal compression.
ICMODE_DECOMPRESS

Decompressor will perform normal decompression.
ICMODE_DRAW

Decompressor will decompress and draw the data directly to hardware.
ICMODE_FASTCOMPRESS

Compressor will perform fast (real-time) compression.
ICMODE_FASTDECOMPRESS

Decompressor will perform fast (real-time) decompression.
ICMODE_QUERY

Queries the compressor or decompressor for information.

 ICOpenFunction

HIC ICOpenFunction(DWORD fccType, DWORD fccHandler, UINT wMode,
 FARPROC lpfnHandler);

Opens a compressor or decompressor defined as a function.

· Returns a handle of a compressor or decompressor if successful or zero otherwise.
fccType

Type of compressor to open. For video, the value of this parameter is ICTYPE_VIDEO.
fccHandler

Preferred handler of the specified type. Typically, this comes from the stream header in an AVI file.
wMode

Flag to define the use of the compressor or decompressor. The following values are defined:
ICMODE_COMPRESS

Compressor will perform normal compression.
ICMODE_DECOMPRESS

Decompressor will perform normal decompression.
ICMODE_DRAW

Decompressor will decompress and draw the data directly to hardware.
ICMODE_FASTCOMPRESS

Compressor will perform fast (real-time) compression.
ICMODE_FASTDECOMPRESS

Decompressor will perform fast (real-time) decompression.
ICMODE_QUERY

Queries the compressor or decompressor for information.
lpfnHandler

Address of the function used as the compressor or decompressor.

 ICRemove

BOOL ICRemove(DWORD fccType, DWORD fccHandler, UINT wFlags);

Removes an installed compressor.

· Returns TRUE if successful or FALSE otherwise.
fccType

Four-character code indicating the type of data used by the compressor or decompressor. Specify
"VIDC" for a video compressor or decompressor.

fccHandler
Four-character code identifying a specific compressor or a number between zero and the number of
installed compressors of the type specified by fccType.

wFlags
Reserved; do not use.

 ICSendMessage

LRESULT ICSendMessage(HIC hic, UINT wMsg, DWORD dw1, DWORD dw2);

Sends a message to a compressor.

· Returns a message-specific result.
hic

Handle of the compressor to receive the message.
wMsg

Message to send.
dw1

Additional message-specific information.
dw2

Additional message-specific information.

 ICSeqCompressFrame

LPVOID ICSeqCompressFrame(PCOMPVARS pc, UINT uiFlags,
 LPVOID lpBits, BOOL FAR * pfKey, LONG FAR * plSize);

Compresses one frame in a sequence of frames.

· Returns the address of the compressed bits or NULL if an error occurs.
pc

Address of a COMPVARS structure initialized with information about the compression.
uiFlags

Reserved; must be zero.
lpBits

Address of the data bits to compress. (The data bits exclude header or format information.)
pfKey

Returns whether or not the frame was compressed into a key frame.
plSize

Maximum size desired for the compressed image. The compressor might not be able to compress
the data to fit within this size. When the function returns, the parameter points to the size of the
compressed image. Images sizes are specified in bytes.

This function uses a COMPVARS structure to provide settings for the specified compressor and
intersperses key frames at the rate specified by the ICSeqCompressorFrameStart function. You can
specify values for the data rate for the sequence and the key-frame frequency by using the appropriate
members of COMPVARS.

Use this function instead of the ICCompress function to compress a video sequence.

You can allow the user to specify a compressor and initialize a COMPVARS structure by using the
ICCompressorChoose function. Or, you can initialize a COMPVARS structure manually.

Use the ICSeqCompressFrameStart, ICSeqCompressFrame, and ICSeqCompressFrameEnd
functions to compress a sequence of frames to a specified data rate and number of key frames. Use
ICSeqCompressFrame once for each frame to be compressed.

When finished with compression, use the ICCompressorFree function to release the resources
specified by COMPVARS.

 ICSeqCompressFrameEnd

void ICSeqCompressFrameEnd(PCOMPVARS pc);

Ends sequence compression that was initiated by using the ICSeqCompressFrameStart and
ICSeqCompressFrame functions.

pc
Address of a COMPVARS structure used during sequence compression.

When finished with compression, use the ICCompressorFree function to release the resources
specified by COMPVARS.

 ICSeqCompressFrameStart

BOOL ICSeqCompressFrameStart(PCOMPVARS pc, LPBITMAPINFO lpbiIn);

Initializes resources for compressing a sequence of frames using the ICSeqCompressFrame function.

· Returns TRUE if successful or FALSE otherwise.
pc

Address of a COMPVARS structure initialized with information for compression.
lpbiIn

Format of the data to be compressed.

This function uses a COMPVARS structure to provide settings for the specified compressor and
intersperses key frames at the rate specified by the lKey member of COMPVARS. You can specify
values for the data rate for the sequence and the key-frame frequency by using the appropriate
members of COMPVARS.

Use the ICSeqCompressFrameStart, ICSeqCompressFrame, and ICSeqCompressFrameEnd
functions to compress a sequence of frames to a specified data rate and number of key frames.

When finished with compression, use the ICCompressorFree function to release the resources
specified in COMPVARS.

COMPVARS needs to be initialized before you use this function. You can initialize the structure
manually or you can allow the user to specify a compressor and initialize a COMPVARS structure by
using the ICCompressorChoose function.

 ICSetStatusProc

DWORD ICSetStatusProc(HIC hic, DWORD dwFlags, LONG lParam,
 LONG (CALLBACK * ()) fpfnStatus);

Sends the address of a status callback function to a compressor. The compressor calls this function
during lengthy operations.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the compressor.
dwFlags

Applicable flags. Set to zero.
lParam

Constant specified with the status callback address.
fpfnStatus

Address of the status callback function. Specify NULL to indicate no status callbacks should be sent.

 MyStatusProc

LONG MyStatusProc(LPARAM lParam, UINT Message);

Describes an application-defined status callback function used by the ICM_SET_STATUS_PROC
message and the ICSetStatusProc function.

· Returns zero if processing should continue or a nonzero value if it should end.
lParam

Constant specified with the status callback address.
Message

Status flag. It can be one of the following values:
ICSTATUS_END

A lengthy operation is finishing.
ICSTATUS_START

A lengthy operation is starting.
ICSTATUS_STATUS

Operation is proceeding, and is lParam percent done.
ICSTATUS_YIELD

A lengthy operation is proceeding. This value has the same meaning as ICSTATUS_STATUS but
does not indicate a value for percentage done.

 Video Compression Manager Messages

Applications use messages to communicate with VCM, compression drivers, decompression drivers,
and rendering drivers. VCM macros provide a shorthand method of sending these messages. VCM
messages are based on the ICSendMessage function. Definitions of VCM macros are included with
the associated message definitions.

 ICM_ABOUT

ICM_ABOUT
wParam = (DWORD) (UINT) hwnd;
lParam = 0;

// Corresponding macros
DWORD ICAbout(hic, hwnd);
DWORD ICQueryAbout(hic);

Notifies a video compression driver to display its About dialog box or queries a video compression
driver to determine if it has an About dialog box.

· Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.
hic

Handle of the compressor.
hwnd

Handle of the parent window of the displayed dialog box.
You can also determine if a driver has an About dialog box by specifying -1 in this parameter, as in
the ICQueryAbout macro. The driver returns ICERR_OK if it has an About dialog box or
ICERR_UNSUPPORTED otherwise.

 ICM_COMPRESS

ICM_COMPRESS
wParam = (DWORD) (LPVOID) &icc;
lParam = sizeof(ICCOMPRESS);

Notifies a video compression driver to compress a frame of data into an application-defined buffer.

· Returns ICERR_OK if successful or an error otherwise.
icc

Address of an ICCOMPRESS structure. The following members of this structure specify the
compression parameters: lpbiInput, lpInput, lpbiOutput, lpOutput, lpbiPrev, lpPrev, lpckid,
lpdwFlags, dwFrameSize, and dwQuality.
The driver should also use the biSizeImage member of the BITMAPINFOHEADER structure
associated with lpbiOutput of ICCOMPRESS to return the size of the compressed frame.

lParam
Size, in bytes, of ICCOMPRESS.

 ICM_COMPRESS_BEGIN

ICM_COMPRESS_BEGIN
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macro
DWORD ICCompressBegin(hic, lpbiInput, lpbiOutput);

Notifies a video compression driver to prepare to compress data.

· Returns ICERR_OK if the specified compression is supported or ICERR_BADFORMAT if the input
or output format is not supported.

hic
Handle of a compressor.

lpbiInput
Address of a BITMAPINFO structure containing the input format.

lpbiOutput
Address of a BITMAPINFO structure containing the output format.

The driver should allocate and initialize any tables or memory that it needs for compressing the data
formats when it receives the ICM_COMPRESS message.

VCM saves the settings of the most recent ICM_COMPRESS_BEGIN message. The
ICM_COMPRESS_BEGIN and ICM_COMPRESS_END messages do not nest. If your driver receives
ICM_COMPRESS_BEGIN before compression is stopped with ICM_COMPRESS_END, it should
restart compression with new parameters.

 ICM_COMPRESS_END

ICM_COMPRESS_END
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICCompressEnd(hic);

Notifies a video compression driver to end compression and free resources allocated for compression.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the compressor.

VCM saves the settings of the most recent ICM_COMPRESS_BEGIN message.
ICM_COMPRESS_BEGIN and ICM_COMPRESS_END do not nest. If your driver receives
ICM_COMPRESS_BEGIN before compression is stopped with ICM_COMPRESS_END, it should
restart compression with new parameters.

 ICM_COMPRESS_FRAMES_INFO

ICM_COMPRESS_FRAMES_INFO
wParam = (DWORD) (LPVOID) &icf;
lParam = sizeof(ICCOMPRESSFRAMES);

Notifies a compression driver to set the parameters for the pending compression.

· Returns ICERR_OK if successful or an error otherwise.
wParam

Address of an ICCOMPRESSFRAMES structure. The GetData and PutData members of this
structure are not used with this message.

lParam
Size, in bytes, of ICCOMPRESSFRAMES.

A compressor can use this message to determine how much space to allocate for each frame while
compressing.

 ICM_COMPRESS_GET_FORMAT

ICM_COMPRESS_GET_FORMAT
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macros
DWORD ICCompressGetFormat(hic, lpbiInput, lpbiOutput);
DWORD ICCompressGetFormatSize(hic, lpbi);

Requests the output format of the compressed data from a video compression driver.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of the compressor.
lpbiInput

Address of a BITMAPINFO structure containing the input format.
lpbiOutput

Address of a BITMAPINFO structure to contain the output format. You can specify zero for this
parameter to request only the size of the output format, as in the ICCompressGetFormatSize
macro.

If lpbiOutput is nonzero, the driver should fill the BITMAPINFO structure with the default output format
corresponding to the input format specified for lpbiInput. If the compressor can produce several
formats, the default format should be the one that preserves the greatest amount of information.

 ICM_COMPRESS_GET_SIZE

ICM_COMPRESS_GET_SIZE
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macro
DWORD ICCompressGetSize(hic, lpbiInput, lpbiOutput);

Requests that the video compression driver supply the maximum size of one frame of data when
compressed into the specified output format.

· Returns the maximum number of bytes a single compressed frame can occupy.
hic

Handle of a compressor.
lpbiInput

Address of a BITMAPINFO structure containing the input format.
lpbiOutput

Address of a BITMAPINFO structure containing the output format.

Typically, applications send this message to determine how large a buffer to allocate for the
compressed frame.

The driver should calculate the size of the largest possible frame based on the input and output
formats.

 ICM_COMPRESS_QUERY

ICM_COMPRESS_QUERY
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macro
DWORD ICCompressQuery(hic, lpbiInput, lpbiOutput);

Queries a video compression driver to determine if it supports a specific input format or if it can
compress a specific input format to a specific output format.

· Returns ICERR_OK if the specified compression is supported or ICERR_BADFORMAT otherwise.
hic

Handle of a compressor.
lpbiInput

Address of a BITMAPINFO structure containing the input format.
lpbiOutput

Address of a BITMAPINFO structure containing the output format. You can specify zero for this
parameter to indicate any output format is acceptable.

When a driver receives this message, it should examine the BITMAPINFO structure associated with
lpbiInput to determine if it can compress the input format.

 ICM_CONFIGURE

ICM_CONFIGURE
wParam = (DWORD) (UINT) hwnd;
lParam = 0;

// Corresponding macros
DWORD ICQueryConfigure(hic);
DWORD ICConfigure(hic, hwnd);

Notifies a video compression driver to display its configuration dialog box or queries a video
compression driver to determine if it has a configuration dialog box.

· Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.
hic

Handle of the compressor.
hwnd

Handle of the parent window of the displayed dialog box.
You can determine if a driver has a configuration dialog box by specifying
 - 1 in this parameter, as in the ICQueryConfigure macro.

This message is different from the DRV_CONFIGURE message used for hardware configuration. The
dialog box for this message should let the user set and edit the internal state referenced by the
ICM_GETSTATE and ICM_SETSTATE messages. For example, this dialog box can let the user
change parameters affecting the quality level and other similar compression options.

 ICM_DECOMPRESS

ICM_DECOMPRESS
wParam = (DWORD) (LPVOID) &icd;
lParam = sizeof(ICDECOMPRESS);

Notifies a video decompression driver to decompress a frame of data into an application-defined buffer.

· Returns ICERR_OK if successful or an error otherwise.
wParam

Address of an ICDECOMPRESS structure.
lParam

Size, in bytes, of ICDECOMPRESS.

If you want the driver to decompress data directly to the screen, send the ICM_DRAW message.

The driver returns an error if this message is received before the ICM_DECOMPRESS_BEGIN
message.

 ICM_DECOMPRESS_BEGIN

ICM_DECOMPRESS_BEGIN
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macro
DWORD ICDecompressBegin(hic, lpbiInput, lpbiOutput);

Notifies a video decompression driver to prepare to decompress data.

· Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT
otherwise.

hic
Handle of a decompressor.

lpbiInput
Address of a BITMAPINFO structure containing the input format.

lpbiOutput
Address of a BITMAPINFO structure containing the output format.

When the driver receives this message, it should allocate buffers and do any time-consuming
operations so that it can process ICM_DECOMPRESS messages efficiently.

If you want the driver to decompress data directly to the screen, send the ICM_DRAW message.

The ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END messages do not nest. If your
driver receives ICM_DECOMPRESS_BEGIN before decompression is stopped with
ICM_DECOMPRESS_END, it should restart decompression with new parameters.

 ICM_DECOMPRESS_END

ICM_DECOMPRESS_END
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICDecompressEnd(hic);

Notifies a video decompression driver to end decompression and free resources allocated for
decompression.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a decompressor.

The driver should free any resources allocated for the ICM_DECOMPRESS_BEGIN message.

ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your driver receives
ICM_DECOMPRESS_BEGIN before decompression is stopped with ICM_DECOMPRESS_END, it
should restart decompression with new parameters.

 ICM_DECOMPRESS_GET_FORMAT

ICM_DECOMPRESS_GET_FORMAT
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macros
DWORD ICDecompressGetFormat(hic, lpbiInput, lpbiOutput);
DWORD ICDecompressGetFormatSize(hic, lpbi);

Requests the output format of the decompressed data from a video decompression driver.

· Return ICERR_OK if successful or an error otherwise.
hic

Handle of a decompressor.
lpbiInput

Address of a BITMAPINFO structure containing the input format.
lpbiOutput

Address of a BITMAPINFO structure to contain the output format. You can specify zero to request
only the size of the output format, as in the ICDecompressGetFormatSize macro.

If lpbiOutput is nonzero, the driver should fill the BITMAPINFO structure with the default output format
corresponding to the input format specified for lpbiInput. If the compressor can produce several
formats, the default format should be the one that preserves the greatest amount of information.

 ICM_DECOMPRESS_GET_PALETTE

ICM_DECOMPRESS_GET_PALETTE
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macro
DWORD ICDecompressGetPalette(hic, lpbiInput, lpbiOutput);

Requests that the video decompression driver supply the color table of the output
BITMAPINFOHEADER structure.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a decompressor.
lpbiInput

Address of a BITMAPINFOHEADER structure containing the input format.
lpbiOutput

Address of a BITMAPINFOHEADER structure to contain the color table. The space reserved for the
color table is always at least 256 colors. You can specify zero for this parameter to return only the
size of the color table.

If lpbiOutput is nonzero, the driver sets the biClrUsed member of BITMAPINFOHEADER to the
number of colors in the color table. The driver fills the bmiColors members of BITMAPINFO with the
actual colors.

The driver should support this message only if it uses a palette other than the one specified in the input
format.

 ICM_DECOMPRESS_QUERY

ICM_DECOMPRESS_QUERY
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = (DWORD) (LPVOID) lpbiOutput;

// Corresponding macro
DWORD ICDecompressQuery(hic, lpbiInput, lpbiOutput);

Queries a video decompression driver to determine if it supports a specific input format or if it can
decompress a specific input format to a specific output format.

· Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT
otherwise.

hic
Handle of a decompressor.

lpbiInput
Address of a BITMAPINFO structure containing the input format.

lpbiOutput
Address of a BITMAPINFO structure containing the output format. You can specify zero for this
parameter to indicate any output format is acceptable.

 ICM_DECOMPRESS_SET_PALETTE

ICM_DECOMPRESS_SET_PALETTE
wParam = (DWORD) (LPVOID) lpbiPalette;
lParam = 0;

// Corresponding macro
ICDecompressSetPalette(hic, lpbiPalette);

Specifies a palette for a video decompression driver to use if it is decompressing to a format that uses
a palette.

· Returns ICERR_OK if the decompression driver can precisely decompress images to the suggested
palette using the set of colors as they are arranged in the palette. Returns ICERR_UNSUPPORTED
otherwise.

lpbiPalette
Address of a BITMAPINFOHEADER structure whose color table contains the colors that should be
used if possible. You can specify zero to use the default set of output colors.

This message should not affect decompression already in progress; rather, colors passed using this
message should be returned in response to future ICM_DECOMPRESS_GET_FORMAT and
ICM_DECOMPRESS_GET_PALETTE messages. Colors are sent back to the decompression driver in
a future ICM_DECOMPRESS_BEGIN message.

This message is used primarily when a driver decompresses images to the screen and another
application that uses a palette is in the foreground, forcing the decompression driver to adapt to a
foreign set of colors.

 ICM_DECOMPRESSEX

ICM_DECOMPRESSEX
wParam = (DWORD) (LPVOID) &icdex;
lParam = sizeof(ICDECOMPRESSEX);

Notifies a video compression driver to decompress a frame of data directly to the screen, decompress
to an upside-down DIB, or decompress images described with source and destination rectangles.

· Returns ICERR_OK if successful or an error otherwise.
wParam

Address of an ICDECOMPRESSEX structure.
lParam

Size, in bytes, of ICDECOMPRESSEX.

This message is similar to ICM_DECOMPRESS except that it uses the ICDECOMPRESSEX structure
to define its decompression information.

If you want the driver to decompress data directly to the screen, send the ICM_DRAW message.

The driver returns an error if this message is received before the ICM_DECOMPRESSEX_BEGIN
message.

 ICM_DECOMPRESSEX_BEGIN

ICM_DECOMPRESSEX_BEGIN
wParam = (DWORD) (LPVOID) &icdex;
lParam = sizeof(ICDECOMPRESSEX);

Notifies a video compression driver to prepare to decompress data.

· Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT
otherwise.

wParam
Address of a ICDECOMPRESSEX structure containing the input and output formats.

lParam
Size, in bytes, of ICDECOMPRESSEX.

When the driver receives this message, it should allocate buffers and do any time-consuming
operations so that it can process ICM_DECOMPRESSEX messages efficiently.

If you want the driver to decompress data directly to the screen, send the ICM_DRAW_BEGIN
message.

The ICM_DECOMPRESSEX_BEGIN and ICM_DECOMPRESSEX_END messages do not nest. If your
driver receives ICM_DECOMPRESSEX_BEGIN before decompression is stopped with
ICM_DECOMPRESSEX_END, it should restart decompression with new parameters.

 ICM_DECOMPRESSEX_END

ICM_DECOMPRESSEX_END
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICDecompressExEnd(hic);

Notifies a video decompression driver to end decompression and free resources allocated for
decompression.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a decompressor.

The driver frees any resources allocated for the ICM_DECOMPRESSEX_BEGIN message.

ICM_DECOMPRESSEX_BEGIN and ICM_DECOMPRESSEX_END do not nest. If your driver receives
ICM_DECOMPRESSEX_BEGIN before decompression is stopped with ICM_DECOMPRESSEX_END,
it should restart decompression with new parameters.

 ICM_DECOMPRESSEX_QUERY

ICM_DECOMPRESSEX_QUERY
wParam = (DWORD) (LPVOID) &icdex;
lParam = sizeof(ICDECOMPRESSEX);

Queries a video compression driver to determine if it supports a specific input format or if it can
decompress a specific input format to a specific output format.

· Returns ICERR_OK if the specified decompression is supported or ICERR_BADFORMAT
otherwise.

wParam
Address of a ICDECOMPRESSEX structure containing the input format.

lParam
Size, in bytes, of ICDECOMPRESSEX.

 ICM_DRAW

ICM_DRAW
wParam = (DWORD) (LPVOID) &icdraw;
lParam = sizeof(ICDRAW);

Notifies a rendering driver to decompress a frame of data and draw it to the screen.

· Returns ICERR_OK if successful or an error otherwise.
wParam

Address of an ICDRAW structure.
lParam

Size, in bytes, of ICDRAW.

If the ICDRAW_UPDATE flag is set in the dwFlags member of ICDRAW, the area of the screen used
for drawing is invalid and needs to be updated. The extent of updating depends on the contents of the
lpData member.

If lpData is NULL, the driver should update the entire destination rectangle with the current image. If
the driver maintains a copy of the image in an off-screen buffer, it can fail this message. If lpData is not
NULL, the driver should draw the data and make sure the entire destination is updated.

If the ICDRAW_HURRYUP flag is set in dwFlags, the calling application wants the driver to proceed as
quickly as possible, possibly not even updating the screen.

If the ICDRAW_PREROLL flag is set in dwFlags, this video frame is preliminary information and
should not be displayed if possible. For example, if play is to start from frame 10, and frame 0 is the
nearest previous key frame, frames 0 through 9 will have ICDRAW_PREROLL set.

If you want the driver to decompress data into a buffer, send the ICM_DECOMPRESS message.

 ICM_DRAW_BEGIN

ICM_DRAW_BEGIN
wParam = (DWORD) (LPVOID) &icdrwBgn;
lParam = sizeof(ICDRAW);

Notifies a rendering driver to prepare to draw data.

· Returns ICERR_OK if the driver supports drawing the data to the screen in the specified manner
and format, or an error code otherwise. Possible error values include the following:
ICERR_BADFORMAT Input or output format is not supported.
ICERR_NOTSUPPORTE
D

Driver does not draw directly to the screen
or does not support this message.

wParam
Address of an ICDRAWBEGIN structure containing the input format.

lParam
Size, in bytes, of ICDRAWBEGIN.

If you want the driver to decompress data into a buffer, send the ICM_DECOMPRESS_BEGIN
message.

The ICM_DRAW_BEGIN and ICM_DRAW_END messages do not nest. If your driver receives
ICM_DRAW_BEGIN before decompression is stopped with ICM_DRAW_END, it should restart
decompression with new parameters.

 ICM_DRAW_CHANGEPALETTE

ICM_DRAW_CHANGEPALETTE
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = 0;

// Corresponding macro
DWORD ICDrawChangePalette(hic, lpbiInput);

Notifies a rendering driver that the movie palette is changing.

· Returns ICERR_OK if successful or FALSE otherwise.
hic

Handle of a rendering driver.
lpbiInput

Address of a BITMAPINFO structure containing the new format and optional color table.

This message should be supported by installable rendering handlers that draw DIBs with an internal
structure that includes a palette.

 ICM_DRAW_END

ICM_DRAW_END
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICDrawEnd(hic);

Notifies a rendering driver to decompress the current image to the screen and to release resources
allocated for decompression and drawing.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a driver.

The ICM_DRAW_BEGIN and ICM_DRAW_END messages do not nest. If your driver receives
ICM_DRAW_BEGIN before decompression is stopped with ICM_DRAW_END, it should restart
decompression with new parameters.

 ICM_DRAW_FLUSH

ICM_DRAW_FLUSH
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICDrawFlush(hic);

Notifies a rendering driver to render the contents of any image buffers that are waiting to be drawn.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a driver.

This message is used only by hardware that performs its own asynchronous decompression, timing,
and drawing.

 ICM_DRAW_GET_PALETTE

ICM_DRAW_GET_PALETTE
wParam = 0;
lParam = 0;

Requests a rendering driver to return a palette.

· The driver should return one of the following: a handle of the palette being used, NULL if it doesn't
have a handle to return, or ICERR_UNSUPPORTED if it doesn't support palettes.

 ICM_DRAW_GETTIME

ICM_DRAW_GETTIME
wParam = (DWORD) (LPVOID) lplTime;
lParam = 0;

// Corresponding macro
DWORD ICDrawGetTime(hic, lplTime);

Requests a rendering driver that controls the timing of drawing frames to return the current value of its
internal clock.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a driver.
lplTime

Address to contain the current time. The return value should be specified in samples.

This message is generally supported by hardware that performs its own asynchronous decompression,
timing, and drawing. The message can also be sent if the hardware is being used as the
synchronization master.

 ICM_DRAW_QUERY

ICM_DRAW_QUERY
wParam = (DWORD) (LPVOID) lpbiInput;
lParam = 0;

// Corresponding macro
DWORD ICDrawQuery(hic, lpbiInput);

Queries a rendering driver to determine if it can render data in a specific format.

· Returns ICERR_OK if the driver can render data in the specified format or ICERR_BADFORMAT
otherwise.

hic
Handle of a driver.

lpbiInput
Address of a BITMAPINFO structure containing the input format.

This message differs from the ICM_DRAW_BEGIN message in that it queries the driver in a general
sense. ICM_DRAW_BEGIN determines if the driver can draw the data using the specified format under
specific conditions, such as stretching the image.

 ICM_DRAW_REALIZE

ICM_DRAW_REALIZE
wParam = (DWORD) (UINT) (HDC) hdc;
lParam = (DWORD) (BOOL) fBackground;

// Corresponding macro
DWORD ICDrawRealize(hic, hdc, fBackground);

Notifies a rendering driver to realize its drawing palette while drawing.

· Returns ICERR_OK if the drawing palette is realized or ICERR_UNSUPPORTED if the palette
associated with the decompressed data is realized.

hic
Handle of a driver.

hdc
Handle of the DC used to realize the palette.

fBackground
Background flag. Specify TRUE to realize the palette as a background task or FALSE to realize the
palette in the foreground.

Drivers need to respond to this message only if the drawing palette is different from the decompressed
palette.

 ICM_DRAW_RENDERBUFFER

ICM_DRAW_RENDERBUFFER
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICDrawRenderBuffer(hic);

Notifies a rendering driver to draw the frames that have been passed to it.

· No return value.
hic

Handle of a driver.

Use this message with hardware that performs its own asynchronous decompression, timing, and
drawing.

This message is typically used to perform a seek operation when the driver must be specifically
instructed to display each video frame passed to it rather than playing a sequence of video frames.

 ICM_DRAW_SETTIME

ICM_DRAW_SETTIME
wParam = (DWORD) lpTime;
lParam = 0;

// Corresponding macro
DWORD ICDrawSetTime(hic, lpTime);

Provides synchronization information to a rendering driver that handles the timing of drawing frames.
The synchronization information is the sample number of the frame to draw.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a driver.
lpTime

Sample number of the frame to render.

Typically, the driver compares the specified value with the frame number associated with the time of its
internal clock and attempts to synchronize the two if the difference is significant.

Use this message when the hardware performs its own asynchronous decompression, timing, and
drawing, and the hardware relies on an external synchronization signal (the hardware is not being used
as the synchronization master).

 ICM_DRAW_START

ICM_DRAW_START
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICDrawStart(hic);

Notifies a rendering driver to start its internal clock for the timing of drawing frames.

· No return value.
hic

Handle of a driver.

This message is used by hardware that performs its own asynchronous decompression, timing, and
drawing.

When the driver receives this message, it should start rendering data at the rate specified with the
ICM_DRAW_BEGIN message.

The ICM_DRAW_START and ICM_DRAW_STOP messages do not nest. If your driver receives
ICM_DRAW_START before rendering is stopped with ICM_DRAW_STOP, it should restart rendering
with new parameters.

 ICM_DRAW_START_PLAY

ICM_DRAW_START_PLAY
wParam = (DWORD) lFrom;
lParam = (DWORD) lTo;

// Corresponding macro
ICDrawStartPlay(hic, lFrom, lTo);

Provides the start and end times of a play operation to a rendering driver.

· No return value.
lFrom

Start time.
lTo

End time.

This message precedes any frame data sent to the rendering driver.

Units for lFrom and lTo are specified with the ICM_DRAW_BEGIN message. For video data this is
normally a frame number. For more information about the playback rate, see the dwRate and dwScale
members of the ICDRAWBEGIN structure.

If the end time is less than the start time, the playback direction is reversed.

 ICM_DRAW_STOP

ICM_DRAW_STOP
wParam = 0;
lParam = 0;

// Corresponding macro
DWORD ICDrawStop(hic);

Notifies a rendering driver to stop its internal clock for the timing of drawing frames.

· No return value.
hic

Handle of a driver.

This message is used by hardware that performs its own asynchronous decompression, timing, and
drawing.

 ICM_DRAW_STOP_PLAY

ICM_DRAW_STOP_PLAY
wParam = 0;
lParam = 0;

// Corresponding macro
ICDrawStopPlay(hic);

Notifies a rendering driver when a play operation is complete.

· No return value.

Use this message when the play operation is complete. Use the ICM_DRAW_STOP message to end
timing.

 ICM_DRAW_SUGGESTFORMAT

ICM_DRAW_SUGGESTFORMAT
wParam = (DWORD) (LPVOID) &icdrwSuggest;
lParam = sizeof(ICDRAWSUGGEST);

Queries a rendering driver to suggest a decompressed format that it can draw.

· Returns ICERR_OK if successful. If the lpbiSuggest member of the ICDRAWSUGGEST structure
is NULL, this message returns the amount of memory required to contain the suggested format.

wParam
Address of an ICDRAWSUGGEST structure.

lParam
Size, in bytes, of ICDRAWSUGGEST.

The driver should examine the format specified in the lpbiIn member of the ICDRAWSUGGEST
structure and use the lpbiSuggest member to return a format it can draw. The output format should
preserve as much data as possible from the input format.

Optionally, the driver can use the installable compressor handle passed in the hicDecompressor
member of ICDRAWSUGGEST to make more complex selections. For example, if the input format is
24-bit JPEG data, a renderer could query the decompressor to find out if it can decompress to a YUV
format (which might be drawn more efficiently) before selecting the format to suggest.

 ICM_DRAW_WINDOW

ICM_DRAW_WINDOW
wParam = (DWORD) (LPVOID) prc;
lParam = 0;

// Corresponding macro
DWORD ICDrawWindow(hic, prc);

Notifies a rendering driver that the window specified for the ICM_DRAW_BEGIN message needs to be
redrawn. The window has moved or become temporarily obscured.

· Returns ICERR_OK if successful or an error otherwise.
hic

Handle of a driver.
prc

Address of the destination rectangle in screen coordinates. If this parameter points to an empty
rectangle, drawing should be turned off.

This message is supported by hardware that performs its own asynchronous decompression, timing,
and drawing.

Video-overlay drivers use this message to draw when the window is obscured or moved. When a
window specified for ICM_DRAW_BEGIN is completely hidden by other windows, the destination
rectangle is empty. Drivers should turn off video-overlay hardware when this condition occurs.

 ICM_GET

ICM_GET
wParam = (DWORD) (LPVOID) pv;
lParam = (DWORD) cb;

Retrieves an application-defined doubleword from a video compression driver.

· Returns the amount of memory, in bytes, required to store the status information.
wParam

Address of a block of memory to be filled with the current state. You can also specify NULL to
determine the amount of memory required by the state information.

lParam
Size, in bytes, of the block of memory.

The structure used to represent state information is driver specific and is defined by the driver.

 ICM_GETBUFFERSWANTED

ICM_GETBUFFERSWANTED
wParam = (DWORD) (LPVOID) lpdwBuffers;
lParam = 0;

// Corresponding macro
DWORD ICGetBuffersWanted(hic, lpdwBuffers);

Queries a driver for the number of buffers to allocate.

· Returns ICERR_OK if successful or ICERR_UNSUPPORTED otherwise.
hic

Handle of a driver.
lpdwBuffers

Address to contain the number of samples the driver needs to efficiently render the data.

This message is used by drivers that use hardware to render data and want to ensure a minimal time
lag caused by waiting for buffers to arrive. For example, if a driver controls a video decompression
board that can hold 10 frames of video, it could return 10 for this message. This instructs applications
to try to stay 10 frames ahead of the frame it currently needs.

 ICM_GETDEFAULTKEYFRAMERATE

ICM_GETDEFAULTKEYFRAMERATE
wParam = (DWORD) (LPVOID) &dwICValue;
lParam = 0;

// Corresponding macro
DWORD ICGetDefaultKeyFrameRate(hic);

Queries a video compression driver for its default (or preferred) key-frame spacing.

· Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise. The
ICGetDefaultKeyFrameRate macro returns the default key-frame rate.

hic
Handle of a compressor.

wParam
Address to contain the preferred key-frame spacing.

 ICM_GETDEFAULTQUALITY

ICM_GETDEFAULTQUALITY
wParam = (DWORD) (LPVOID) &dwICValue;
lParam = 0;

// Corresponding macro
DWORD ICGetDefaultQuality(hic);

Queries a video compression driver to provide its default quality setting.

· Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise. The
ICGetDefaultQuality macro returns the default quality value.

hic
Handle of a compressor.

wParam
Address to contain the default quality value. Quality values range from 0 to 10,000.

 ICM_GETINFO

ICM_GETINFO
wParam = (DWORD) (LPVOID) lpicinfo;
lParam = sizeof(icinfo);

Queries a video compression driver to return a description of itself in an ICINFO structure.

· Returns the size, in bytes, of ICINFO or zero if an error occurs.
wParam

Address of an ICINFO structure to contain information.
lParam

Size, in bytes, of ICINFO.

Typically, applications send this message to display a list of the installed compressors.

The driver should fill all members of the ICINFO structure except szDriver.

 ICM_GETQUALITY

ICM_GETQUALITY
wParam = (DWORD) (LPVOID) &dwICValue;
lParam = 0;

Queries a video compression driver to return its current quality setting.

· Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.
wParam

Address to contain the current quality value. Quality values range from 0 to 10,000.

 ICM_GETSTATE

ICM_GETSTATE
wParam = (DWORD) (LPVOID) pv;
lParam = (DWORD) cb;

// Corresponding macros
DWORD ICGetState(hic, pv, cb);
DWORD ICGetStateSize(hic);

Queries a video compression driver to return its current configuration in a block of memory or to
determine the amount of memory required to retrieve the configuration information.

· Returns the amount of memory, in bytes, required by the state information. The ICGetStateSize
macro returns the number of bytes used by the state data.

hic
Handle of the compressor.

pv
Address of a block of memory to contain the current configuration information. You can specify NULL
for this parameter to determine the amount of memory required for the configuration information, as
in ICGetStateSize.

cb
Size, in bytes, of the block of memory.

The structure used to represent configuration information is driver specific and is defined by the driver.

Use ICGetStateSize before calling the ICGetState macro to determine the size of buffer to allocate for
the call.

 ICM_SET_STATUS_PROC

ICM_SET_STATUS_PROC
wParam = (DWORD) (LPVOID) icsetstatusProc;
lParam = sizeof(icsetstatusProc);

Provides a status callback function with the status of a lengthy operation.

· Return ICERR_OK if successful or an error otherwise.
wParam

Address of an ICSETSTATUSPROC structure.
lParam

Size, in bytes, of ICSETSTATUSPROC.

Support of this message is optional but strongly recommended if compression or decompression takes
longer than approximately one-tenth of a second.

An application can send this message periodically to a status callback function during lengthy
operations.

 ICM_SETQUALITY

ICM_SETQUALITY
wParam = (DWORD) (LPVOID) &dwICValue;
lParam = 0;

Provides a video compression driver with a quality level to use during compression.

· Returns ICERR_OK if the driver supports this message or ICERR_UNSUPPORTED otherwise.
wParam

New quality value. Quality values range from 0 to 10,000.

 ICM_SETSTATE

ICM_SETSTATE
wParam = (DWORD) (LPVOID) pv;
lParam = (DWORD) cb;

// Corresponding macro
DWORD ICSetState(hic, pv, cb);

Notifies a video compression driver to set the state of the compressor.

· Returns the number of bytes used by the compressor if successful or zero otherwise.
hic

Handle of the compressor.
pv

Address of a block of memory containing configuration data. You can specify NULL for this
parameter to reset the compressor to its default state.

cb
Size, in bytes, of the block of memory.

The information used by this message is private and specific to a given compressor. Client applications
should use this message only to restore information previously obtained with the ICM_GETSTATE
message and should use the ICM_CONFIGURE message to adjust the configuration of a video
compression driver.

 Video Compression Manager Structures

Applications use structures to transfer data in VCM messages and functions. The following structures
are specific to VCM and provide support for VCM functions and messages.

 COMPVARS

typedef struct {
 LONG cbSize; // see below
 DWORD dwFlags; // see below
 HIC hic; // see below
 DWORD fccType; // see below
 DWORD fccHandler; // see below
 LPBITMAPINFO lpbiIn; // reserved; do not use
 LPBITMAPINFO lpbiOut; // see below
 LPVOID lpBitsOut; // reserved; do not use
 LPVOID lpBitsPrev; // reserved; do not use
 LONG lFrame; // reserved; do not use
 LONG lKey; // see below
 LONG lDataRate; // see below
 LONG lQ; // see below
 LONG lKeyCount; // reserved; do not use
 LPVOID lpState; // reserved; do not use
 LONG cbState; // reserved; do not use
} COMPVARS;

Describes compressor settings for functions such as ICCompressorChoose, ICSeqCompressFrame,
and ICCompressorFree.

cbSize
Size, in bytes, of this structure. This member must be set to validate the structure before calling any
function using this structure.

dwFlags
Applicable flags. The following value is defined:
ICMF_COMPVARS_VALID

Data in this structure is valid and has been manually entered. Set this flag before you call any
function if you fill this structure manually. Do not set this flag if you let ICCompressorChoose
initialize this structure.

hic
Handle of the compressor to use. You can open a compressor and obtain a handle of it by using the
ICOpen function. You can also choose a compressor by using ICCompressorChoose.
ICCompressorChoose opens the chosen compressor and returns the handle of the compressor in
this member. You can close the compressor by using ICCompressorFree.

fccType
Type of compressor used. Currently only ICTYPE_VIDEO (VIDC) is supported. This member can be
set to zero.

fccHandler
Four-character code of the compressor. Specify NULL to indicate the data is not to be
recompressed. Specify "DIB" to indicate the data is an uncompressed, full frame. You can use this
member to specify which compressor is selected by default when the dialog box is displayed.

lpbiOut
Address of a BITMAPINFO structure containing the image output format. You can specify a specific
format to use or you can specify NULL to use the default compressor associated with the input
format. You can also set the image output format by using ICCompressorChoose.

lKey
Key-frame rate. Specify an integer to indicate the frequency that key frames are to occur in the
compressed sequence or zero to not use key frames. You can also let ICCompressorChoose set
the key-frame rate selected in the dialog box. The ICSeqCompressFrameStart function uses the

value of this member for making key frames.
lDataRate

Data rate, in kilobytes per second. ICCompressorChoose copies the selected data rate from the
dialog box to this member.

lQ
Quality setting. Specify a quality setting of 1 to 10,000 or specify ICQUALITY_DEFAULT to use the
default quality setting. You can also let ICCompressorChoose set the quality value selected in the
dialog box. ICSeqCompressFrameStart uses the value of this member as its quality setting.

You can let ICCompressorChoose fill the contents of this structure or you can do it manually. If you
manually fill the structure, you must provide information for the following members: cbSize, hic,
lpbiOut, lKey, and lQ. Also, you must set the ICMF_COMPVARS_VALID flag in the dwFlags member.

 ICCOMPRESS

typedef struct {
 DWORD dwFlags; // see below
 LPBITMAPINFOHEADER lpbiOutput; // see below
 LPVOID lpOutput; // see below
 LPBITMAPINFOHEADER lpbiInput; // see below
 LPVOID lpInput; // see below
 LPDWORD lpckid; // see below
 LPDWORD lpdwFlags; // see below
 LONG lFrameNum; // see below
 DWORD dwFrameSize; // see below
 DWORD dwQuality; // quality setting
 LPBITMAPINFOHEADER lpbiPrev; // see below
 LPVOID lpPrev; // see below
} ICCOMPRESS;

Contains compression parameters used with the ICM_COMPRESS message.

dwFlags
Flags used for compression. The following value is defined:
ICCOMPRESS_KEYFRAME

Input data should be treated as a key frame.
lpbiOutput

Address of a BITMAPINFOHEADER structure containing the output (compressed) format. The
biSizeImage member must contain the size of the compressed data.

lpOutput
Address of the buffer where the driver should write the compressed data.

lpbiInput
Address of a BITMAPINFOHEADER structure containing the input (uncompressed) format.

lpInput
Address of the buffer containing input data.

lpckid
Address to contain the chunk identifier for data in the AVI file. If the value of this member is not
NULL, the driver should specify a two-character code for the chunk identifier corresponding to the
chunk identifier used in the AVI file.

lpdwFlags
Address to contain flags for the AVI index. If the returned frame is a key frame, the driver should set
the AVIIF_KEYFRAME flag.

lFrameNum
Number of the frame to compress.

dwFrameSize
Desired maximum size, in bytes, for compressing this frame. The size value is used for compression
methods that can make tradeoffs between compressed image size and image quality. Specify zero
for this member to use the default setting.

lpbiPrev
Address of a BITMAPINFOHEADER structure containing the format of the previous frame, which is
typically the same as the input format.

lpPrev
Address of the buffer containing input data of the previous frame.

Drivers that perform temporal compression use data from the previous frame (found in the lpbiPrev

and lpPrev members) to prune redundant data from the current frame.

 ICCOMPRESSFRAMES

typedef struct {
 DWORD dwFlags; // see below
 LPBITMAPINFOHEADER lpbiOutput; // see below
 LPARAM lOutput; // reserved; do not use
 LPBITMAPINFOHEADER lpbiInput; // see below
 LPARAM lInput; // reserved; do not use
 LONG lStartFrame; // see below
 LONG lFrameCount; // see below
 LONG lQuality; // quality setting
 LONG lDataRate; // see below
 LONG lKeyRate; // see below
 DWORD dwRate; // see below
 DWORD dwScale; // see below
 DWORD dwOverheadPerFrame; // reserved; do not use
 DWORD dwReserved2; // reserved; do not use
 LONG (CALLBACK* GetData) (LPARAM lInput, LONG lFrame,
 LPVOID lpBits, LONG len);
 LONG (CALLBACK* PutData) (LPARAM lInput, LONG lFrame,
 LPVOID lpBits, LONG len);
} ICCOMPRESSFRAMES;

Contains compression parameters used with the ICM_COMPRESS_FRAMES_INFO message.

dwFlags
Applicable flags. The following value is defined:
ICDECOMPRESSFRAMES_PADDING

Padding is used with the frame.
lpbiOutput

Address of a BITMAPINFOHEADER structure containing the output format.
lpbiInput

Address of a BITMAPINFOHEADER structure containing the input format.
lStartFrame

Number of the first frame to compress.
lFrameCount

Number of frames to compress.
lDataRate

Maximum data rate, in bytes per second.
lKeyRate

Maximum number of frames between consecutive key frames.
dwRate

Compression rate in an integer format. To obtain the rate in frames per second, divide this value by
the value in dwScale.

dwScale
Value used to scale dwRate to frames per second.

GetData
Reserved; do not use.

PutData
Reserved; do not use.

 ICDECOMPRESS

typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiInput;
 LPVOID lpInput;
 LPBITMAPINFOHEADER lpbiOutput;
 LPVOID lpOutput;
 DWORD ckid;
} ICDECOMPRESS;

Contains decompression parameters used with the ICM_DECOMPRESS message.

dwFlags
Applicable flags. The following values are defined:
ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME
Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME
Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL
Current frame precedes the point in the movie where playback starts and, therefore, will not be
drawn.

ICDECOMPRESS_UPDATE
Screen is being updated or refreshed.

lpbiInput
Address of a BITMAPINFOHEADER structure containing the input format.

lpInput
Address of a buffer containing the input data.

lpbiOutput
Address of a BITMAPINFOHEADER structure containing the output format.

lpOutput
Address of a buffer where the driver should write the decompressed image.

ckid
Chunk identifier from the AVI file.

 ICDECOMPRESSEX

typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiSrc;
 LPVOID lpSrc;
 LPBITMAPINFOHEADER lpbiDst;
 LPVOID lpDst;
 int xDst;
 int yDst;
 int dxDst;
 int dyDst;
 int xSrc;
 int ySrc;
 int dxSrc;
 int dySrc;
} ICDECOMPRESSEX;

Contains decompression parameters used with the ICM_DECOMPRESSEX message

dwFlags
Applicable flags. The following values are defined:
ICDECOMPRESS_HURRYUP

Tries to decompress at a faster rate. When an application uses this flag, the driver should buffer
the decompressed data but not draw the image.

ICDECOMPRESS_NOTKEYFRAME
Current frame is not a key frame.

ICDECOMPRESS_NULLFRAME
Current frame does not contain data and the decompressed image should be left the same.

ICDECOMPRESS_PREROLL
Current frame precedes the point in the movie where playback starts and, therefore, will not be
drawn.

ICDECOMPRESS_UPDATE
Screen is being updated or refreshed.

lpbiSrc
Address of a BITMAPINFOHEADER structure containing the input format.

lpSrc
Address of a buffer containing the input data.

lpbiDst
Address of a BITMAPINFOHEADER structure containing the output format.

lpDst
Address of a buffer where the driver should write the decompressed image.

xDst, yDst
The x- and y-coordinates of the destination rectangle within the DIB specified by lpbiDst.

dxDst, dyDst
Width and height of the destination rectangle.

xSrc, ySrc
The x- and y- coordinates of the source rectangle within the DIB specified by lpbiSrc.

dxSrc, dySrc
Width and height of the source rectangle.

 ICDRAW

typedef struct {
 DWORD dwFlags; // see below
 LPVOID lpFormat; // see below
 LPVOID lpData; // address of the data to render
 DWORD cbData; // number of bytes of data to render
 LONG lTime; // see below
} ICDRAW;

Contains parameters for drawing video data to the screen. This structure is used with the ICM_DRAW
message.

dwFlags
Flags from the AVI file index. The following values are defined:
ICDRAW_HURRYUP

Data is buffered and not drawn to the screen. Use this flag for fastest decompression.
ICDRAW_NOTKEYFRAME

Current frame is not a key frame.
ICDRAW_NULLFRAME

Current frame does not contain any data, and the previous frame should be redrawn.
ICDRAW_PREROLL

Current frame of video occurs before playback should start. For example, if playback will begin on
frame 10, and frame 0 is the nearest previous key frame, frames 0 through 9 are sent to the driver
with this flag set. The driver needs this data to display frame 10 properly.

ICDRAW_UPDATE
Updates the screen based on data previously received. In this case, lpData should be ignored.

lpFormat
Address of a structure containing the data format. For video streams, this is a
BITMAPINFOHEADER structure.

lTime
Time, in samples, when this data should be drawn. For video data this is normally a frame number.

 ICDRAWBEGIN

typedef struct {
 DWORD dwFlags;
 HPALETTE hpal;
 HWND hwnd;
 HDC hdc;
 int xDst;
 int yDst;
 int dxDst;
 int dyDst;
 LPBITMAPINFOHEADER lpbi;
 int xSrc;
 int ySrc;
 int dxSrc;
 int dySrc;
 DWORD dwRate;
 DWORD dwScale;
} ICDRAWBEGIN;

Contains decompression parameters used with the ICM_DRAW_BEGIN message.

dwFlags
Applicable flags. The following values are defined:
ICDRAW_ANIMATE

Application can animate the palette.
ICDRAW_BUFFER

Buffers this data off-screen; it will need to be updated.
ICDRAW_CONTINUE

Drawing is a continuation of the previous frame.
ICDRAW_FULLSCREEN

Draws the decompressed data on the full screen.
ICDRAW_HDC

Draws the decompressed data to a window or a DC.
ICDRAW_MEMORYDC

DC is off-screen.
ICDRAW_QUERY

Determines if the decompressor can handle the decompression. The driver does not actually
decompress the data.

ICDRAW_RENDER
Renders but does not draw the data.

ICDRAW_UPDATING
Current frame is being updated rather than played.

hpal
Handle of the palette used for drawing.

hwnd
Handle of the window used for drawing.

hdc
Handle of the DC used for drawing. Specify NULL to use a DC associated with the specified window.

xDst, yDst
The x- and y-coordinates of the destination rectangle.

dxDst, dyDst
Width and height of the destination rectangle.

lpbi
Address of a BITMAPINFOHEADER structure containing the input format.

xSrc, ySrc
The x- and y-coordinates of the source rectangle.

dxSrc, dySrc
Width and height of the source rectangle.

dwRate
Decompression rate in an integer format. To obtain the rate in frames per second, divide this value
by the value in dwScale.

dwScale
Value used to scale dwRate to frames per second.

 ICDRAWSUGGEST

typedef struct {
 LPBITMAPINFOHEADER lpbiIn; // see below
 LPBITMAPINFOHEADER lpbiSuggest; // see below
 int dxSrc; // see below
 int dySrc; // see below
 int dxDst; // see below
 int dyDst; // see below
 HIC hicDecompressor; // see below
} ICDRAWSUGGEST;

Contains compression parameters used with the ICM_DRAW_SUGGESTFORMAT message to
suggest an appropriate input format.

lpbiIn
Address of the structure containing the compressed input format.

lpbiSuggest
Address of a buffer to return a compatible input format for the renderer.

dxSrc, dySrc
Width and height of the source rectangle.

dxDst, dyDst
Width and height of the destination rectangle.

hicDecompressor
Handle of a decompressor that supports the format of data described in lpbiIn.

 ICINFO

typedef struct {
 DWORD dwSize; // see below
 DWORD fccType; // see below
 DWORD fccHandler; // see below
 DWORD dwFlags; // see below
 DWORD dwVersion; // version member of driver
 DWORD dwVersionICM; // see below
 WCHAR szName[16]; // see below
 WCHAR szDescription[128]; // see below
 WCHAR szDriver[128]; // see below
} ICINFO;

Contains compression parameters supplied by a video compression driver. The driver fills or updates
the structure when it receives the ICM_GETINFO message.

dwSize
Size, in bytes, of the ICINFO structure.

fccType
Four-character code indicating the type of stream being compressed or decompressed. Specify
"VIDC" for video streams.

fccHandler
A four-character code identifying a specific compressor.

dwFlags
Applicable flags. Zero or more of the following flags can be set:
VIDCF_COMPRESSFRAMES

Driver is requesting to compress all frames. For information about compressing all frames, see
the ICM_COMPRESS_FRAMES_INFO message.

VIDCF_CRUNCH
Driver supports compressing to a frame size.

VIDCF_DRAW
Driver supports drawing.

VIDCF_FASTTEMPORALC
Driver can perform temporal compression and maintains its own copy of the current frame. When
compressing a stream of frame data, the driver doesn't need image data from the previous frame.

VIDCF_FASTTEMPORALD
Driver can perform temporal decompression and maintains its own copy of the current frame.
When decompressing a stream of frame data, the driver doesn't need image data from the
previous frame.

VIDCF_QUALITY
Driver supports quality values.

VIDCF_TEMPORAL
Driver supports inter-frame compression.

dwVersionICM
Version of VCM supported by the driver. This member should be set to ICVERSION.

szName
Short version of the compressor name. The name in the null-terminated string should be suitable for
use in list boxes.

szDescription
Long version of the compressor name.

szDriver
Name of the module containing VCM compression driver. Normally, a driver does not need to fill this
out.

 ICOPEN

typedef struct {
 DWORD dwSize; // size, in bytes, of the structure
 DWORD fccType; // see below
 DWORD fccHandler; // see below
 DWORD dwVersion; // see below
 DWORD dwFlags; // see below
 LPRESULT dwError; // error return values
 LPVOID pV1Reserved; // reserved; do not use
 LPVOID pV2Reserved; // reserved; do not use
 DWORD dnDevNode; // device node for Plug and Play devices
} ICOPEN;

Contains information about the data stream being compressed or decompressed, the version number
of the driver, and how the driver is used.

fccType
Four-character code indicating the type of stream being compressed or decompressed. Specify
"VIDC" for video streams.

fccHandler
Four-character code identifying a specific compressor.

dwVersion
Version of the installable driver interface used to open the driver.

dwFlags
Applicable flags indicating why the driver is opened. The following values are defined:
ICMODE_COMPRESS

Driver is opened to compress data.
ICMODE_DECOMPRESS

Driver is opened to decompress data.
ICMODE_DRAW

Device driver is opened to decompress data directly to hardware.
ICMODE_QUERY

Driver is opened for informational purposes, rather than for compression.

This structure is passed to video capture drivers when they are opened. This allows a single installable
driver to function as either an installable compressor or a video capture device. By examining the
fccType member of the ICOPEN structure, the driver can determine its function. For example, a
fccType value of "VIDC" indicates that it is opened as an installable video compressor.

 ICSETSTATUSPROC

typedef struct {
 DWORD dwFlags; // reserved; set to zero
 LPARAM lParam; // see below
 LONG (CALLBACK * ()) fpfnStatus; // see below
} ICSETSTATUSPROC;

Contains status information used with the ICM_SET_STATUS_PROC message.

lParam
Parameter that contains a constant to pass to the status procedure.

fpfnStatus
Address of the status function. Specify NULL if status messages should not be sent. For more
information about the callback function, see the MyStatusProc function.

 Custom File and Stream Handlers

File and stream handlers are drivers that provide consistent interfaces to an application controlling
multimedia data. The file and stream handlers included in the Microsoft Windows operating system
access video and waveform-audio data stored in audio-video interleaved (AVI) and waveform-audio
files.

You can write handlers to allow your application to write or access multimedia data from another
source, such as a file using a proprietary format, an AVI file that has been expanded to contain
additional data streams, or a handler that generates its own multimedia data. If you have a custom file
format for AVI data that you would like to use with the AVIFile functions provided with the Microsoft
Win32 application programming interface (API), you need to write a custom handler.

Your application can use a custom file handler to read from a file or write to a file that is in a
nonstandard format. To do this, your application simply uses the name of your file handler when
opening the file or allocating the file interface. The AVIFile library then uses the functions from your file
handler instead of those from another file handler. The nonstandard format appears as standard AVI
data to your application or to any other application using your custom file handler.

Similarly, your application can use a custom stream handler to read a stream that is in a nonstandard
format. A stream ¾ whether it constitutes audio, video, MIDI (Musical Instrument Digital Interface), text,
or custom data ¾ is a component of an AVI file. For example, an AVI file that contains a video
sequence, an English soundtrack, and a French soundtrack consists of three streams. Your application
can specify the streams in an AVI file to process and direct each of those streams to a handler that can
optimally process the appropriate type of multimedia data.

Note You must place custom stream and file handlers in one or more DLLs, separated from main
application files.

 Handler Architecture

The internal function of a file or stream handler is defined by the handler itself. To an application, a file
handler typically appears as a module to read and write AVI files. Similarly, a stream handler appears
as a module to read and write a specific type of data stream. The consistent stream interface makes
the source and destination of the stream unimportant to the application that uses the handler.

A file handler provides access to a data source consisting of one or more data streams. File handlers
typically provide access to disk files containing one or more data streams and the internal functions of
the file handler read and write the multimedia data; however, file handlers can work with any data
source, such as a digital transmission channel containing several intermingled data streams.

In contrast, a stream handler processes one type of data and appears as a data stream to an
application. A stream handler can provide data that it manufactures or it can retrieve data from a file or
an external source. It supplies its data in a format that your application can use.

 C++ and OLE Programming Concepts

The file and stream handlers included with Windows use an object-oriented design to promote a
standard interface and to share functionality. These handlers are written in C++ and use the OLE
Component Object Model.

You can develop custom handlers using the C or C++ development systems; however, C++ is
recommended primarily because it provides an easier and more straightforward approach to implement
a handler. Using C++, you can explicitly define data as objects and you can associate the functions that
manipulate the data as member functions of an object.

This section identifies and briefly summarizes the important concepts of C++ and the OLE Component
Object Model that apply to designing and implementing file and stream handlers.

 Classes, Objects, Methods, and Interfaces

For file and stream handlers, an object can be considered as simply a pointer to a structure. For
example, a pointer to the RECT data type can be considered an object. A method is an object with a
function associated with it. A class is a composite group of member objects, functions to manipulate
these members, and (optionally) access-control specifications to member objects and functions. An
interface is a set of related methods.

 The Scope Resolution Operator in C++

Two colons (::) are used in C+ + as a scope resolution operator. This operator gives you more freedom
in naming your variables by letting you distinguish between variables with the same name. For
example, MyFile::Read refers to the Read method of the MyFile class of objects, as opposed to
YourFile::Read, which refers to a Read method in the YourFile class.

 Virtual Function Tables

A virtual function table (Vtbl) is an array of pointers to the methods an object supports. If you're using
C, an object appears as a structure whose first member is a long pointer to the Vtbl (lpVtbl); that is, the
first member points to a structure containing the function pointers. Thus, the following example calls the
Read method of a pStream object:

pStream->lpVtbl->Read(pStream, parameters)

In C+ +, the pointer to Vtbl is implicit, and C+ + automatically passes the object itself as a first
parameter. (Objects can obtain this information from the this parameter that is implicitly defined.) The
following is equivalent to the previous example when using C+ +:

pStream->Read(parameters)

 The OLE Component Object Model

The objects used by the AVIFile library are all part of the OLE Component Object Model. Primarily, this
means that they share certain methods that make them easier to work with, and the values they return
are common to most OLE interface methods.

The OLE Component Object Model of the file and stream handlers uses the OLE IClassFactory
interface to create instances of their object class. As component objects, they implement the
QueryInterface, Release, and AddRef methods defined by the IUnknown interface. The IUnknown
interface lets an application obtain pointers to other interfaces supported by the same object.

You can determine if an object supports a specific interface by using the QueryInterface method. If an
object supports a specified interface, QueryInterface returns a pointer to that interface.

You can increment and decrement the reference count associated with an object by using the AddRef
and Release methods. The reference count lets multiple clients access an object. When an object is
used by the first application, its reference count is set to 1. Applications subsequently use the AddRef
method to increment the count to let the object keep track of how many times it is being accessed.

When an application is done using an object, it calls the Release method to decrement the reference
count. When the reference count is zero, the object is no longer needed and Release frees any
resources it uses and destroys the object. Because an object uses internal resources transparent to
the application, the object is responsible for freeing them. For example, a file handler might need to
close open disk files and free buffer memory when released.

Most OLE interface methods and API functions return result handles that are defined by using the
HRESULT data type. This data type is made of a severity code, contextual information, a facility code,
and a status code. A return result handle that indicates success has the value zero. A nonzero value
indicates failure and the status code member of the return result handle provides a basis for additional
interpretation. For additional information about OLE return result handles, see the Microsoft OLE 2
Programmer's Reference.

 IAVIStream and IAVIFile Interfaces

The IAVIStream and IAVIFile interfaces contain the methods used by file and stream handlers. These
interfaces use the PAVISTREAM and PAVIFILE data types as object pointers. From a C point of view,
an object pointer like PAVISTREAM or PAVIFILE is a pointer to a structure whose first member is a
pointer to a Vtbl table of functions. Other members of the structure retain data used by the interfaces.

For example, to create an object pointer, first allocate space for a structure large enough to contain the
pointer to the Vtbl and any other members you want in the structure. Then, create a function table with
the read, write, and other functions to operate on your type of stream, and then set the first member of
the object pointer to point at the table.

 File and Stream Handler Installation

The AVIFile library uses installed stream and file handlers for reading and writing AVI files and streams.
A handler is installed when it resides in the Windows SYSTEM directory and the registry contains the
following information needed to describe and identify a handler:

· The 16-byte class identifier for the handler
· A brief description of the handler
· The name of the file containing the handler
· The file extension that a file handler can process
· File-access and non-RGB properties associated with a file handler
· Four-character codes identifying stream types that a stream handler can process

The AVIFile library queries the registry for handlers that are external to an application when opening
files and accessing streams. The result of a successful query returns the filename of a handler that can
process the file or stream type specified in the query. The registry lists each handler by creating three
entries that have the following form:

[HKEY_CLASSES_ROOT\Clsid\{00010023-0000-0000-C000-000000000046}]
@="Wave File reader/writer"
[HKEY_CLASSES_ROOT\Clsid\{00010023-0000-0000-C000-
000000000046}\InprocServer32]
@="wavefile.dll"
"ThreadingModel"="Apartment"
[HKEY_CLASSES_ROOT\Clsid\{00010023-0000-0000-C000-
000000000046}\AVIFile]
@="3"

These entries consist of the following parts:

Part Description
HKEY_CLASSES_ROOT Identifies the root entry

of the registry.
Clsid Identifies this entry as a

class identifier.
{00010023-0000-0000-C000-000000000046} Specifies an interface

identifier (IID) or class
identifier. This value is a
unique 16-byte
identifier. (The identifier
might also be referred
to as a GUID or a UUID
in other manuals.)

Wave File reader/writer Specifies a string to
describe the handler.
This string can be
displayed in dialog
boxes for selecting
stream and file
handlers.

InProcServer32 Specifies the file (in this
example,
WAVEFILE.DLL) that
can be loaded to handle

this class.
AVIFile Specifies the properties

of a file handler. In this
example, the handler
can read and write to
an AVI file.

A file handler can have one or more of its properties stored in the registry. The following constants
identify the properties currently associated with a file:

Constant Description
AVIFILEHANDLER_CANACCEPTNONR
GB

Indicates that a file handler can
process non-RGB image data.

AVIFILEHANDLER_CANREAD Indicates that a file handler can
open a file with read access.

AVIFILEHANDLER_CANWRITE Indicates that a file handler can
open a file with write access.

When creating a file or stream handler, you can obtain a new identifier by running UUIDGEN.EXE.
Always use UUIDGEN.EXE to create a new identifier. The 16-byte hexadecimal number created by this
executable will uniquely identify your handler.

The AVIFile library uses additional entries in the registry to identify a class identifier based on the file
extension that a file handler can process or a four-character code that a file or stream handler can
process. For example, the following entries associate a class identifier with the file extension .WAV and
the four-character code "WAVE":

[HKEY_CLASSES_ROOT\AVIFile\Extensions\WAV]
@="{00010023-0000-0000-C000-000000000046}"
[HKEY_CLASSES_ROOT\AVIFile\RIFFHandlers\WAVE]
@="{00010023-0000-0000-C000-000000000046}"

These entries consist of the following parts:

Part Description
HKEY_CLASSES_ROOT Identifies the root

entry of the registry.
AVIFile Identifies this entry

as an entry used by
AVIFile.

Extensions Specifies the file
extension (in this
example, .WAV) that
a file handler can
process.

RIFFHandlers Specifies the four-
character code (in
this example,
"WAVE") a file or
stream handler can
process.

{00010023-0000-0000-C000-000000000046} Specifies an
interface identifier
(IID) or class
identifier.

If you distribute your stream or file handler without a setup application to install it in the user's system,
you must include a .REG file so the user can install the handler. The user will use the registry editor to
create registry entries for your stream or file handler.

The following example shows the contents of a typical .REG file. The first entry in the following
example holds the descriptive string for the handler. The second entry identifies the file containing the
handler. The third entry identifies the properties of the file handler (in this case, read-only access to
files). The fourth entry associates the type of file the handler processes (in this case, files with a .JPG
filename extension) with the class identifier.

[HKEY_CLASSES_ROOT\Clsid\{5C2B8200-E2C8-1068-B1CA-6066188C6002}]
@="JFIF (JPEG) Files"
[HKEY_CLASSES_ROOT\Clsid\{5C2B8200-E2C8-1068-B1CA-6066188C6002}]\
InprocServer32]
@="jfiffile.dll"
[HKEY_CLASSES_ROOT\AVIFile\Extensions\JPG]
@="{5C2B8200-E2C8-1068-B1CA-6066188C6002}"

When creating this file, save it with a .REG extension to identify it as an update file for the registry.
Also, substitute a unique IID for the 16-byte code used in the example.

Users can update the registry on their system by using the following procedure:

1. From the Program Manager File menu, choose the Run command.
2. In the Run dialog box, type the following command and press ENTER:

regedit -s filename.reg

 Using Custom File and Stream Handlers

This section contains examples demonstrating how to perform the following tasks:

· Create a file or stream handler.
· Create a virtual function table for a stream handler.
· Create an object pointer.
· Obtain the address of a virtual function table.
· Create a file-handler instance in a dynamic-link library (DLL).
· Determine which interface an object supports.
· Increment the handler reference counter.
· Delete an object.

 Creating a File or Stream Handler

In C, a file or stream handler usually creates a function for each method. Your application accesses
these functions through an array of function pointers the stream handler creates. An IAVIStreamVtbl
structure contains the array of function pointers. A stream handler can assign any name it wants to
functions it creates for the methods. The position of the function pointer in the structure implies the
correspondence of the function to the method. For example, the first function pointer in the structure
corresponds to the QueryInterface method. Your stream handler must provide all the functions of an
interface.

 Creating a Virtual Function Table for a Stream Handler

The following example (written in C) shows how an application (AVIBall) creates the Vtbl used to
reference its services.

HRESULT STDMETHODCALLTYPE AVIBallQueryInterface (PAVISTREAM ps,
REFIID riid, LPVOID FAR* ppvObj);

HRESULT STDMETHODCALLTYPE AVIBallCreate (PAVISTREAM ps,
LONG lParam1, LONG lParam2);

ULONG STDMETHODCALLTYPE AVIBallAddRef (PAVISTREAM ps);
ULONG STDMETHODCALLTYPE AVIBallRelease (PAVISTREAM ps);
HRESULT STDMETHODCALLTYPE AVIBallInfo (PAVISTREAM ps,

AVIStreamHeader FAR * psi, LONG lSize);
LONG STDMETHODCALLTYPE AVIBallFindSample (PAVISTREAM ps,

LONG lPos, LONG lFlags);
HRESULT STDMETHODCALLTYPE AVIBallReadFormat (PAVISTREAM ps,

LONG lPos, LPVOID lpFormat, LONG FAR *lpcbFormat);
HRESULT STDMETHODCALLTYPE AVIBallSetFormat (PAVISTREAM ps,

LONG lPos, LPVOID lpFormat, LONG cbFormat);
HRESULT STDMETHODCALLTYPE AVIBallRead (PAVISTREAM ps,

LONG lStart, LONG lSamples, LPVOID lpBuffer, LONG cbBuffer,
LONG FAR * plBytes,LONG FAR * plSamples);

HRESULT STDMETHODCALLTYPE AVIBallWrite (PAVISTREAM ps, LONG lStart,
LONG lSamples, LPVOID lpBuffer, LONG cbBuffer, DWORD dwFlags);

HRESULT STDMETHODCALLTYPE AVIBallDelete (PAVISTREAM ps,
LONG lStart, LONG lSamples);

HRESULT STDMETHODCALLTYPE AVIBallReadData (PAVISTREAM ps,
DWORD fcc, LPVOID lp,LONG FAR *lpcb);

HRESULT STDMETHODCALLTYPE AVIBallWriteData (PAVISTREAM ps,
DWORD fcc, LPVOID lp,LONG cb);

IAVIStreamVtbl AVIBallHandler = {
 AVIBallQueryInterface, // Function pointer for ::QueryInterface
 AVIBallAddRef, // Function pointer for ::AddRef
 AVIBallRelease, // Function pointer for ::Release
 AVIBallCreate, // Function pointer for ::Create
 AVIBallInfo, // Function pointer for ::Info
 AVIBallFindSample, // Function pointer for ::FindSample
 AVIBallReadFormat, // Function pointer for ::ReadFormat
 AVIBallSetFormat, // Function pointer for ::SetFormat
 AVIBallRead, // Function pointer for ::Read
 AVIBallWrite, // Function pointer for ::Write
 AVIBallDelete, // Function pointer for ::Delete
 AVIBallReadData, // Function pointer for ::ReadData
 AVIBallWriteData // Function pointer for ::WriteData
};

File handlers use a similar procedure, except they use a different definition for the Vtbl.

 Creating an Object Pointer

AVIBall uses the following structure as its object pointer. The first member of this structure points to the
Vtbl AVIBall uses to access its functions. Applications can cast this structure to the PAVISTREAM data
type. Methods that use the PAVISTREAM data type use only the pointer to the Vtbl. The members
following the pointer to the Vtbl are used internally by AVIBall.

typedef struct {
 IAVIStreamVtbl FAR * lpvtbl;

 // Ball instance data.
 ULONG ulRefCount;
 DWORD fccType; // is this audio/video?
 int width; // size, in pixels, of each frame
 int height;
 int length; // length, in frames
 int size;
 COLORREF color; // ball color
} AVIBALL, FAR * PAVIBALL;

 Obtaining the Address of a Virtual Function Table

Applications written in C can retrieve the address of the IAVIStreamVtbl structure by using the
NewBall function. This function returns the address of a structure containing a pointer to
IAVIStreamVtbl. Information following the IAVIStreamVtbl pointer specifies data used internally by
AVIBall. Your stream handler can append its own information after the IAVIStreamVtbl pointer. This
information is returned in subsequent calls to your stream handler.

PAVISTREAM FAR PASCAL NewBall(VOID)
{
 PAVIBALL pball;
 pball = (PAVIBALL) GlobalAllocPtr(GHND, sizeof(AVIBALL));
 if (!pball)

return 0;
 pball->lpvtbl = &AVIBallHandler;
 pball->lpvtbl->Create((PAVISTREAM) pball, 0, 0);
 return (PAVISTREAM) pball;
}

 Creating a File-Handler Instance in a DLL

When an application specifies your file-handler DLL or stream handler, it is looked up in the registry by
its class identifier and loaded. The system then calls the DllGetClassObject function of the DLL to
create an instance of the file or stream handler. The following example (written in C++) shows how a
file handler creates an instance:

// Main DLL entry point.
STDAPI DllGetClassObject(const CLSID FAR& rclsid,
 const IID FAR& riid, void FAR* FAR* ppv)
{
 HRESULT hresult;

hresult = CAVIFileCF::Create(rclsid, riid, ppv);
return hresult;

}
HRESULT CAVIFileCF::Create(const CLSID FAR& rclsid,

const IID FAR& riid, void FAR* FAR* ppv)
{
// The following is the class factory creation and not an
// actual PAVIFile.

CAVIFileCF FAR* pAVIFileCF;
IUnknown FAR* pUnknown;
HRESULT hresult;

// Create the instance.

pAVIFileCF = new FAR CAVIFileCF(rclsid, &pUnknown);
if (pAVIFileCF == NULL)

return ResultFromScode(E_OUTOFMEMORY);

// Set the interface pointer.

hresult = pUnknown->QueryInterface(riid, ppv);
if (FAILED(GetScode(hresult)))

delete pAVIFileCF;
return hresult;

}

 Determining Which Interface an Object Supports

The QueryInterface method lets an application query an object to determine which interfaces it
supports. The sample application sets the ppv pointer to the current interface.

STDMETHODIMP CAVIFileCF::QueryInterface(
const IID FAR& iid,
void FAR* FAR* ppv)

{
if (iid == IID_IUnknown)

*ppv = this; // set the interface pointer
 // to this instance

else if (iid == IID_IClassFactory)
*ppv = this; // second chance to set the

 // interface pointer to this
 // instance

else
return ResultFromScode(E_NOINTERFACE);

AddRef(); //Increment the reference count
return NULL;

}

 Incrementing the Handler Reference Count

The AddRef method increments the stream- or file-handler reference count.

STDMETHODIMP_(ULONG) CAVIFileCF::AddRef()
{

return ++m_refs;
}

 Deleting an Object

The Release method deletes the object when its reference count is zero.

STDMETHODIMP_(ULONG) CAVIFileCF::Release()
{

if (!--m_refs) {
delete this; // if O, delete this instance
return 0;

}
return m_refs;

}

 Custom File and Stream Handler Reference

This section describes the functions, interfaces, and member functions that make up the standard AVI
file and stream handlers. These elements are grouped as follows:

Handler Entry Point

DllGetClassObject
AVI File Interface

IAVIFile
IAVIFile::CreateStream
IAVIFile::EndRecord
IAVIFile::GetStream
IAVIFile::Info
IAVIFile::Open
IAVIFile::WriteData
Stream Interface

IAVIStream
IAVIStream::Create
IAVIStream::Delete
IAVIStream::Info
IAVIStream::FindSample
IAVIStream::Read
IAVIStream::ReadData
IAVIStream::ReadFormat
IAVIStream::SetFormat
IAVIStream::Write
IAVIStream::WriteData
Data Streaming Interface

IAVIStreaming
IGetFrame::Begin
IGetFrame::End
Editable Stream Interface

IAVIEditStream
IAVIEditStream::Clone
IAVIEditStream::Copy
IAVIEditStream::Cut
IAVIEditStream::Paste
IAVIEditStream::SetInfo
Frame Extraction Interface

IGetFrame
IGetFrame::SetFormat
IGetFrame::End
IGetFrame::GetFrame
IGetFrame::SetFormat
IUnknown Interface

IUnknown
IUnknown::QueryInterface
IUnknown::AddRef
IUnknown::Release

 Custom File and Stream Handler Function

A file or stream handler needs to export the DllGetClassObject function entry point so an application
can access the handler.

 DllGetClassObject

STDAPI DllGetClassObject(const CLSID FAR& rclsid, const IID FAR& riid,
 void FAR* FAR* ppv)

Entry point used by C+ + file and stream handlers to create an instance of the handler.

· Returns a handle of an instance of the file or stream handler.
rclsid

Class identifier of the file or stream handler.
riid

Interface identifier of the file or stream handler.
ppv

Address returned for the object of the interface query. If the interface specified in riid is not
supported by the object, S_FALSE is returned and the ppvObj parameter used in the IUnknown
interface must be set to NULL.

DllGetClassObject is the only export function your DLL needs. The OLE component object DLL calls
this function to obtain an instance of the stream- or file-handler interface.

Your file or stream handler should ensure that the system requests the correct class identifier before
creating an instance of it.

 Custom File and Stream Handler Interfaces and Members

A file or stream handler uses one or more interfaces to define the member functions for manipulating a
file or data stream. Each of the interfaces described in this section is based on the OLE Component
Object Model. The prefixes of member function names correspond to the interface names they are
associated with.

 IAVIEditStream

Interface for manipulating and modifying editable streams. Uses IUnknown::QueryInterface,
IUnknown::AddRef, IUnknown::Release in addition to the following custom methods:

Clone Duplicates a stream.
Copy Copies a stream or a portion of it to a temporary stream.
Cut Removes a portion of a stream and places it in a temporary

stream.
Paste Copies a stream or a portion of it and places it in another stream.
SetInf
o

Changes the characteristics of a stream.

 IAVIEditStream::Clone

HRESULT STDMETHODCALLTYPE Clone(PAVISTREAM pavi,
 PAVISTREAM FAR *ppResult);

Duplicates a stream. Called when an application uses the EditStreamClone function.

· Returns the HRESULT defined by OLE.
pavi

Address of the interface to the stream being cloned.
ppResult

Address to contain a pointer to the interface to the new stream.

For handlers written in C++, Clone has the following syntax:

STDMETHODIMP Clone(PAVISTREAM FAR *ppResult);

 IAVIEditStream::Copy

HRESULT STDMETHODCALLTYPE Copy(PAVISTREAM pavi, LONG FAR *plStart,
 LONG FAR *plLength, PAVISTREAM FAR * ppResult);

Copies a stream or a portion of it to a temporary stream. Called when an application uses the
EditStreamCopy function.

· Returns the HRESULT defined by OLE.
pavi

Address of the interface to the stream to copy.
plStart

Address that contains the starting position of the operation.
plLength

Address that contains the length, in frames, of the operation.
ppResult

Address to contain a pointer to the interface to the new stream.

For handlers written in C++, Copy has the following syntax:

STDMETHODIMP Copy(LONG FAR *plStart, LONG FAR *plLength,
 PAVISTREAM FAR * ppResult);

 IAVIEditStream::Cut

HRESULT STDMETHODCALLTYPE Cut(PAVISTREAM pavi, LONG FAR *plStart,
 LONG FAR *plLength, PAVISTREAM FAR * ppResult);

Removes a portion of a stream and places it in a temporary stream. Called when an application uses
the EditStreamCut function.

· Returns the HRESULT defined by OLE.
pavi

Address of the interface to the stream to cut.
plStart

Address that contains the starting position of the operation.
plLength

Address that contains the length, in frames, of the operation.
ppResult

Address to contain a pointer to the interface to the new stream.

For handlers written in C++, Cut has the following syntax:

STDMETHODIMP Cut(LONG FAR *plStart, LONG FAR *plLength,
 PAVISTREAM FAR * ppResult);

 IAVIEditStream::Paste

HRESULT STDMETHODCALLTYPE Paste(PAVISTREAM pavi, LONG FAR *plPos,
 LONG FAR *plLength, PAVISTREAM pstream, LONG lStart,
 LONG lLength);

Copies a stream or a portion of it in another stream. Called when an application uses the
EditStreamPaste function.

· Returns the HRESULT defined by OLE.
pavi

Address of the interface to the stream to receive the pasted data.
plPos

Address that contains the starting position of the operation.
plLength

Address that contains the length, in bytes, of the data to paste from the source stream.
pstream

Address of the interface to the source stream.
lStart

Starting position of the copy operation within the source stream.
lLength

Length, in frames, of the copy operation within the source stream.

For handlers written in C++, Paste has the following syntax:

STDMETHODIMP Paste(LONG FAR *plPos, LONG FAR *plLength,
 PAVISTREAM pstream, LONG lStart, LONG lLength);

 IAVIEditStream::SetInfo

HRESULT STDMETHODCALLTYPE SetInfo(PAVISTREAM pavi,
 AVISTREAMINFO FAR *lpInfo, LONG cbInfo);

Changes the characteristics of a stream. Called when an application uses the EditStreamSetInfo
function.

· Returns the HRESULT defined by OLE.
pavi

Address of the interface to a stream.
lpInfo

Address of an AVISTREAMINFO structure containing the new stream characteristics.
cbInfo

Size, in bytes, of the buffer.

For handlers written in C++, SetInfo has the following syntax:

STDMETHODIMP SetInfo(AVISTREAMINFO FAR *lpInfo, LONG cbInfo);

 IAVIFile

Interface for opening and manipulating files and file headers, and creating and obtaining stream
interfaces. Uses IUnknown::QueryInterface, IUnknown::AddRef, and IUnknown::Release in
addition to the following custom methods:

CreateStrea
m

Creates a stream for writing.

EndRecord Writes the "REC" chunk in a tightly interleaved AVI file.
GetStream Opens a stream by accessing it in a file.
Info Fills and returns an AVIFILEINFO structure with information

about a file.
Open Initializes a file handler.
ReadData Reads file headers data, format data, or nonaudio and

nonvideo data.
WriteData Writes file headers data, format data, or nonaudio and

nonvideo data.

 IAVIFile::CreateStream

HRESULT STDMETHODCALLTYPE CreateStream(PAVIFILE pf,
 PAVISTREAM FAR * ppstream, AVISTREAMINFO FAR * psi);

Creates a stream for writing. Called when an application uses the AVIFileCreateStream function.

· Returns HRESULT defined by OLE.
pf

Address of the interface to a file.
ppStream

Address to contain a pointer to the interface to the new stream.
psi

Address of an AVISTREAMINFO structure defining the stream to create.

For handlers written in C++, CreateStream has the following syntax:

STDMETHODIMP CreateStream(PAVISTREAM FAR * ppStream,
 AVISTREAMINFO FAR * psi);

 IAVIFile::EndRecord

HRESULT STDMETHODCALLTYPE EndRecord(PAVISTREAM pf);

Writes the "REC" chunk in a tightly interleaved AVI file (having a one-to-one interleave factor of audio to
video). Called when an application uses the AVIFileEndRecord function.

· Returns the HRESULT defined by OLE.
pf

Address of the interface to a file.

This file handler method is typically not used.

For handlers written in C++, EndRecord has the following syntax:

STDMETHODIMP EndRecord(VOID);

 IAVIFile::GetStream

STDMETHODIMP GetStream(PAVIFILE pf, PAVISTREAM FAR * ppStream,
 DWORD fccType, LONG lParam);

Opens a stream by accessing it in a file. Called when an application uses the AVIFileGetStream
function.

· Returns the HRESULT defined by OLE.
pf

Address of the interface to a file.
ppStream

Address to contain a pointer to the interface to a stream.
fccType

Four-character code indicating the type of stream to locate.
lParam

Stream number.

It is typically easier to implement this method by creating all of the stream objects in advance by using
the IAVIFile::Open method. Then, this method accesses the interface to the specified stream.

Remember to increment the reference count maintained by the AddRef method for the stream when
this method is used.

For handlers written in C++, GetStream has the following syntax:

STDMETHODIMP GetStream(PAVISTREAM FAR * ppStream,
 DWORD fccType, LONG lParam);

 IAVIFile::Info

HRESULT STDMETHODCALLTYPE Info (PAVISTREAM pf,
 AVISTREAMINFO FAR * pfi, LONG lSize);

Fills and returns an AVIFILEINFO structure with information about a file. Called when an application
uses the AVIFileInfo function.

· Returns the HRESULT defined by OLE.
pf

Address of the interface to a file.
pfi

Address of an application-defined buffer to contain file information.
lSize

Size, in bytes, of the buffer specified by pfi.

If the buffer allocated is too small for the structure, this method should fail the call by returning
AVIERR_BUFFERTOOSMALL. Otherwise, it should fill the structure and return its size.

For handlers written in C++, Info has the following syntax:

STDMETHODIMP Info(AVIFILEINFO FAR * psi, LONG lSize)

 IAVIFile::Open

HRESULT STDMETHODIMP Open(PAVISTREAM pf, LPCSTR szFile, UINT mode);

Initializes a file handler. Called when an application uses the AVIFileOpen function.

· Returns the HRESULT defined by OLE.
pf

Address to contain a pointer to the interface to a file.
szFile

Address of a null-terminated string that contains the filename.
mode

Flags for the open operation.

This method is always the first method called, regardless of whether your application is reading or
writing a file.

For handlers written in C++, Open has the following syntax:

STDMETHODIMP Open(LPCSTR szFile, UINT mode);

 IAVIFile::ReadData

HRESULT STDMETHODCALLTYPE ReadData (PAVISTREAM ps, DWORD fcc,
 LPVOID lpBuffer, LONG FAR * lpcbBuffer);

Reads file headers. Called when an application uses the AVIFileReadData function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a file.
fcc

Four-character code of the header to read.
lpBuffer

Address of the buffer for the data.
lpcbBuffer

Size, in bytes, of the buffer specified by lpBuffer. When this method returns control to the
application, the contents of this parameter specifies the amount of data read.

For handlers written in C++, ReadData has the following syntax:

STDMETHODIMP ReadData(DWORD fcc, LPVOID lp, LONG FAR *lpcb);

 IAVIFile::WriteData

HRESULT STDMETHODCALLTYPE AVIBallWriteData(PAVISTREAM ps, DWORD fcc,
 LPVOID lpBuffer, LONG cbBuffer);

Writes file headers. Called when an application uses the AVIFileWriteData function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a file.
fcc

Four-character code of the header to write.
lpBuffer

Address of the buffer for the data.
cbBuffer

Size, in bytes, of the buffer specified by lpBuffer.

For handlers written in C++, WriteData has the following syntax:

STDMETHODIMP WriteData(DWORD fcc, LPVOID lpBuffer, LONG cbBuffer);

 IAVIStream

Interface for creating and manipulating data streams within a file. Uses IUnknown::QueryInterface,
IUnknown::AddRef, IUnknown::Release in addition to the following custom methods:

Create Initializes a stream handler that is not associated with any file.
Delete Deletes data from a stream.
Info Fills and returns an AVISTREAMINFO structure with

information about a stream.
FindSamp
le

Obtains the position in a stream of a key frame or a nonempty
frame.

Read Reads data from a stream and copies it to an application-
defined buffer.

ReadData Reads data headers, format data, or nonaudio and nonvideo
data. (Use the Read method to read audio and video data.)

ReadForm
at

Obtains format information from a stream.

SetFormat Sets format information in a stream.
Write Writes data to a stream.
WriteData Writes data headers, format data, or nonaudio and nonvideo

data. (Use the Write method to write audio and video data.)

 IAVIStream::Create

HRESULT STDMETHODCALLTYPE Create(PAVISTREAM ps, LONG lParam1,
 LONG lParam2);

Initializes a stream handler that is not associated with any file. Called when an application uses the
AVIStreamCreate function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
lParam1 and lParam2

Stream handler-specific data.

For handlers written in C++, Create has the following syntax:

STDMETHODIMP Create(LONG lParam1, LONG lParam2)

 IAVIStream::Delete

HRESULT STDMETHODCALLTYPE Delete(PAVISTREAM ps, LONG lStart,
 LONG lSamples);

Deletes data from a stream.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
lStart

Starting sample or frame number to delete.
lSamples

Number of samples to delete.

For handlers written in C++, Delete has the following syntax:

STDMETHODIMP Delete(LONG lStart, LONG lSamples);

 IAVIStream::Info

HRESULT STDMETHODCALLTYPE Info(PAVISTREAM ps, AVISTREAMINFO FAR * psi,
 LONG lSize);

Fills and returns an AVISTREAMINFO structure with information about a stream. Called when an
application uses the AVIStreamInfo function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
psi

Address of an AVISTREAMINFO structure to contain stream information.
lSize

Size, in bytes, of the structure specified by psi.

If the buffer allocated is too small for the structure, the Info method should fail the call by returning
AVIERR_BUFFERTOOSMALL. Otherwise, it should fill the structure and return its size.

For handlers written in C++, Info has the following syntax:

STDMETHODIMP Info(AVIFILEINFO FAR * psi, LONG lSize)

 IAVIStream::FindSample

LONG STDMETHODCALLTYPE FindSample(PAVISTREAM ps, LONG lPos,
 LONG lFlags);

Obtains the position in a stream of a key frame or a nonempty frame. Called when an application uses
the AVIStreamFindSample function.

· Returns the location of the key frame corresponding to the frame specified by the application.
ps

Address of the interface to a stream.
lPos

Position of the sample or frame.
lFlags

Applicable flags. The following values are defined:
FIND_ANY

Searches for a nonempty frame.
FIND_FORMAT

Searches for a format change.
FIND_KEY

Searches for a key frame.
FIND_NEXT

Searches forward through a stream, beginning with the current frame.
FIND_PREV

Searches backward through a stream, beginning with the current frame.
The FIND_ANY, FIND_KEY, and FIND_FORMAT flags are mutually exclusive, as are the
FIND_NEXT and FIND_PREV flags. You must specify one value from each group.

If key frames are not significant in your custom format, return the position specified for lPos.

For handlers written in C++, FindSample has the following syntax:

STDMETHODIMP_(LONG) FindSample(LONG lPos, LONG lFlags)

 IAVIStream::Read

HRESULT STDMETHODCALLTYPE Read(PAVISTREAM ps, LONG lStart,
 LONG lSamples, LPVOID lpBuffer, LONG cbBuffer,
 LONG FAR * plBytes, LONG FAR * plSamples);

Reads data from a stream and copies it to an application-defined buffer. If no buffer is supplied, it
determines the buffer size needed to retrieve the next buffer of data. Called when an application uses
the AVIStreamRead function.

· Returns AVIERR_OK if successful or AVIERR_BUFFERTOOSMALL if the buffer is not large enough
to hold the data. If successful, Read also returns either a buffer of data with the number of frames
(samples) included in the buffer or the required buffer size, in bytes.

ps
Address of the interface to a stream.

lStart
Starting sample or frame number to read.

lSamples
Number of samples to read.

lpBuffer
Address of the application-defined buffer to contain the stream data. You can also specify NULL to
request the required size of the buffer. Many applications precede each read operation with a query
for the buffer size to see how large a buffer is needed.

cbBuffer
Size, in bytes, of the buffer specified by lpBuffer.

plBytes
Address to contain the number of bytes read.

plSamples
Address to contain the number of samples read.

For handlers written in C++, Read has the following syntax:

STDMETHODIMP Read(LONG lStart, LONG lSamples,
 LPVOID lpBuffer, LONG cbBuffer,
 LONG FAR * plBytes, LONG FAR * plSamples);

 IAVIStream::ReadData

HRESULT STDMETHODCALLTYPE ReadData(PAVISTREAM ps, DWORD fcc,
 LPVOID lpBuffer, LONG FAR * lpcbBuffer);

Reads data headers of a stream. Called when an application uses the AVIStreamReadData function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
fcc

Four-character code of the stream header to read.
lpBuffer

Address of the buffer to contain the header data.
lpcbBuffer

Size, in bytes, of the buffer specified by lpBuffer. When this method returns control to the
application, the contents of this parameter specifies the amount of data read.

For handlers written in C++, ReadData has the following syntax:

STDMETHODIMP ReadData(DWORD fcc, LPVOID lp, LONG FAR *lpcb);

 IAVIStream::ReadFormat

HRESULT STDMETHODCALLTYPE ReadFormat(PAVISTREAM ps, LONG lPos,
 LPVOID lpFormat, LONG FAR * lpcbFormat);

Obtains format information from a stream. Fills and returns a structure with the data in an application-
defined buffer. If no buffer is supplied, determines the buffer size needed to retrieve the buffer of format
data. Called when an application uses the AVIStreamReadFormat function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
lPos

Position of the sample or frame.
lpFormat

Address of the buffer for the format data. Specify NULL to request the required size of the buffer.
lpcbFormat

Address that contains the size, in bytes, of the buffer specified by lpFormat. When this method is
called, the contents of this parameter indicates the size of the buffer specified by lpFormat. When
this method returns control to the application, the contents of this parameter specifies the amount of
data read or the required size of the buffer.

The type of data stored in a stream dictates the format information and the structure that contains the
format information. A stream handler should return all applicable format information in this structure,
including palette information when the format uses a palette. A stream handler should not return stream
data with the structure.

Standard video stream handlers provide format information in a BITMAPINFOHEADER structure.
Standard audio stream handlers provide format information in a PCMWAVEFORMAT structure. Other
data streams can use other structures that describe the stream data.

For handlers written in C++, ReadFormat has the following syntax:

STDMETHODIMP ReadFormat(LONG lPos, LPVOID lpFormat,
 LONG FAR *lpcbFormat)

 IAVIStream::SetFormat

HRESULT STDMETHODCALLTYPE SetFormat (PAVISTREAM ps, LPVOID lpFormat,
 LONG cbFormat);

Sets format information in a stream. Called when an application uses the AVIStreamSetFormat
function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
lpFormat

Address of the buffer for the format data.
cbFormat

Address containing the size, in bytes, of the buffer specified by lpFormat.

Standard video stream handlers provide format information in a BITMAPINFOHEADER structure.
Standard audio stream handlers provide format information in a PCMWAVEFORMAT structure. Other
data streams can use other structures that describe the stream data.

For handlers written in C++, SetFormat has the following syntax:

STDMETHODIMP SetFormat(LONG lPos, LPVOID lpFormat, LONG cbFormat)

 IAVIStream::Write

HRESULT STDMETHODCALLTYPE Write (PAVISTREAM ps, LONG lStart,
 LONG lSamples, LPVOID lpBuffer, LONG cbBuffer, DWORD dwFlags,
 LONG FAR *plSampWritten, LONG FAR *plBytesWritten);

Writes data to a stream. Called when an application uses the AVIStreamWrite function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
lStart

Starting sample or frame number to write.
lSamples

Number of samples to write.
lpBuffer

Address of the buffer for the data.
cbBuffer

Size, in bytes, of the buffer specified by lpBuffer.
dwFlags

Applicable flags. The AVIF_KEYFRAME flag is defined and indicates that this frame contains all the
information needed for a complete image.

plSampWritten
Address of a buffer used to contain the number of samples written.

plBytesWritten
Address to contain the number of bytes written.

For handlers written in C++, Write has the following syntax:

STDMETHODIMP Write(LONG lStart, LONG lSamples, LPVOID lpBuffer,
 LONG cbBuffer, DWORD dwFlags, LONG FAR *plSampWritten,
 LONG FAR *plBytesWritten);

 IAVIStream::WriteData

HRESULT STDMETHODCALLTYPE WriteData (PAVISTREAM ps, DWORD fcc,
 LPVOID lpBuffer, LONG cbBuffer);

Writes headers for a stream. Called when an application uses the AVIStreamWriteData function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
fcc

Four-character code of the stream header to write.
lpBuffer

Address of the buffer that contains the header data to write.
cbBuffer

Size, in bytes, of the buffer specified by lpBuffer.

For handlers written in C++, WriteData has the following syntax:

STDMETHODIMP WriteData(DWORD fcc, LPVOID lpBuffer, LONG cbBuffer);

 IAVIStreaming

Interface for preparing open data streams for playback in streaming operations. Uses
IUnknown::QueryInterface, IUnknown::AddRef, IUnknown::Release in addition to the Begin and
End custom methods.

 IAVIStreaming::Begin

STDMETHODCALLTYPE Begin(PAVISTREAM ps, LONG lStart, LONG lEnd,
 LONG lRate);

Prepares for the streaming operation. Called when an application uses the
AVIStreamBeginStreaming function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
lStart

Starting frame for streaming.
lEnd

Ending frame for streaming.
lRate

Speed at which the file is read relative to its normal playback rate. Normal speed is 1000. Larger
values indicate faster speeds; smaller values indicate slower speeds.

For handlers written in C++, Begin has the following syntax:

STDMETHODIMP Begin(LONG lStart, LONG lEnd, LONG lRate);

 IAVIStreaming::End

STDMETHODCALLTYPE End(PAVISTREAM ps);

Ends the streaming operation. Called when an application uses the AVIStreamEndStreaming
function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.

For handlers written in C++, End has the following syntax:

STDMETHODIMP End(VOID);

 IGetFrame

Interface for extracting, decompressing, and displaying individual frames from an open stream. Uses
IUnknown::QueryInterface, IUnknown::AddRef, IUnknown::Release in addition to the following
custom methods:

Begin Prepares to extract and decompress copies of video frames
from a stream.

End Ends frame extraction and decompression.
GetFram
e

Retrieves a decompressed copy of a frame from a stream.

SetForm
at

Sets the image format of the frames being extracted.

 IGetFrame::Begin

STDMETHODCALLTYPE Begin(PAVISTREAM ps, LONG lStart, LONG lEnd,
 LONG lRate);

Prepares to extract and decompress copies of frames from a stream. Called when an application uses
the AVIStreamGetFrameOpen function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.
lStart

Starting frame for extracting and decompressing.
lEnd

Ending frame for extracting and decompressing.
lRate

Speed at which the file is read relative to its normal playback rate. Normal speed is 1000. Larger
values indicate faster speeds; smaller values indicate slower speeds.

For handlers written in C++, Begin has the following syntax:

STDMETHODIMP Begin(LONG lStart, LONG lEnd, LONG lRate);

 IGetFrame::End

STDMETHODCALLTYPE End(PAVISTREAM ps);

Ends frame extraction and decompression. Called when an application uses the
AVIStreamGetFrameClose function.

· Returns the HRESULT defined by OLE.
ps

Address of the interface to a stream.

For handlers written in C++, Begin has the following syntax:

STDMETHODIMP End(VOID);

 IGetFrame::GetFrame

LPVOID STDMETHODCALLTYPE GetFrame(PAVISTREAM ps, LONG lPos);

Retrieves a decompressed copy of a frame from a stream. Called when an application uses the
AVIStreamGetFrame function.

· Returns the address of the decompressed frame data.
ps

Address of the interface to a stream.
lPos

Frame to copy and decompress.

For handlers written in C++, GetFrame has the following syntax:

STDMETHODIMP_(LPVOID) GetFrame(LONG lPos);

 IGetFrame::SetFormat

STDMETHODCALLTYPE SetFormat(PAVISTREAM ps, LPBITMAPINFOHEADER lpbi,
 LPVOID lpBits, int x, int y, int dx, int dy);

Sets the decompressed image format of the frames being extracted and optionally provides a buffer for
the decompression operation.

· Returns NOERROR if successful, E_OUTOFMEMORY if the decompressed image is larger than the
buffer size, or E_FAIL otherwise.

ps
Address of the interface to a stream.

lpbi
Address of a BITMAPINFOHEADER structure defining the decompressed image format. You can
also specify NULL or the value ((LPBITMAPINFOHEADER) 1) for this parameter. NULL causes the
decompressor to choose a format that is appropriate for editing (normally a 24-bit image depth
format). The value ((LPBITMAPINFOHEADER) 1) causes the decompressor to choose a format
appropriate for the current display mode.

lpBits
Address of a buffer to contain the decompressed image data. Specify NULL to have this method
allocate a buffer.

x and y
The x- and y-coordinates of the destination rectangle within the DIB specified by lpbi. This parameter
is used when lpBits is not NULL.

dx and dy
Width and height of the destination rectangle. These parameters are used when lpBits is not NULL.

The x, y, dx, and dy parameters identify the portion of the bitmap specified by lpbi and lpBits that
receives the decompressed image.

For handlers written in C++, SetFormat has the following syntax:

STDMETHODIMP SetFormat(LPBITMAPINFOHEADER lpbi, LPVOID lpBits, int x,
 int y, int dx, int dy);

 IUnknown

OLE interface from which AVIFile and AVIStream interfaces are derived. Interfaces used with AVI files
rely on definitions of the QueryInterface, AddRef, and Release methods from this factory.

 IUnknown::QueryInterface

HRESULT STDMETHODCALLTYPE QueryInterface(LPUNKNOWN ps,
 const IID FAR& riid, void FAR* ppvObj);

Determines if an interface can be used with an object. Used by the following interfaces:
IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, and IGetFrame.

· Returns a pointer to the current interface if successful or E_NOINTERFACE otherwise.
ps

Address of an IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame interface.
riid

Identifier of the interface being queried.
ppvObj

Address to contain a pointer to the object whose interface is queried or NULL when an interface is
not supported.

For handlers written in C++, QueryInterface has the following syntax:

STDMETHODIMP QueryInterface(const IID FAR& riid, void FAR* ppvObj);

 IUnknown::AddRef

ULONG STDMETHODCALLTYPE AddRef(LPUNKNWON ps);

Increments the reference count of the appropriate handler: IAVIEditStream, IAVIFile, IAVIStream,
IAVIStreaming, or IGetFrame. When the reference count is nonzero, the handler must retain
resources for the file or stream.

· Returns the resulting reference count.
ps

Address of an IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame interface.

For handlers written in C++, AddRef has the following syntax:

STDMETHODIMP AddRef(VOID);

 IUnknown::Release

ULONG STDMETHODCALLTYPE Release(LPUNKNOWN ps);

Decrements the reference count of the appropriate handler: IAVIEditStream, IAVIFile, IAVIStream,
IAVIStreaming, or IGetFrame. When the reference count reaches zero, the handler must free
resources established for the file or stream.

· Returns the resulting reference count.
ps

Address of an IAVIEditStream, IAVIFile, IAVIStream, IAVIStreaming, or IGetFrame interface.

For handlers written in C++, Release has the following syntax:

STDMETHODIMP Release(VOID);

 AVIFile Functions and Macros

AVIFile functions and macros provide access to time-based files that use the Resource Information File
Format (RIFF), such as waveform-audio and audio-video interleaved (AVI) files. These functions and
macros manage the internals of RIFF files, making it unnecessary for you to manage and navigate
through the RIFF architecture.

The AVIFile functions and macros handle the information in time-based files as one or more data
streams instead of tagged blocks of data called chunks. Data streams refer to the components of a
time-based file. An AVI file can contain several different types of data, such as a video sequence, an
English soundtrack, and a French soundtrack. Using AVIFile, an application can access each of these
components separately.

Note Although the AVIFile functions and macros work with any RIFF file, this chapter demonstrates
their use with AVI files only. AVI files are typically the time-based files used with the AVIFile macros and
functions.

AVIFile functions and macros are contained in a dynamic-link library. You can initialize the library by
using the AVIFileInit function. After you initialize the library, you can use any of the AVIFile functions or
macros. You can release the library by using the AVIFileExit function. AVIFile maintains a reference
count of the applications that are using the library, but not those that have released it. Your applications
should balance each use of AVIFileInit with a call to AVIFileExit to completely release the library after
each application finishes using it.

 Function Data Types and Return Values

The AVIFile functions and macros use file and stream handlers implemented with OLE technology. The
standard data type of an OLE function is STDAPI, and the function returns an HRESULT value (zero
for success or an error otherwise). If a function returns a value other than an HRESULT, the type of the
function's prototype has a slightly different syntax that embeds the return value type in parentheses
following STDAPI_. For example, a function that returns a LONG data value uses STDAPI_(LONG) in
the prototype statement.

 AVIFile Operations

This section describes the AVIFile file input and output (I/O) operations.

 Opening and Closing Files

An application must open an AVI file before reading or writing. You can open an AVI file by using the
AVIFileOpen function. AVIFileOpen returns the address of an AVI file interface that contains the
handle of the open file and increments the reference count of the file.

AVIFileOpen supports the OF flags used with the OpenFile function. If an application writes to an
existing file, it must include the OF_WRITE flag in AVIFileOpen. Similarly, if your application creates
and writes to a new file, you must include the OF_CREATE and OF_WRITE flags in AVIFileOpen.

When you open a file using AVIFileOpen, you can use a default file handler or you can specify a
custom file handler to read and write to the file and its data streams. In either case, AVIFile searches
the registry for the correct file handler to use. You must ensure custom file handlers are in the registry
before an application can access them.

You can increment the reference count of a file by using the AVIFileAddRef function. For example, you
might want to do this when passing a handle of the file interface to another application or when you
want to keep a file open when using a function that would normally close the file.

You can close a file by using the AVIFileRelease function. AVIFileRelease decrements the reference
count of an AVI file, saves changes made to the file, and when the reference count reaches zero,
closes the file. Your applications should balance the reference count by including a call to
AVIFileRelease for each use of AVIFileOpen and AVIFileAddRef.

Note An application can open a file with one or more program threads; however, only one thread
should access the file at a time for the best possible performance.

 Reading from a File

You can retrieve information about an open file by using the AVIFileInfo function. This function fills the
AVIFILEINFO structure with information such as the maximum data rate, the number of streams in the
file, whether the file uses an index, and whether the file is copyrighted.

You can retrieve supplementary information in an AVI file by using the AVIFileReadData function.
Supplementary information is applicable to the entire file and is not included in the normal file headers.
For example, the name of the company or person who holds the copyrights of a file could be
supplementary information. Supplementary information does not adhere to a specific format; it can be
file specific. AVIFileReadData returns the supplementary information in an application-supplied buffer.

 Writing to a File

You can write supplementary information to a file that has been opened with write privileges by using
the AVIFileWriteData function. This function copies the information from an application-supplied buffer
and places it in one or more chunks in the file. The "INFO" chunk is a common RIFF chunk type in
which the function stores supplementary information. For a description of RIFF files and their data
chunks, see Chapter 15, "File Input and Output."

 Using the Clipboard with AVI Files

The clipboard provides convenient, temporary storage for an application to copy or transfer AVI files.
AVIFile includes clipboard functions that you can use with disk or memory files.

You can copy a file to the clipboard by using the AVIPutFileOnClipboard function. You can write a file
that is on the clipboard to memory or to disk by using the AVIGetFromClipboard function.

You can clear a file from the clipboard by using the AVIClearClipboard function. This function does not
clear other types of information, such as text, from the clipboard. If you use clipboard functions in your
application, clear the clipboard with AVIClearClipboard before closing the application or closing the file
on the clipboard. You can call AVIClearClipboard in your application whether or not
AVIPutFileOnClipboard has been used.

Note If your application copies a file to the clipboard and the file contains stream data that might
change, you can create a memory file of cloned streams by using the AVIMakeFileFromStreams
function. You can then place the file on the clipboard and then release the original file without
invalidating it.

 Stream Operations

Most of the features of AVIFile focus on data streams. This section describes the functions and macros
that deal with streams and stream data.

 Opening and Closing Streams

Opening data streams is similar to opening files. You can open a stream by using the
AVIFileGetStream function. This function creates a stream interface, places a handle of the stream in
the interface, and returns a pointer to the interface. AVIFileGetStream also maintains a reference
count of the applications that have opened a stream, but not of those that have closed it.

If you want to access a single stream in a file, you can open the file and the stream by using the
AVIStreamOpenFromFile function. This function combines the operations and function arguments of
the AVIFileOpen and AVIFileGetStream functions.

If you want to access more than one stream in a file, you can use AVIFileOpen once followed by
multiple calls to AVIFileGetStream.

You can increment the reference count of a stream by using the AVIStreamAddRef function to keep a
stream open when using a function that would normally close the stream.

You can close a stream by using the AVIStreamRelease function. This function decrements the
reference count of the stream and closes it when the reference count reaches zero. Your applications
should balance the reference count by including a call to AVIStreamRelease for each use of the
AVIFileGetStream, AVIFileCreateStream, AVIStreamAddRef, or AVIStreamOpenFromFile function.
When you release a stream that has been opened by using AVIStreamOpenFromFile, AVIFile closes
the file containing the stream. If your application releases a file that has open data streams, AVIFile will
not close the streams until all of the streams are released.

 Reading from a Stream

You can retrieve information about an open stream by using the AVIStreamInfo function. This function
fills the AVISTREAMINFO structure with information such as the type of data in the stream, the
compression method used when writing stream data, the suggested buffer size, the playback rate, and
a text description of the stream.

Some members of the AVISTREAMINFO structure are also present in the AVIFILEINFO structure. The
information in the AVIFILEINFO structure applies to the entire file. The information in the
AVISTREAMINFO structure is specific to the accessed stream and has precedence over the
information in the AVIFILEINFO structure.

If a stream has supplementary information associated with it, you can retrieve this information by using
the AVIStreamReadData function. AVIStreamReadData returns the information in an application-
supplied buffer. Supplementary stream information might include configuration settings for the
compression and decompression methods used on a stream. You can obtain the required buffer size
by using the AVIStreamDataSize macro.

You can retrieve formatting information about a stream by using the AVIStreamReadFormat function.
This function returns a stream-specific structure in an application-supplied buffer. For a video stream,
the buffer contains formatting information in a BITMAPINFO structure. For an audio stream, the buffer
contains formatting information in a WAVEFORMATEX or PCMWAVEFORMAT structure. For other
stream types, the stream handler returns information specific to the stream. You can determine the
required buffer size by using AVIStreamReadFormat and specifying a NULL buffer address or by
using the AVIStreamFormatSize macro.

You can retrieve the multimedia content in a stream by using the AVIStreamRead function. This
function copies raw data from the stream into an application-supplied buffer. For video streams, this
function retrieves the bitmapped images that make up the frame content. For audio streams, this
function retrieves waveform-audio samples that make up the sound content. You can determine the
required buffer size by using AVIStreamRead and specifying a NULL buffer address or by using the
AVIStreamSampleSize macro.

Some AVI stream handlers introduce delays associated with software and hardware initialization or
coordination. You can inform these handlers to prepare for data streaming by using the
AVIStreamBeginStreaming function. This function lets the stream handler allocate the resources it
needs and initialize them. You can also inform these handlers when streaming has ended by using the
AVIStreamEndStreaming function. This function lets the stream handler deallocate the resources it
allocated for AVIStreamBeginStreaming.

AVIStreamRead does not provide decompression services. For information about compressing and
decompressing audio streams, see Chapter 12, "Audio Compression Manager." For information about
compressing and decompressing video streams, see Chapter 7, "Video Compression Manager." For
information about compressing and decompressing individual frames in a video stream, see "Working
with Compressed Video Data in a Stream" later in this chapter.

 Working with Compressed Video Data in a Stream

AVIFile provides several ways for you to access compressed video streams.

If you want to display one or more frames of a compressed video stream, you can retrieve the frames
by using the AVIStreamRead function and forwarding the compressed frame data to DrawDib
functions to display them. DrawDib functions can display images of several image depths and
automatically dither images for displays that cannot handle certain types of device-independent
bitmaps (DIBs). These functions work with uncompressed and compressed images. For more
information about DrawDib functions, see Chapter 10, "DrawDib Functions ."

AVIFile provides functions for decompressing a single video frame. You can allocate resources by
using the AVIStreamGetFrameOpen function. This function creates a buffer for the decompressed
data.

You can decompress a single video frame by using the AVIStreamGetFrame function. This function
decompresses the frame and retrieves a complete frame of image data and returns the address of the
DIB in the BITMAPINFOHEADER structure. Your application can display the DIB by using standard
Microsoft Win32 drawing functions or by using the DrawDib functions.

If your application makes successive calls to AVIStreamGetFrame, the function overwrites its buffer
with each retrieved frame.

When you finish using AVIStreamGetFrame and the decompressed DIB is in its buffer, you can
release the allocated resources by using the AVIStreamGetFrameClose function.

For more information about decompressing images, see Chapter 7, "Video Compression Manager."

 Creating a File from Existing Streams

One way to create a file that contains data streams is to combine existing streams into a new file. The
streams that provide data for the new file can reside in memory or in one or more files.

You can build a file from several streams by using the AVISave function. This function creates a file
and writes the data streams specified in its calling sequence to the file. The calling sequence for
AVISave uses a variable number of arguments that include interfaces for the streams combined in the
new file.

You can also combine data streams in a new file by using the AVISaveV function. This function
provides the same functionality as AVISave, but when you use AVISaveV, your application specifies
the data streams as an array, not as a variable number of arguments.

You can create a dialog box in which the user can select compression settings for the new file by using
the AVISaveOptions function. The dialog box displays the current compression settings and lets the
user edit them. Compression setting changes are stored in an AVICOMPRESSOPTIONS structure.

You can also include a callback function with AVISave and AVISaveV that your application can use to
display the progress of writing the file and, if needed, let the user cancel the save operation. You can
include the address of the callback function in the calling sequence of AVISave or AVISaveV.

You can let the user select a filename for the new file by using the GetSaveFileNamePreview function.
This function displays the Save As dialog box in which the user can preview the first stream (normally
the video stream) of an AVI file.

You can create a file interface pointer (and a virtual file) for a group of streams by using the
AVIMakeFileFromStreams function. Other AVIFile functions can use the file interface pointer returned
by this function to access the streams in the virtual file. When you finish using the virtual file, delete the
file interface pointer by using the AVIFileRelease function.

Note To minimize image and audio degradation, avoid compressing an AVI file more than once.
Combine uncompressed pieces of video in your editing system and then compress the final product.
For information about compression options, see Chapter 7, "Video Compression Manager."

 Writing Streams to a File

You can also create a file containing data streams by writing a new data stream to a file.

You can create a new stream in a new or existing file by using the AVIFileCreateStream function. This
function defines a new stream according to the characteristics described in an AVISTREAMINFO
structure, creates a stream interface for the new stream, increments the reference count of the stream,
and returns the address of the stream-interface pointer.

Before you write the content of the stream, you must specify the stream format. You can set the stream
format by using the AVIStreamSetFormat function. When setting the format of a video stream, you
must supply this function with a BITMAPINFO structure containing the appropriate information. When
setting the format of an audio stream, you must supply a WAVEFORMAT or WAVEFORMATEX
structure containing the appropriate information. The information you need to supply to the function for
other stream types depends on the stream type and the stream handler.

You can write the multimedia content in a stream by using the AVIStreamWrite function. This function
copies raw data from an application-supplied buffer into the specified stream. The default AVI file
handler appends information to the end of a stream. The default WAVE handler can write waveform-
audio data within a stream as well as at the end of a stream.

You can write supplementary information about the file or stream that is not included in the
AVIFileCreateStream or AVIStreamSetFormat function by using the AVIFileWriteData and
AVIStreamWriteData functions. You can record data that is applicable to the entire file, such as
copyright information and modification history, by using AVIFileWriteData. You can record stream-
specific information, such as compression and decompression settings, by using
AVIStreamWriteData. The supplementary information is stored in separate chunks within the file.

You can close the stream after you finish writing to the new stream by using the AVIStreamRelease
function. This function clears buffers used in recording the stream data, and it completes and closes
any incomplete data chunks in the file.

 Positioning in Streams

AVIFile provides several ways to locate and move to a position in a data stream. The functions and
macros in this section let your application find the starting position, length, and key frames (containing
a complete image in the sample) within a stream. The functions and macros also associate time with
positions in a stream by calculating the elapsed time needed to play a stream from its beginning to any
point in a stream.

Finding the Starting Position

You can retrieve the sample number of the first frame in a video stream by using the AVIStreamStart
function. (The frames of a movie might start at sample 0 or 1 depending on the preference of the
author.) You can also obtain this information by using the AVIStreamInfo function. This function stores
the sample number in the dwStart member of the AVISTREAMINFO structure. You can retrieve the
starting time of a stream's first sample by using the AVIStreamStartTime macro.

You can retrieve the stream length by using the AVIStreamLength function. This function returns the
number of samples in the stream. You can also obtain this information by using the AVIStreamInfo
function. This function stores the stream length in the dwLength member of the AVISTREAMINFO
structure. You can retrieve the length of a stream in milliseconds by using the AVIStreamLengthTime
macro.

In a video stream, each sample generally corresponds to a frame of video. There might, however, be
samples for which no video data is present. If you call the AVIStreamRead function specifying one of
those positions, it returns a data length of 0 bytes. You can find samples that contain data by using the
AVIStreamFindSample function and specifying the FIND_ANY flag.

In an audio stream, each sample corresponds to one data block of audio data. For example, if the
audio data has a 22 kHz ADPCM (Adaptive Differential Pulse Code Modulation) format, each sample
for AVIStreamLength corresponds to a block of 256 bytes of compressed audio data. This block of
audio data contains approximately 500 audio samples when uncompressed. The functions and macros
of AVIFile, however, treat each 256-byte block as a single sample.

Note Valid positions within a stream range from the beginning to the end of the stream, which is the
sum of the stream starting point and its length. The position represented by the sum of the starting
position and the length corresponds to a time after the last data has been rendered; it does not contain
any data. You can retrieve the sample number that represents the end of the stream by using the
AVIStreamEnd macro. You can retrieve the time value in milliseconds that represents the end of the
stream by using the AVIStreamEndTime macro.

Finding Sample and Key Frames

You can search for different types of samples in a stream by using the AVIStreamFindSample
function. This function searches backward or forward through a stream for a sample of the appropriate
type, beginning with the sample number you specify. You can search for different types of samples in a
stream by specifying a flag in the AVIStreamFindSample calling sequence. Specify the FIND_ANY
flag to locate nonempty samples or to skip samples that lack data. Specify the FIND_KEY flag to
search for key frames that contain the data to render a complete image without needing to reference
previous frames. Specify the FIND_FORMAT flag to search for changes to the format.
AVIStreamFindSample is used mainly with video streams.

Several macros that use AVIFile functions supplement the stream search features. The following list
provides a brief description of each macro. The macros that search for a specific position or type of
data require a starting location to be specified in the stream.

Macro Description
AVIStreamIsKeyFrame Indicates whether a sample in a

specified stream is a key frame.
AVIStreamNearestKeyFrame Locates the key frame at or preceding

a specified position in a stream.
AVIStreamNearestKeyFrameTim
e

Determines the time corresponding to
the beginning of the key frame
nearest (at or preceding) a specified
time in a stream.

AVIStreamNearestSample Locates the nearest nonempty
sample at or preceding a specified
position in a stream.

AVIStreamNearestSampleTime Determines the time corresponding to
the beginning of a sample that is
nearest to a specified time in a
stream.

AVIStreamNextKeyFrame Locates the next key frame following
a specified position in a stream.

AVIStreamNextKeyFrameTime Returns the time of the next key
frame in a stream, starting at a given
time.

AVIStreamNextSample Locates the next nonempty sample
from a specified position in a stream.

AVIStreamNextSampleTime Returns the time that a sample
changes to the next sample in the
stream. This macro finds the next
interesting time in a stream.

AVIStreamPrevKeyFrame Locates the key frame that precedes
a specified position in a stream.

AVIStreamPrevKeyFrameTime Returns the time of the previous key
frame in the stream, starting at a
given time.

AVIStreamPrevSample Locates the nonempty sample that
precedes a specified position in a
stream.

AVIStreamPrevSampleTime Determines the time that the previous
sample replaces its predecessor in
the stream.

AVIStreamSampleToSample Returns the sample in a stream that
occurs at the same time as a sample
that occurs in a second stream.

Switching Between Samples and Time

You can determine the elapsed time from the beginning of a stream to a sample using the
AVIStreamSampleToTime function. This function converts the sample number to a time value
expressed in milliseconds. For a video frame (which spans several milliseconds), this value represents
the time the sample begins to play since playback began and assumes the video clip plays at normal
speed. For an audio sample (which has several samples in a millisecond), the time value corresponds
to the time the sample begins to play and assumes the audio stream plays at normal speed.

Conversely, you can find the sample number associated with a time value by using the
AVIStreamTimeToSample function. This function converts the millisecond value to a sample number
and assumes the video clip plays at normal speed.

Because AVIStreamSampleToTime returns the time a frame begins to play,
AVIStreamSampleToTime and AVIStreamTimeToSample are not true inverses. They more
accurately determine the position in a file than time. For example, two consecutive audio samples
might both play in the same millisecond. Using AVIStreamSampleToTime to convert the sample
numbers would result in identical time values. If you convert the time value back to a sample number
by using AVIStreamTimeToSample, a single sample would be referenced.

 Creating Temporary Streams

Temporary streams can be beneficial in several ways. You can use a temporary stream as a work
stream, such as when changing the stream format. Or you can create a temporary stream to hold
portions of other streams that have been copied.

You can create a stream in memory that is not associated with any file by using the AVIStreamCreate
function. This function returns the address of the interface to the new stream in a specified location and
is used internally by other functions that create temporary streams.

You can create a compressed stream from an uncompressed stream by using the
AVIMakeCompressedStream function. You identify the stream to compress, the compression method
and compression options, and the handler for the new stream.

When you finish using a stream created with AVIStreamCreate or AVIMakeCompressedStream,
close the stream by using the AVIStreamRelease function. AVIStreamRelease frees the resources the
temporary stream used.

 Editing Streams

You can create a stream that you can edit by using the CreateEditableStream function. This function
initializes the environment for editing a stream. This includes creating an interface to the new stream
and internal edit tables that track changes made to the stream. CreateEditableStream returns a
stream pointer to an editable stream that is required by other stream editing functions. The editable
stream pointer can also be used by other AVIFile functions that accept stream pointers.

You can cut one or more samples from an editable stream by using the EditStreamCut function. This
function adds an entry to the edit table to remove the samples from the editable stream and then
places a copy of the cut samples in a new temporary stream whose interface pointer is returned in a
variable.

You can copy one or more samples from an editable stream into a temporary stream by using the
EditStreamCopy function. EditStreamCopy places copies of the samples in a new temporary stream
whose interface pointer is returned in a variable.

You can copy one or more samples from a stream and paste them into an editable stream by using the
EditStreamPaste function. This function adds an entry in the edit table of the target editable stream to
insert the samples at the specified position.

You can duplicate an editable stream by using the EditStreamClone function. This function returns a
pointer to the stream interface of the new stream. You can copy these streams to the clipboard or use
them to maintain a trail of edits made to a stream.

You can change several of the characteristics of an editable stream by using the EditStreamSetInfo
function. This function updates the priority setting, language, scale and rate, starting time, quality
setting, destination rectangle dimensions and coordinates, and the textual description of the stream.
These items are stored in the AVISTREAMINFO structure associated with the editable stream.

You can also change the textual description of an editable stream by using the EditStreamSetName
function. This function updates the szName member of the AVISTREAMINFO structure associated
with the editable stream.

The editing functions work on streams. You need to cut and paste each stream individually, and then
use the AVIMakeFileFromStreams function to create a new file pointer.

Note The edit tables in an editable stream maintain all the changes for a stream. The source stream
is never changed.

 Using AVIFile Functions and Macros

This section contains examples demonstrating how to perform the following tasks:

· Open an AVI file.
· Open streams in an AVI file and close the file.
· Read streams from an AVI file.
· Read from one stream and write to another.
· Use the editing functions and put a file on the clipboard.

 Opening an AVI File

The following example initializes the AVIFile library and opens an AVI file. The function uses a default
file handler:

// LoadAVIFile - loads AVIFile and opens an AVI file.
//
// szfile - filename
// hwnd - window handle
//
VOID LoadAVIFile(LPCSTR szFile, HWND hwnd)
{
 LONG hr;
 PAVIFILE *pfile;

 AVIFileInit(); // opens AVIFile library

 hr = AVIFileOpen(&pfile, szFile, OF_SHARE_DENY_WRITE, 0L);
 if (hr != 0){
 ErrMsg("Unable to open %s", szFile);
 return;
 }

// .
// . Place functions here that interact with the open file.
// .

 AVIFileRelease(pfile); // closes the file
 AVIFileExit(); // releases AVIFile library
}

 Opening Streams in an AVI File and Closing the File

The following example opens all the streams in an AVI file. If an error is encountered, the file is closed.

// InsertAVIFile - opens the streams in an AVI file.
//
// pfile - file-interface pointer from AVIFileOpen
//
// Global variables
// gcpavi - count of the number of streams in an AVI file
// gapavi[] = array of stream-interface pointers

void InsertAVIFile(PAVIFILE pfile, HWND hwnd, LPSTR lpszFile)
{
 int i;
 gcpavi = 0;

 // Open the streams until a stream is not available.
 for (i = gcpavi; i < MAXNUMSTREAMS; i++) {
 gapavi[i] = NULL;
 if (AVIFileGetStream(pfile, &gapavi[i], 0L, i - gcpavi)
 != AVIERR_OK)
 break;

 if (gapavi[i] == NULL)
 break;
 }
 // Display error message-stream not found.
 if (gcpavi == i)
 {
 ErrMsg("Unable to open %s", lpszFile);
 if (pfile) // If file is open, close it
 AVIFileRelease(pfile);
 return;
 }
 else {
 gcpavi = i - 1;
 }

// .
// . Place functions to process data here.
// .
}

 Reading Streams from an AVI File

The following subroutine obtains stream information from an AVI file and determines the stream type
from the AVISTREAMINFO structure.

// StreamTypes - opens the streams in an AVI file and determines
// stream types.
//
// Global variables
// gcpavi - count of streams in an AVI file
// gapavi[] = array of stream-interface pointers

void StreamTypes(HWND hwnd)
{
 AVISTREAMINFO avis;
 LONG r, lHeight = 0;
 WORD w;
 int i;
 RECT rc;

// Walk through all streams.
 for (i = 0; i < gcpavi; i++) {
 AVIStreamInfo(gapavi[i], &avis, sizeof(avis));

 if (avis.fccType == streamtypeVIDEO) {

 // Place video-processing functions here.

 }
 else if (avis.fccType == streamtypeAUDIO) {

 // Place audio-processing functions here.

 }
 else if (avis.fccType == streamtypeTEXT) {

 // Place text-processing functions here.

 }
 .
 .
 .
 }
}

 Reading from One Stream and Writing to Another

The following example reads data from a stream, compresses it into a new stream, and writes the
compressed data into a stream of a new file.

// SaveSmall - copies a stream of data from one file, compresses
// the stream, and writes the compressed stream to a new file.
//
// ps stream interface pointer
// lpFilename - new AVI file to build
//

void SaveSmall(PAVISTREAM ps, LPSTR lpFilename)
{
 PAVIFILE pf;
 PAVISTREAM psSmall;
 HRESULT hr;
 AVISTREAMINFO strhdr;
 BITMAPINFOHEADER bi;
 BITMAPINFOHEADER biNew;
 LONG lStreamSize;
 LPVOID lpOld;
 LPVOID lpNew;

 // Determine the size of the format data.
 AVIStreamFormatSize(ps, 0, &lStreamSize);
 if (lStreamSize > sizeof(bi)) // Format larger than space allocated?
 return;

 lStreamSize = sizeof(bi);
 hr = AVIStreamReadFormat(ps, 0, &bi, &lStreamSize); // Read format
 if (bi.biCompression != BI_RGB) // Wrong compression format?
 return;

 hr = AVIStreamInfo(ps, &strhdr, sizeof(strhdr));

 // Create new AVI file.
 hr = AVIFileOpen(&pf, lpFilename, OF_WRITE | OF_CREATE, NULL);
 if (hr != 0)
 return;

 // Set parameters for the new stream.
 biNew = bi;
 biNew.biWidth /= 2;
 biNew.biHeight /= 2;
 biNew.biSizeImage = ((((UINT)biNew.biBitCount * biNew.biWidth
 + 31)&~31) / 8) * biNew.biHeight;
 SetRect(&strhdr.rcFrame, 0, 0, (int) biNew.biWidth,
 (int) biNew.biHeight);

 // Create a stream.
 hr = AVIFileCreateStream(pf, &psSmall, &strhdr);
 if (hr != 0) { //Stream created OK? If not close file.
 AVIFileRelease(pf);
 return;

 }

 // Set format of new stream.
 hr = AVIStreamSetFormat(psSmall, 0, &biNew, sizeof(biNew));
 if (hr != 0) {
 AVIStreamRelease(psSmall);
 AVIFileRelease(pf);
 return;
 }

 // Allocate memory for the bitmaps.
 lpOld = GlobalAllocPtr(GMEM_MOVEABLE, bi.biSizeImage);
 lpNew = GlobalAllocPtr(GMEM_MOVEABLE, biNew.biSizeImage);

 // Read the stream data.
 for (lStreamSize = AVIStreamStart(ps); lStreamSize <
 AVIStreamEnd(ps); lStreamSize++) {
 hr = AVIStreamRead(ps, lStreamSize, 1, lpOld, bi.biSizeImage,
 NULL, NULL);
 // .
 // . Place error check here.
 // .

 // Compress the data.
 CompressDIB(&bi, lpOld, &biNew, lpNew);

 // Save the compressed data.
 hr = AVIStreamWrite(psSmall, lStreamSize, 1, lpNew,
 biNew.biSizeImage, AVIIF_KEYFRAME, NULL, NULL);
 }

 // Close the stream and file.
 AVIStreamRelease(psSmall);
 AVIFileRelease(pf);
}

 Using the Editing Functions and Putting a File on the Clipboard

The following example cuts, copies, or deletes segments from an array of streams. The cut and copied
streams are merged into a new file and placed on the clipboard.

// Global variables
// gcpavi - count of streams in an AVI file
// gapavi[] - array of stream-interface pointers, used as data source
// gapaviSel[] - stream-interface pointers of edited streams
// galSelStart[] - edit starting point in each stream
// galSelLen[] - length of edit to make in each stream
// gapaviTemp[] - array of stream-interface pointers put on clipboard
//
// Comment:
// The editable streams in gapaviSel have been
// initialized with CreateEditableStream.
//

case MENU_CUT:
case MENU_COPY:
case MENU_DELETE:
{
 PAVIFILE pf;
 int i;

 // Walk list of selections and make streams out of each section.
 gcpaviSel = 0; // index counter for destination streams
 for (i = 0; i < gcpavi; i++) {
 if (galSelStart[i] != -1) {
 if (wParam == MENU_COPY)
 EditStreamCopy(gapavi[i], &galSelStart[i],
 &galSelLen[i], &gapaviSel[gcpaviSel++]);
 else {
 EditStreamCut(gapavi[i], &galSelStart[i],
 &galSelLen[i], &gapaviSel[gcpaviSel++]);
 }
 }
 }

.
.
.
 // Put on the clipboard if segment is not deleted.
 if (gcpaviSel && wParam != MENU_DELETE) {
 PAVISTREAM gapaviTemp[MAXNUMSTREAMS];
 int i;

 // Clone the edited streams, so that if the user does
 // more editing, the clipboard won't change.
 for (i = 0; i < gcpaviSel; i++) {
 gapaviTemp[i] = NULL;
 EditStreamClone(gapaviSel[i], &gapaviTemp[i]);
 // .
 // . Place error check here.
 // .

 }

 // Create a file from the streams and put on clipboard.
 AVIMakeFileFromStreams(&pf, gcpaviSel, gapaviTemp);
 AVIPutFileOnClipboard(pf);

 // Release clone streams.
 for (i = 0; i < gcpaviSel; i++) {
 AVIStreamRelease(gapaviTemp[i]);
 }

 // Release file put on clipboard.
 AVIFileRelease(pf);
 }

 // Release streams created.
 for (i = 0; i < gcpaviSel; i++)
 AVIStreamRelease(gapaviSel[i]);
.
.
.
}

 AVIFile Reference

This section describes the functions, macros, and structures for applications using the AVIFile services.
These elements are grouped as follows:

AVIFile Library Operations

AVIFileInit
AVIFileExit
Opening and Closing AVI Files

AVIFileOpen
AVIFileAddRef
AVIFileRelease
GetOpenFileNamePreview
Reading from a File

AVIFileInfo
AVIFILEINFO
AVIFileReadData
Writing to a File

AVIFileWriteData
Using the Clipboard

AVIPutFileOnClipboard
AVIGetFromClipboard
AVIClearClipboard
Opening and Closing Streams

AVIFileGetStream
AVIStreamOpenFromFile
AVIStreamAddRef
AVIStreamRelease
Reading Stream Information

AVISTREAMINFO
AVIStreamReadData
AVIStreamDataSize
AVIStreamReadFormat
AVIStreamFormatSize
AVIStreamRead
AVIStreamSampleSize
AVIStreamBeginStreaming
AVIStreamEndStreaming
Decompressing Video Data in a Stream

AVIStreamGetFrameOpen
AVIStreamGetFrame
AVIStreamGetFrameClose
Creating a File from Existing Streams

AVISave
AVISaveV
AVISaveOptions
GetSaveFileNamePreview
AVIMakeFileFromStreams

Writing Individual Streams

AVIFileCreateStream
AVIStreamSetFormat
AVIStreamWrite
AVIFileWriteData
AVIStreamWriteData
AVIStreamRelease
Finding the Starting Position in a Stream

AVIStreamStart
AVIStreamStartTime
AVIStreamLength
AVIStreamLengthTime
AVIStreamFindSample
AVIStreamEnd
AVIStreamEndTime
Finding Sample and Key Frames

AVIStreamFindSample
AVIStreamIsKeyFrame
AVIStreamNearestKeyFrame
AVIStreamNearestKeyFrameTime
AVIStreamNearestSample
AVIStreamNearestSampleTime
AVIStreamNextKeyFrame
AVIStreamNextKeyFrameTime
AVIStreamNextSample
AVIStreamNextSampleTime
AVIStreamPrevKeyFrame
AVIStreamPrevKeyFrameTime
AVIStreamPrevSample
AVIStreamPrevSampleTime
AVIStreamSampleToSample
Switching Between Samples and Time

AVIStreamSampleToTime
AVIStreamTimeToSample
Creating Temporary Streams

AVIStreamCreate
AVIMakeCompressedStream
AVIStreamRelease
Editing AVI Streams

CreateEditableStream
EditStreamCut
EditStreamCopy
EditStreamPaste
EditStreamClone
EditStreamSetInfo
EditStreamSetName

 AVIBuildFilter

STDAPI AVIBuildFilter(LPTSTR lpszFilter, LONG cbFilter, BOOL fSaving);

Builds a filter specification that is subsequently used by the GetOpenFileName or GetSaveFileName
function.

· Returns AVIERR_OK if successful or an error otherwise. The following error values are defined:
AVIERR_BUFFERTOOSMALL The buffer size cbFilter was smaller

than the generated filter
specification.

AVIERR_MEMORY There was not enough memory to
complete the read operation.

lpszFilter
Address of the buffer containing the filter string.

cbFilter
Size, in bytes, of buffer pointed to by lpszFilter.

fSaving
Flag that indicates whether the filter should include read or write formats. Specify TRUE to include
write formats or FALSE to include read formats.

This function accesses the registry for all filter types that the AVIFile library can use to open, read, or
write multimedia files. It does not search the hard disk for filter DLLs and formats.

 AVIClearClipboard

STDAPI AVIClearClipboard(VOID);

Removes an AVI file from the clipboard.

· Returns zero if successful or an error otherwise.

 AVIFileAddRef

STDAPI_(ULONG) AVIFileAddRef(PAVIFILE pfile);

Increments the reference count of an AVI file.

· Returns the updated reference count for the file interface.
pfile

Handle of an open AVI file.

 AVIFileCreateStream

STDAPI AVIFileCreateStream(PAVIFILE pfile, PAVISTREAM FAR * ppavi,
 AVISTREAMINFO FAR * psi);

Creates a new stream in an existing file and creates an interface to the new stream.

· Returns zero if successful or an error otherwise. Unless the file has been opened with write
permission, this function returns AVIERR_READONLY.

pfile
Handle of an open AVI file.

ppavi
Address of the new stream interface.

psi
Address of a structure containing information about the new stream, including the stream type and
its sample rate.

This function starts a reference count for the new stream.

 AVIFileEndRecord

STDAPI AVIFileEndRecord(PAVIFILE pfile);

Marks the end of a record when writing an interleaved file that uses a 1:1 interleave factor of video to
audio data. (Each frame of video is interspersed with an equivalent amount of audio data.)

· Returns zero if successful or an error otherwise.
pfile

Handle of an open AVI file.

The AVISave function uses this function internally. In general, applications should not need to use this
function.

 AVIFileExit

STDAPI_(VOID) AVIFileExit(VOID);

Exits the AVIFile library and decrements the reference count for the library.

This function supercedes the obsolete AVIStreamExit function.

 AVIFileGetStream

STDAPI AVIFileGetStream(PAVIFILE pfile, PAVISTREAM FAR * ppavi,
 DWORD fccType, LONG lParam);

Returns the address of a stream interface that is associated with a specified AVI file.

· Returns zero if successful or an error otherwise. Possible error values include the following:
AVIERR_NODATA The file does not contain a stream

corresponding to the values of fccType and
lParam.

AVIERR_MEMORY Not enough memory.

pfile
Handle of an open AVI file.

ppavi
Address of the new stream interface.

fccType
Four-character code indicating the type of stream to open. Zero indicates any stream can be
opened. The following definitions apply to the data commonly found in AVI streams:
streamtypeAUDIO Indicates an audio stream.
streamtypeMIDI Indicates a MIDI stream.
streamtypeTEXT Indicates a text stream.
streamtypeVIDEO Indicates a video stream.

lParam
Count of the stream type. Identifies which occurrence of the specified stream type to access.

 AVIFileInfo

STDAPI AVIFileInfo(PAVIFILE pfile, AVIFILEINFO FAR * pfi, LONG lSize);

Obtains information about an AVI file.

· Returns zero if successful or an error otherwise.
pfile

Handle of an open AVI file.
pfi

Address of the structure used to return file information. Typically, this parameter points to an
AVIFILEINFO structure.

lSize
Size, in bytes, of the structure.

 AVIFileInit

STDAPI_(VOID) AVIFileInit(VOID);

Initializes the AVIFile library.

The AVIFile library maintains a count of the number of times it is initialized, but not the number of times
it was released. Use the AVIFileExit function to release the AVIFile library and decrement the
reference count. Call AVIFileInit before using any other AVIFile functions.

This function supercedes the obsolete AVIStreamInit function.

 AVIFileOpen

STDAPI AVIFileOpen(PAVIFILE FAR * ppfile, LPCTSTR szFile,
 UINT mode, CLSID FAR * pclsidHandler);

Opens an AVI file and returns the address of a file interface used to access it. The AVIFile library
maintains a count of the number of times a file is opened, but not the number of times it was released.
Use the AVIFileRelease function to release the file and decrement the count.

· Returns zero if successful or an error otherwise. Possible error values include the following:
AVIERR_BADFORMAT The file couldn't be read, indicating a

corrupt file or an unrecognized format.
AVIERR_MEMORY The file could not be opened because of

insufficient memory.
AVIERR_FILEREAD A disk error occurred while reading the file.
AVIERR_FILEOPEN A disk error occurred while opening the file.
REGDB_E_CLASSNOTR
EG

According to the registry, the type of file
specified in AVIFileOpen does not have a
handler to process it.

ppfile
Address to contain the new file interface pointer.

szFile
Null-terminated string containing the name of the file to open.

mode
Access mode to use when opening the file. The default access mode is OF_READ. The following
access modes can be specified with AVIFileOpen:
OF_CREATE

Creates a new file. If the file already exists, it is truncated to zero length.
OF_SHARE_DENY_NONE

Opens the file nonexclusively. Other processes can open the file with read or write access.
AVIFileOpen fails if another process has opened the file in compatibility mode.

OF_SHARE_DENY_READ
Opens the file nonexclusively. Other processes can open the file with write access. AVIFileOpen
fails if another process has opened the file in compatibility mode or has read access to it.

OF_SHARE_DENY_WRITE
Opens the file nonexclusively. Other processes can open the file with read access. AVIFileOpen
fails if another process has opened the file in compatibility mode or has write access to it.

OF_SHARE_EXCLUSIVE
Opens the file and denies other processes any access to it. AVIFileOpen fails if any other
process has opened the file.

OF_READ
Opens the file for reading.

OF_READWRITE
Opens the file for reading and writing.

OF_WRITE
Opens the file for writing.

pclsidHandler
Address of a class identifier of the standard or custom handler you want to use. If the value is NULL,
the system chooses a handler from the registry based on the file extension or the RIFF type
specified in the file.

 AVIFileReadData

STDAPI AVIFileReadData(PAVIFILE pfile, DWORD ckid, LPVOID lpData,
 LONG FAR * lpcbData);

Reads optional header data that applies to the entire file, such as author or copyright information.

· Returns zero if successful or an error otherwise. The return value AVIERR_NODATA indicates that
data with the requested chunk identifier does not exist.

pfile
Handle of an open AVI file.

ckid
RIFF chunk identifier (four-character code) of the data.

lpData
Address of the buffer used to return the data read.

lpcbData
Address of a location indicating the size of the memory block referenced by lpData. If the data is
read successfully, the value is changed to indicate the amount of data read.

The optional header information is custom and does not have a set format.

 AVIFileRelease

STDAPI_(ULONG) AVIFileRelease(PAVIFILE pfile);

Decrements the reference count of an AVI file interface handle and closes the file if the count reaches
zero.

· Returns the reference count of the file. This return value should be used only for debugging
purposes.

pfile
Handle of an open AVI file.

This function supercedes the obsolete AVIFileClose function.

 AVIFileWriteData

STDAPI AVIFileWriteData(PAVIFILE pfile, DWORD ckid, LPVOID lpData,
 LONG cbData);

Writes supplementary data (other than normal header, format, and stream data) to the file.

· Returns zero if successful or an error otherwise. If an application has read-only access to the file,
the error code AVIERR_READONLY is returned.

pfile
Handle of an open AVI file.

ckid
RIFF chunk identifier (four-character code) of the data.

lpData
Address of the buffer used to write the data.

cbData
Size, in bytes, of the memory block referenced by lpData.

Use the AVIStreamWriteData function to write data that applies to an individual stream.

 AVIGetFromClipboard

STDAPI AVIGetFromClipboard(PAVIFILE * lppf);

Copies an AVI file from the clipboard.

· Returns zero if successful or an error otherwise.
lppf

Address of the location used to return the handle created for the AVI file.

If the clipboard does not contain an AVI file, AVIGetFromClipboard also can copy data with the
CF_DIB or CF_WAVE clipboard flags to an AVI file. In this case, the function creates an AVI file with
one DIB stream and one waveform-audio stream, and fills each stream with the data from the
clipboard.

 AVIMakeCompressedStream

STDAPI AVIMakeCompressedStream(PAVISTREAM FAR * ppsCompressed,
 PAVISTREAM psSource, AVICOMPRESSOPTIONS FAR * lpOptions,
 CLSID FAR * pclsidHandler);

Creates a compressed stream from an uncompressed stream and a compression filter, and returns the
address of a pointer to the compressed stream. This function supports audio and video compression.

· Returns AVIERR_OK if successful or an error otherwise. Possible error values include the following:
AVIERR_NOCOMPRESSOR A suitable compressor cannot be

found.
AVIERR_MEMORY There is not enough memory to

complete the operation.
AVIERR_UNSUPPORTED Compression is not supported for

this type of data. This error might be
returned if you try to compress data
that is not audio or video.

ppsCompressed
Address to contain the compressed stream pointer.

psSource
Address of the stream to be compressed.

lpOptions
Address of a structure that identifies the type of compression to use and the options to apply. You
can specify video compression by identifying an appropriate handler in the
AVICOMPRESSOPTIONS structure. For audio compression, specify the compressed data format.

pclsidHandler
Address of a class identifier used to create the stream.

Applications can read from or write to the compressed stream.

 AVIMakeFileFromStreams

STDAPI AVIMakeFileFromStreams(PAVIFILE FAR * ppfile,
 int nStreams, PAVISTREAM FAR * papStreams);

Constructs an AVIFile interface pointer from separate streams.

· Returns zero if successful or an error otherwise.
ppfile

Address to contain the new file interface pointer.
nStreams

Count of the number of streams in the array of stream interface pointers referenced by papStreams.
papStreams

Address of an array of stream interface pointers.

Use the AVIFileRelease function to close the file.

Other functions can use the AVIFile interface created by this function to copy and edit the streams
associated with the interface. For example, you can retrieve a specific stream by using
AVIFileGetStream with the file interface pointer.

 AVIMakeStreamFromClipboard

SDTAPI AVIMakeStreamFromClipboard(UINT cfFormat,
 HANDLE hGlobal, PAVISTREAM FAR * ppstream);

Creates an editable stream from stream data on the clipboard.

· Returns zero if successful or an error otherwise.
cfFormat

Clipboard flag.
hGlobal

Handle of stream data on the clipboard.
ppstream

Handle of the created stream.

When an application finishes using the editable stream, it must release the stream to free the
resources associated with it.

 AVIPutFileOnClipboard

STDAPI AVIPutFileOnClipboard(PAVIFILE pf);

Copies an AVI file to the clipboard.

· Returns zero if successful or an error otherwise.
pf

Handle of an open AVI file.

This function also copies data with the CF_DIB, CF_PALETTE, and CF_WAVE clipboard flags onto the
clipboard using the first frame of the first video stream of the file as a DIB and using the audio stream
as CF_WAVE.

 AVISave

HRESULT AVISave(LPCTSTR szFile, CLSID FAR * pclsidHandler,
 AVISAVECALLBACK lpfnCallback, int nStreams, PAVISTREAM pavi,
 LPAVICOMPRESSOPTIONS lpOptions, . . .);

Builds a file by combining data streams from other files or from memory.

· Returns AVIERR_OK if successful or an error otherwise.
szFile

Null-terminated string containing the name of the file to save.
pclsidHandler

Address of the file handler used to write the file. The file is created by calling the AVIFileOpen
function using this handler. If a handler is not specified, a default is selected from the registry based
on the file extension.

lpfnCallback
Address of a callback function for the save operation.

nStreams
Number of streams saved in the file.

pavi
Address of an AVI stream. This parameter is paired with lpOptions. The parameter pair can be
repeated as a variable number of arguments.

lpOptions
Address of an application-defined AVICOMPRESSOPTIONS structure containing the compression
options for the stream referenced by pavi. This parameter is paired with pavi. The parameter pair
can be repeated as a variable number of arguments.

This function creates a file, copies stream data into the file, closes the file, and releases the resources
used by the new file. The last two parameters of this function identify a stream to save in the file and
define the compression options of that stream. When saving more than one stream in an AVI file,
repeat these two stream-specific parameters for each stream in the file.

A callback function (referenced by using lpfnCallback) can display status information and let the user
cancel the save operation. The callback function uses the following format:

LONG FAR PASCAL SaveCallback(int nPercent)

The nPercent parameter specifies the percentage of the file saved.

The callback function should return AVIERR_OK if the operation should continue and
AVIERR_USERABORT if the user wishes to abort the save operation.

 AVISaveOptions

BOOL AVISaveOptions(HWND hwnd, UINT uiFlags, int nStreams,
 PAVISTREAM FAR * ppavi, LPAVICOMPRESSOPTIONS FAR * plpOptions);

Retrieves the save options for a file and returns them in a buffer.

· Returns TRUE if the user pressed OK, FALSE for CANCEL, or an error otherwise.
hwnd

Handle of the parent window for the Compression Options dialog box.
uiFlags

Flags for displaying the Compression Options dialog box. The following flags are defined:
ICMF_CHOOSE_KEYFRAME

Displays a Key Frame Every dialog box for the video options. This is the same flag used in the
ICCompressorChoose function.

ICMF_CHOOSE_DATARATE
Displays a Data Rate dialog box for the video options. This is the same flag used in
ICCompressorChoose.

ICMF_CHOOSE_PREVIEW
Displays a Preview button for the video options. This button previews the compression by using a
frame from the stream. This is the same flag used in ICCompressorChoose.

nStreams
Number of streams that have their options set by the dialog box.

ppavi
Address of an array of stream interface pointers. The nStreams parameter indicates the number of
pointers in the array.

plpOptions
Address of an array of pointers to AVICOMPRESSOPTIONS structures. These structures hold the
compression options set by the dialog box. The nStreams parameter indicates the number of
pointers in the array.

This function presents a standard Compression Options dialog box using hwnd as the parent window
handle. When the user is finished selecting the compression options for each stream, the options are
returned in the AVICOMPRESSOPTIONS structure in the array referenced by plpOptions. The calling
application must pass the interface pointers for the streams in the array referenced by ppavi.

An application must allocate memory for the AVICOMPRESSOPTIONS structures and the array of
pointers to these structures.

 AVISaveOptionsFree

LONG AVISaveOptionsFree(int nStreams, LPAVICOMPRESSOPTIONS
 FAR * plpOptions);

Frees the resources allocated by the AVISaveOptions function.

· Returns AVIERR_OK.
nStreams

Count of the AVICOMPRESSOPTIONS structures referenced in plpOptions.
plpOptions

Address of an array of pointers to AVICOMPRESSOPTIONS structures. These structures hold the
compression options set by the dialog box. The resources allocated by AVISaveOptions for each of
these structures will be freed.

 AVISaveV

STDAPI AVISaveV(LPCTSTR szFile, CLSID FAR * pclsidHandler,
 AVISAVECALLBACK lpfnCallback, int nStreams, PAVISTREAM FAR * ppavi,
 LPAVICOMPRESSOPTIONS FAR * plpOptions);

Builds a file by combining data streams from other files or from memory.

· Returns AVIERR_OK if successful or an error otherwise.
szFile

Null-terminated string containing the name of the file to save.
pclsidHandler

Address of the file handler used to write the file. The file is created by calling the AVIFileOpen
function using this handler. If a handler is not specified, a default is selected from the registry based
on the file extension.

lpfnCallback
Address of a callback function used to display status information and to let the user cancel the save
operation.

nStreams
Number of streams to save.

ppavi
Address of an array of pointers to the AVISTREAM function structures. The array uses one pointer
for each stream.

plpOptions
Address of an array of pointers to AVICOMPRESSOPTIONS structures. The array uses one pointer
for each stream.

This function is equivalent to the AVISave function except the streams are passed in an array instead
of as a variable number of arguments.

This function creates a file, copies stream data into the file, closes the file, and releases the resources
used by the new file. The last two parameters of this function are arrays that identify the streams to
save in the file and define the compression options of those streams.

An application must allocate memory for the AVICOMPRESSOPTIONS structures and the array of
pointers to these structures.

 AVIStreamAddRef

STDAPI_(LONG) AVIStreamAddRef(PAVISTREAM pavi);

Increments the reference count of an AVI stream.

· Returns the current reference count of the stream. This value should be used only for debugging
purposes.

pavi
Handle of an open AVI stream.

 AVIStreamBeginStreaming

STDAPI AVIStreamBeginStreaming(PAVISTREAM pavi, LONG lStart,
 LONG lEnd, LONG lRate);

Specifies the parameters used in streaming and lets a stream handler prepare for streaming.

· Returns zero if successful or an error otherwise.
pavi

Address of a stream.
lStart

Starting frame for streaming.
lEnd

Ending frame for streaming.
lRate

Speed at which the file is read relative to its natural speed. Specify 1000 for the normal speed.
Values less than 1000 indicate a slower-than-normal speed; values greater than 1000 indicate a
faster-than-normal speed.

 AVIStreamCreate

STDAPI AVIStreamCreate(PAVISTREAM FAR * ppavi, LONG lParam1,
 LONG lParam2, CLSID FAR * pclsidHandler);

Creates a stream not associated with any file.

· Returns zero if successful or an error otherwise.
ppavi

Address to contain the new stream interface.
lParam1

Stream-handler specific information.
lParam2

Stream-handler specific information.
pclsidHandler

Address of the class identifier used for the stream.

You should not need to call this function. Some functions, such as CreateEditableStream and
AVIMakeCompressedStream, use it internally.

 AVIStreamDataSize

AVIStreamDataSize(pavi, fcc, plSize)

Determines the buffer size, in bytes, needed to retrieve optional header data for a specified stream.

· Returns zero if successful or an error otherwise. The return value AVIERR_NODATA indicates the
system could not find any data with the specified four-character code.

pavi
Handle of an open stream.

fcc
Four-character code specifying the stream type.

plSize
Address to contain the buffer size for the optional header data.

The AVIStreamDataSize macro is defined as follows:

#define AVIStreamDataSize(pavi, fcc, plSize) \
 AVIStreamReadData(pavi, fcc, NULL, plSize)

 AVIStreamEnd

AVIStreamEnd(pavi)

Calculates the sample associated with the end of a stream.

· Returns the sample number associated with the end of a stream, or, if an error occurs, one less than
the first sample or one less than the stream length.

pavi
Handle of an open stream.

The sample number returned is not a valid sample number for reading data. It represents the end of
the file. (The end of the file is equal to the start of the file plus its length.)

The AVIStreamEnd macro is defined as follows:

#define AVIStreamEnd(pavi) \
 (AVIStreamStart(pavi) + AVIStreamLength(pavi))

 AVIStreamEndStreaming

STDAPI AVIStreamEndStreaming(PAVISTREAM pavi);

Ends streaming.

· Returns zero if successful or an error otherwise.
pavi

Address of a stream.

Many stream implementations ignore this function.

 AVIStreamEndTime

AVIStreamEndTime(pavi)

Returns the time representing the end of the stream.

· Returns the time if successful or - 1 otherwise.
pavi

Handle of an open stream.

The AVIStreamEndTime macro is defined as follows:

#define AVIStreamEndTime(pavi) \
 AVIStreamSampleToTime(pavi, AVIStreamEnd(pavi))

 AVIStreamFindSample

STDAPI_(LONG) AVIStreamFindSample(PAVISTREAM pavi, LONG lPos,
 LONG lFlags);

Returns the position of a sample (key frame, nonempty frame, or a frame containing a format change)
relative to the specified position.

· Returns the position of the frame found or -1 if the search is unsuccessful.
pavi

Handle of an open stream.
lPos

Starting frame for the search.
lFlags

Flags that designate the type of frame to locate, the direction in the stream to search, and the type of
return information. The following flags are defined:
FIND_ANY

Finds a nonempty frame. This flag supercedes the SEARCH_ANY flag.
FIND_KEY

Finds a key frame. This flag supercedes the SEARCH_KEY flag.
FIND_FORMAT

Finds a format change.
FIND_NEXT

Finds nearest sample, frame, or format change searching forward. The current sample is included
in the search. Use this flag with the FIND_ANY, FIND_KEY, or FIND_FORMAT flag. This flag
supercedes the SEARCH_FORWARD flag.

FIND_PREV
Finds nearest sample, frame, or format change searching backward. The current sample is
included in the search. Use this flag with the FIND_ANY, FIND_KEY, or FIND_FORMAT flag. This
flag supercedes the SEARCH_NEAREST and SEARCH_BACKWARD flags.

FIND_FROM_START
Finds first sample, frame, or format change beginning from the start of the stream. Use this flag
with the FIND_ANY, FIND_KEY, or FIND_FORMAT flag.

The FIND_KEY, FIND_ANY, and FIND_FORMAT flags are mutually exclusive, as are the FIND_NEXT
and FIND_PREV flags.

This function supercedes the obsolete AVIStreamFindKeyFrame function.

 AVIStreamFormatSize

AVIStreamFormatSize(pavi, lPos, plSize)

Determines the buffer size, in bytes, needed to store format information for a sample in a stream.

· Returns zero if successful or an error otherwise.
pavi

Handle of an open stream.
lPos

Position of a sample in the stream.
plSize

Address to contain the buffer size.

The AVIStreamFormatSize macro is defined as follows:

#define AVIStreamFormatSize(pavi, lPos, plSize) \
 AVIStreamReadFormat(pavi, lPos, NULL, plSize)

 AVIStreamGetFrame

STDAPI_(LPVOID) AVIStreamGetFrame(PGETFRAME pgf, LONG lPos);

Returns the address of a decompressed video frame.

· Returns a pointer to the frame data if successful or NULL otherwise. The frame data is returned as a
packed DIB.

pgf
Address of a GetFrame object.

lPos
Position, in samples, within the stream of the desired frame.

The returned frame is valid only until the next call to this function or the AVIStreamGetFrameClose
function.

 AVIStreamGetFrameClose

STDAPI AVIStreamGetFrameClose(PGETFRAME pget);

Releases resources used to decompress video frames.

· Returns zero if successful or an error otherwise.
pget

Handle returned from the AVIStreamGetFrameOpen function. After calling this function, the handle
is invalid.

 AVIStreamGetFrameOpen

STDAPI_(PGETFRAME) AVIStreamGetFrameOpen(PAVISTREAM pavi,
 LPBITMAPINFOHEADER lpbiWanted);

Prepares to decompress video frames from the specified video stream.

· Returns a GetFrame object that can be used with the AVIStreamGetFrame function. If the system
cannot find a decompressor that can decompress the stream to the given format, or to any RGB
format, the function returns NULL.

pavi
Address of the video stream used as the video source.

lpbiWanted
Address of a structure that defines the desired video format. Specify NULL to use a default format.
You can also specify AVIGETFRAMEF_BESTDISPLAYFMT to decode the frames to the best format
for your display.

 AVIStreamInfo

STDAPI AVIStreamInfo(PAVISTREAM pavi, AVISTREAMINFO FAR * psi,
 LONG lSize);

Obtains stream header information.

· Returns zero if successful or an error otherwise.
pavi

Handle of an open stream.
psi

Address of a structure to contain the stream information.
lSize

Size, in bytes, of the structure used for psi.

 AVIStreamIsKeyFrame

AVIStreamIsKeyFrame(pavi, lPos)

Indicates whether a sample in a specified stream is a key frame.

· Returns TRUE if the sample is a key frame or FALSE otherwise.
pavi

Handle of an open stream.
lPos

Position to search in the stream.

The AVIStreamIsKeyFrame macro is defined as follows:

#define AVIStreamIsKeyFrame(pavi, lPos) \
 (AVIStreamNearestKeyFrame(pavi, lPos) == 1)

 AVIStreamLength

STDAPI_(LONG) AVIStreamLength(PAVISTREAM pavi);

Returns the length of the stream.

· Returns the stream's length, in samples, if successful or - 1 otherwise.
pavi

Handle of an open stream.

 AVIStreamLengthTime

AVIStreamLengthTime(pavi)

Returns the length of a stream in time.

· Returns the time if successful or - 1 otherwise.
pavi

Handle of an open stream.

The AVIStreamLengthTime macro is defined as follows:

#define AVIStreamLengthTime(pavi) \
 AVIStreamSampleToTime(pavi, AVIStreamLength(pavi))

 AVIStreamNearestKeyFrame

AVIStreamNearestKeyFrame(pavi, lPos)

Locates the key frame at or preceding a specified position in a stream.

· Returns the position of the key frame if successful or - 1 otherwise.
pavi

Handle of an open stream.
lPos

Starting position to search in the stream.

The AVIStreamNearestKeyFrame macro is defined as follows:

#define AVIStreamNearestKeyFrame(pavi, lPos) \
 AVIStreamFindSample(pavi, lPos , FIND_PREV | FIND_KEY)

 AVIStreamNearestKeyFrameTime

AVIStreamNearestKeyFrameTime(pavi, lTime)

Determines the time corresponding to the beginning of the key frame nearest (at or preceding) a
specified time in a stream.

· Returns the time of the nearest key frame if successful or - 1 otherwise.
pavi

Handle of an open stream.
lTime

Starting time, in milliseconds, to search in the stream.

The AVIStreamNearestKeyFrameTime macro is defined as follows:

#define AVIStreamNearestKeyFrameTime(pavi, lTime) \
 AVIStreamSampleToTime(pavi, AVIStreamNearestKeyFrame(pavi,
 AVIStreamTimeToSample(pavi, lTime)))

 AVIStreamNearestSample

AVIStreamNearestSample(pavi, lPos)

Locates the nearest nonempty sample at or preceding a specified position in a stream.

· Returns the sample position if successful or - 1 otherwise.
pavi

Handle of an open stream.
lPos

Starting position to search in the stream.

The AVIStreamNearestSample macro is defined as follows:

#define AVIStreamNearestSample(pavi, lPos) \
 AVIStreamFindSample(pavi, lPos, FIND_PREV | FIND_ANY)

 AVIStreamNearestSampleTime

AVIStreamNearestSampleTime(pavi, lTime)

Determines the time corresponding to the beginning of a sample that is nearest to a specified time in a
stream.

· Returns the time of the nearest sample if successful or - 1 otherwise.
pavi

Handle of an open stream.
lTime

Starting time, in milliseconds, to search in the stream.

The AVIStreamNearestSampleTime macro is defined as follows:

#define AVIStreamNearestSampleTime(pavi, lTime) \
 AVIStreamSampleToTime(pavi, AVIStreamNearestSample(pavi,
 AVIStreamTimeToSample(pavi, lTime)))

 AVIStreamNextKeyFrame

AVIStreamNextKeyFrame(pavi, lPos)

Locates the next key frame following a specified position in a stream.

· Returns the position of the key frame if successful or - 1 otherwise.
pavi

Handle of an open stream.
lPos

Starting position to search in the stream.

The search performed by this macro does not include the frame at the specified position.

The AVIStreamNextKeyFrame macro is defined as follows:

#define AVIStreamNextKeyFrame(pavi, lPos) \
 AVIStreamFindSample(pavi, lPos + 1, FIND_NEXT | FIND_KEY)

 AVIStreamNextKeyFrameTime

AVIStreamNextKeyFrameTime(pavi, time)

Returns the time of the next key frame in the stream, starting at a given time.

· Returns the time if successful or - 1 otherwise.
pavi

Handle of an open stream.
time

Position in the stream to begin searching.

The search performed by this macro includes the frame that corresponds to the specified time.

The AVIStreamNextKeyFrameTime macro is defined as follows:

#define AVIStreamNextKeyFrameTime(pavi, time) \
 AVIStreamSampleToTime(pavi, \
 AVIStreamNextKeyFrame(pavi, \
 AVIStreamTimeToSample(pavi, time)))

 AVIStreamNextSample

AVIStreamNextSample(pavi, lPos)

Locates the next nonempty sample from a specified position in a stream.

· Returns the sample position if successful or - 1 otherwise.
pavi

Handle of an open stream.
lPos

Starting position to search in the stream.

The sample position returned does not include the sample specified by lPos.

The AVIStreamNextSample macro is defined as follows:

#define AVIStreamNextSample(pavi, lPos) \
 AVIStreamFindSample(pavi, lPos + 1, FIND_NEXT | FIND_ANY)

 AVIStreamNextSampleTime

AVIStreamNextSampleTime(pavi, time)

Returns the time that a sample changes to the next sample in the stream. This macro finds the the next
interesting time in a stream.

· Returns the time if successful or - 1 otherwise.
pavi

Handle of an open stream.
time

Position information of the sample in the stream.

The AVIStreamNextSampleTime macro is defined as follows:

#define AVIStreamNextSampleTime(pavi, time) \
 AVIStreamSampleToTime(pavi, \
 AVIStreamNextSample(pavi, \
 AVIStreamTimeToSample(pavi, t)))

 AVIStreamOpenFromFile

STDAPI AVIStreamOpenFromFile(PAVISTREAM FAR * ppavi,
 LPCTSTR szFile, DWORD fccType, LONG lParam, UINT mode,
 CLSID FAR * pclsidHandler);

Opens a single stream from a file.

· Returns zero if successful or an error otherwise.
ppavi

Address to contain the new stream handle.
szFile

Null-terminated string containing the name of the file to open.
fccType

Four-character code indicating the type of stream to be opened. Zero indicates that any stream can
be opened. The following definitions apply to the data commonly found in AVI streams:
streamtypeAUDIO Indicates an audio stream.
streamtypeMIDI Indicates a MIDI stream.
streamtypeTEXT Indicates a text stream.
streamtypeVIDEO Indicates a video stream.

lParam
Stream of the type specified in fccType to access. This parameter is zero-based; use zero to specify
the first occurrence.

mode
Access mode to use when opening the file. This function can open only existing streams, so the
OF_CREATE mode flag cannot be used. For more information about the available flags for the
mode parameter, see the OpenFile function.

pclsidHandler
Address of a class identifier of the handler you want to use. If the value is NULL, the system
chooses one from the registry based on the file extension or the file RIFF type.

This function calls the AVIFileOpen, AVIFileGetStream, and AVIFileRelease functions.

 AVIStreamPrevKeyFrame

AVIStreamPrevKeyFrame(pavi, lPos)

Locates the key frame that precedes a specified position in a stream.

· Returns the position of the key frame if successful or - 1 otherwise.
pavi

Handle of an open stream.
lPos

Starting position to search in the stream.

The search performed by this macro does not include the frame at the specified position.

The AVIStreamPrevKeyFrame macro is defined as follows:

#define AVIStreamPrevKeyFrame(pavi, lPos) \
 AVIStreamFindSample(pavi, lPos - 1, FIND_PREV | FIND_KEY)

 AVIStreamPrevKeyFrameTime

AVIStreamPrevKeyFrameTime(pavi, time)

Returns the time of the previous key frame in the stream, starting at a given time.

· Returns the time if successful or - 1 otherwise.
pavi

Handle of an open stream.
time

Position in the stream to begin searching.

The search performed by this macro includes the frame that corresponds to the specified time.

The AVIStreamPrevKeyFrameTime macro is defined as follows:

#define AVIStreamPrevKeyFrameTime(pavi, time) \
 AVIStreamSampleToTime(pavi, AVIStreamPrevKeyFrame(pavi,
 AVIStreamTimeToSample(pavi, time)))

 AVIStreamPrevSample

AVIStreamPrevSample(pavi, lPos)

Locates the nearest nonempty sample that precedes a specified position in a stream.

· Returns the sample position if successful or - 1 otherwise.
pavi

Handle of an open stream.
lPos

Starting position to search in the stream.

The sample position returned does not include the sample specified by lPos.

The AVIStreamPrevSample macro is defined as follows:

#define AVIStreamPrevSample(pavi, lPos) \
 AVIStreamFindSample(pavi, lPos - 1, FIND_PREV | FIND_ANY)

 AVIStreamPrevSampleTime

AVIStreamPrevSampleTime(pavi, time)

Determines the time of the nearest nonempty sample that precedes a specified time in a stream.

· Returns the time if successful or - 1 otherwise.
pavi

Handle of an open stream.
time

Position information of the sample in the stream.

The AVIStreamPrevSampleTime macro is defined as follows:

#define AVIStreamPrevSampleTime(pavi, time) \
 AVIStreamSampleToTime(pavi, \
 AVIStreamPrevSample(pavi, \
 AVIStreamTimeToSample(pavi, t)))

 AVIStreamRead

STDAPI AVIStreamRead(PAVISTREAM pavi, LONG lStart, LONG lSamples,
 LPVOID lpBuffer, LONG cbBuffer, LONG FAR * plBytes,
 LONG FAR * plSamples);

Reads audio, video or other data from a stream according to the stream type.

· Returns zero if successful or an error otherwise. The values returned in plBytes and plSamples
report the amount of data read by this function. Possible error values include the following:
AVIERR_BUFFERTOOSMALL The buffer size cbBuffer was smaller

than a single sample of data.
AVIERR_MEMORY There was not enough memory to

complete the read operation.
AVIERR_FILEREAD A disk error occurred while reading

the file.

pavi
Handle of an open stream.

lStart
First sample to read.

lSamples
Number of samples to read. You can also specify the value AVISTREAMREAD_CONVENIENT to let
the stream handler determine the number of samples to read.

lpBuffer
Address of a buffer to contain the data.

cbBuffer
Size, in bytes, of the buffer pointed to by lpBuffer.

plBytes
Address to contain the number of bytes of data written in the buffer referenced by lpBuffer. This
value can be NULL.

plSamples
Address to contain the number of samples written in the buffer referenced by lpBuffer. This value
can be NULL.

If lpBuffer is NULL, this function does not read any data; it returns information about the size of data
that would be read.

 AVIStreamReadData

STDAPI AVIStreamReadData(PAVISTREAM pavi, DWORD ckid,
 LPVOID lpData, LONG FAR * lpcbData);

Reads optional header data from a stream.

· Returns zero if successful or an error otherwise. The return value AVIERR_NODATA indicates the
system could not find any data with the specified chunk identifier.

pavi
Handle of an open stream.

ckid
Four-character code identifying the data.

lpData
Address of the buffer to contain the optional header data.

lpcbData
Address of the location that specifies the buffer size used for lpData. If the read is successful,
AVIFile changes this value to indicate the amount of data written into the buffer for lpData.

This function retrieves only optional header information from the stream. This information is custom
and does not have a set format.

 AVIStreamReadFormat

STDAPI AVIStreamReadFormat(PAVISTREAM pavi, LONG lPos,
 LPVOID lpFormat, LONG FAR * lpcbFormat);

Reads the stream format data.

· Returns zero if successful or an error otherwise.
pavi

Handle of an open stream.
lPos

Position in the stream used to obtain the format data.
lpFormat

Address of a buffer to contain the format data.
lpcbFormat

Address of a location indicating the size of the memory block referenced by lpFormat. On return, the
value is changed to indicate the amount of data read. If lpFormat is NULL, this parameter can be
used to obtain the amount of memory needed to return the format.

 AVIStreamRelease

STDAPI_(LONG) AVIStreamRelease(PAVISTREAM pavi);

Decrements the reference count of an AVI stream interface handle, and closes the stream if the count
reaches zero.

· Returns the current reference count of the stream. This value should be used only for debugging
purposes.

pavi
Handle of an open stream.

This function supercedes the obsolete AVIStreamClose function.

 AVIStreamSampleSize

AVIStreamSampleSize(pavi, lPos, plSize)

Determines the size of the buffer needed to store one sample of information from a stream. The size
corresponds to the sample at the position specified by lPos.

· Returns zero if successful or an error otherwise. The value returned in plSize reports the number of
bytes in the sample read by this function. Possible error values include the following:
AVIERR_BUFFERTOOSMALL The buffer size was smaller than a

single sample of data.
AVIERR_MEMORY There was not enough memory to

complete the read operation.
AVIERR_FILEREAD A disk error occurred while reading

the file.

pavi
Handle of an open stream.

lPos
Position of a sample in the stream.

plSize
Address to contain the buffer size.

The AVIStreamSampleSize macro is defined as follows:

#define AVIStreamSampleSize(pavi, lPos, plSize) \
 AVIStreamRead(pavi, lPos, 1, NULL, 0, plSize, NULL)

 AVIStreamSampleToSample

AVIStreamSampleToSample(pavi1, pavi2, lSample)

Returns the sample in a stream that occurs at the same time as a sample that occurs in a second
stream.

· Returns the sample if successful or - 1 otherwise.
pavi1

Handle of an open stream that contains the sample that is returned.
pavi2

Handle of a second stream that contains the reference sample.
lSample

Position information of the sample in the stream referenced by pavi2.

The AVIStreamSampleToSample macro is defined as follows:

#define AVIStreamSampleToSample(pavi1, pavi2, lsample) \
 AVIStreamTimeToSample(pavi1, AVIStreamSampleToTime \
 (pavi2, lsample))

 AVIStreamSampleToTime

STDAPI_(LONG) AVIStreamSampleToTime(PAVISTREAM pavi, LONG lSample);

Converts a stream position from samples to milliseconds.

· Returns the converted time if successful or - 1 otherwise.
pavi

Handle of an open stream.
lSample

Position information. A sample can correspond to blocks of audio, a video frame, or other format,
depending on the stream type.

 AVIStreamSetFormat

STDAPI AVIStreamSetFormat(PAVISTREAM pavi, LONG lPos,
 LPVOID lpFormat, LONG cbFormat);

Sets the format of a stream at the specified position.

· Returns zero if successful or an error otherwise.
pavi

Handle of an open stream.
lPos

Position in the stream to receive the format.
lpFormat

Address of a structure containing the new format.
cbFormat

Size, in bytes, of the block of memory referenced by lpFormat.

The handler for writing AVI files does not accept format changes. Besides setting the initial format for a
stream, only changes in the palette of a video stream are allowed in an AVI file. The palette change
must occur after any frames already written to the AVI file. Other handlers might impose different
restrictions.

 AVIStreamStart

STDAPI_(LONG) AVIStreamStart(PAVISTREAM pavi);

Returns the starting sample number for the stream.

· Returns the number if successful or - 1 otherwise.
pavi

Handle of an open stream.

 AVIStreamStartTime

AVIStreamStartTime(pavi)

Returns the starting time of a stream's first sample.

· Returns the time if successful or - 1 otherwise.
pavi

Handle of an open stream.

The AVIStreamStartTime macro is defined as follows:

#define AVIStreamStartTime(pavi) \
 AVIStreamSampleToTime(pavi, AVIStreamStart(pavi))

 AVIStreamTimeToSample

STDAPI_(LONG) AVIStreamTimeToSample(PAVISTREAM pavi, LONG lTime);

Converts from milliseconds to samples.

· Returns the converted time if successful or - 1 otherwise.
pavi

Handle of an open stream.
lTime

Time, expressed in milliseconds.

Samples typically correspond to audio samples or video frames. Other stream types might support
different formats than these.

 AVIStreamWrite

STDAPI AVIStreamWrite(PAVISTREAM pavi, LONG lStart, LONG lSamples,
 LPVOID lpBuffer, LONG cbBuffer, DWORD dwFlags,
 LONG FAR * plSampWritten, LONG FAR * plBytesWritten);

Writes data to a stream.

· Returns zero if successful or an error otherwise.
pavi

Handle of an open stream.
lStart

First sample to write.
lSamples

Number of samples to write.
lpBuffer

Address of a buffer containing the data to write.
cbBuffer

Size of the buffer referenced by lpBuffer.
dwFlags

Flag associated with this data. The following flag is defined:
AVIIF_KEYFRAME

Indicates this data does not rely on preceding data in the file.
plSampWritten

Address to contain the number of samples written. This can be set to NULL.
plBytesWritten

Address to contain the number of bytes written. This can be set to NULL.

The default AVI file handler supports writing only at the end of a stream. The "WAVE" file handler
supports writing anywhere.

This function overwrites existing data, rather than inserting new data.

 AVIStreamWriteData

STDAPI AVIStreamWriteData(PAVISTREAM pavi, DWORD ckid,
 LPVOID lpData, LONG cbData);

Writes optional header information to the stream.

· Returns zero if successful or an error otherwise. The return value AVIERR_READONLY indicates
the file was opened without write access.

pavi
Handle of an open stream.

ckid
Four-character code identifying the data.

lpData
Address of a buffer containing the data to write.

cbData
Number of bytes of data to write into the stream.

Use the AVIStreamWrite function to write the multimedia content of the stream. Use AVIFileWriteData
to write data that applies to an entire file.

 CreateEditableStream

STDAPI CreateEditableStream(PAVISTREAM FAR * ppsEditable,
 PAVISTREAM psSource);

Creates an editable stream. Use this function before using other stream editing functions.

· Returns zero if successful or an error otherwise.
ppsEditable

Address to contain the new stream handle.
psSource

Handle of the stream supplying data for the new stream. Specify NULL to create an empty editable
string that you can copy and paste data into.

The stream pointer returned in ppsEditable must be used as the source stream in the other stream
editing functions.

Internally, this function creates tables to keep track of changes to a stream. The original stream is
never changed by the stream editing functions. The stream pointer created by this function can be
used in any AVIFile function that accepts stream pointers. You can use this function on the same
stream multiple times. A copy of a stream is not affected by changes in another copy.

 EditStreamClone

STDAPI EditStreamClone(PAVISTREAM pavi, PAVISTREAM FAR * ppResult);

Creates a duplicate editable stream.

· Returns zero if successful or an error otherwise.
pavi

Handle of an editable stream that will be copied.
ppResult

Address to contain the new stream handle.

The editable stream that is being cloned must have been created by the CreateEditableStream
function or one of the stream editing functions.

The new stream can be treated as any other AVI stream.

 EditStreamCopy

STDAPI EditStreamCopy(PAVISTREAM pavi, LONG FAR * plStart,
 LONG FAR * plLength, PAVISTREAM FAR * ppResult);

Copies an editable stream (or a portion of it) into a temporary stream.

· Returns zero if successful or an error otherwise.
pavi

Handle of the stream being copied.
plStart

Starting position within the stream being copied. The starting position is returned.
plLength

Amount of data to copy from the stream referenced by pavi. The length of the copied data is
returned.

ppResult
Address to contain the handle created for the new stream.

The stream that is copied must be created by the CreateEditableStream function or one of the stream
editing functions.

The temporary stream can be treated as any other AVI stream.

 EditStreamCut

STDAPI EditStreamCut(PAVISTREAM pavi, LONG FAR * plStart,
 LONG FAR * plLength, PAVISTREAM FAR * ppResult);

Deletes all or part of an editable stream and creates a temporary editable stream from the deleted
portion of the stream.

· Returns zero if successful or an error otherwise.
pavi

Handle of the stream being edited.
plStart

Starting position of the data to cut from the stream referenced by pavi.
plLength

Amount of data to cut from the stream referenced by pavi.
ppResult

Address of the handle created for the new stream.

The stream being edited must have been created by the CreateEditableStream function or one of the
stream editing functions.

The temporary stream is an editable stream and can be treated as any other AVI stream. An application
must release the temporary stream to free the resources associated with it.

 EditStreamPaste

STDAPI EditStreamPaste(PAVISTREAM pavi, LONG FAR * plPos,
 LONG FAR * plLength, PAVISTREAM pstream, LONG lStart,
 LONG lLength);

Copies a stream (or a portion of it) from one stream and pastes it within another stream at a specified
location.

· Returns zero if successful or an error otherwise.
pavi

Handle of an editable stream that will receive the copied stream data.
plPos

Starting position to paste the data within the destination stream (referenced by pavi).
plLength

Address to contain the amount of data pasted in the stream.
pstream

Handle of a stream supplying the data to paste. This stream does not need to be an editable stream.
lStart

Starting position of the data to copy within the source stream.
lLength

Amount of data to copy from the source stream. If lLength is -1, the entire stream referenced by
pstream is pasted in the other stream.

The stream referenced by pavi must have been created by the CreateEditableStream function or one
of the stream editing functions.

This function inserts data into the specified stream as a continuous block of data. It opens the specified
data stream at the insertion point, pastes the specified stream segment at the insertion point, and
appends the stream segment that trails the insertion point to the end of pasted segment.

 EditStreamSetInfo

SDTAPI EditStreamSetInfo(PAVISTREAM pavi, AVISTREAMINFO FAR * lpInfo,
 LONG cbInfo);

Changes characteristics of an editable stream.

· Returns zero if successful or an error otherwise.
pavi

Handle of an open stream.
lpInfo

Address of an AVISTREAMINFO structure containing new information.
cbInfo

Size, in bytes, of the structure pointed to by lpInfo.

You must supply information for the entire AVISTREAMINFO structure, including the members you will
not use. You can use the AVIStreamInfo function to initialize the structure and then update selected
members with your data.

This function does not change the following members:

dwCaps

dwEditCount

dwFlags

dwInitialFrames

dwLength

dwSampleSize

dwSuggestedBufferSize

fccHandler

fccType

The function changes the following members:

dwRate

dwQuality

dwScale

dwStart

rcFrame

szName

wLanguage

wPriority

 EditStreamSetName

SDTAPI EditStreamSetName(PAVISTREAM pavi, LPCSTR lpszName);

Assigns a descriptive string to a stream.

· Returns zero if successful or an error otherwise.
pavi

Handle of an open stream.
lpszName

Null-terminated string containing the description of the stream.

This function updates the szName member of the AVISTREAMINFO structure.

 AVICOMPRESSOPTIONS

typedef struct {
DWORD fccType;
DWORD fccHandler;
DWORD dwKeyFrameEvery;
DWORD dwQuality;
DWORD dwBytesPerSecond;
DWORD dwFlags;
LPVOID lpFormat;
DWORD cbFormat;
LPVOID lpParms;
DWORD cbParms;
DWORD dwInterleaveEvery;

} AVICOMPRESSOPTIONS;

Contains information about a stream and how it is compressed and saved. This structure passes data
to the AVIMakeCompressedStream function (or the AVISave function, which uses
AVIMakeCompressedStream).

fccType
Four-character code indicating the stream type. The following constants have been defined for the
data commonly found in AVI streams:
streamtypeAUDIO Indicates an audio stream.
streamtypeMIDI Indicates a MIDI stream.
streamtypeTEXT Indicates a text stream.
streamtypeVIDEO Indicates a video stream.

fccHandler
Four-character code for the compressor handler that will compress this video stream when it is
saved (for example, mmioFOURCC('M','S','V','C')). This member is not used for audio streams.

dwKeyFrameEvery
Maximum period between video key frames. This member is used only if the
AVICOMPRESSF_KEYFRAMES flag is set; otherwise every video frame is a key frame.

dwQuality
Quality value passed to a video compressor. This member is not used for an audio compressor.

dwBytesPerSecond
Video compressor data rate. This member is used only if the AVICOMPRESSF_DATARATE flag is
set.

dwFlags
Flags used for compression. The following values are defined:
AVICOMPRESSF_DATARATE

Compresses this video stream using the data rate specified in dwBytesPerSecond.
AVICOMPRESSF_INTERLEAVE

Interleaves this stream every dwInterleaveEvery frames with respect to the first stream.
AVICOMPRESSF_KEYFRAMES

Saves this video stream with key frames at least every dwKeyFrameEvery frames. By default,
every frame will be a key frame.

AVICOMPRESSF_VALID
Uses the data in this structure to set the default compression values for AVISaveOptions. If an
empty structure is passed and this flag is not set, some defaults will be chosen.

lpFormat

Address of a structure defining the data format. For an audio stream, this is an LPWAVEFORMAT
structure.

cbFormat
Size, in bytes, of the data referenced by lpFormat.

lpParms
Video-compressor-specific data; used internally.

cbParms
Size, in bytes, of the data referenced by lpParms

dwInterleaveEvery
Interleave factor for interspersing stream data with data from the first stream. Used only if the
AVICOMPRESSF_INTERLEAVE flag is set.

 AVIFILEINFO

typedef struct {
DWORD dwMaxBytesPerSec; \\ approximate max. data rate of file
DWORD dwFlags; \\ see below
DWORD dwCaps; \\ see below
DWORD dwStreams; \\ see below
DWORD dwSuggestedBufferSize; \\ see below
DWORD dwWidth; \\ width, in pixels, of the AVI file
DWORD dwHeight; \\ height, in pixels, of the AVI file
DWORD dwScale; \\ see below
DWORD dwRate; \\ see dwScale
DWORD dwLength; \\ see below
DWORD dwEditCount; \\ see below
char szFileType[64]; \\ see below

} AVIFILEINFO;

Contains global information for an entire AVI file.

dwFlags
Applicable flags. The following flags are defined:
AVIFILEINFO_HASINDEX

The AVI file has an index at the end of the file. For good performance, all AVI files should contain
an index.

AVIFILEINFO_MUSTUSEINDEX
The file index contains the playback order for the chunks in the file. Use the index rather than the
physical ordering of the chunks when playing back the data. This could be used for creating a list
of frames for editing.

AVIFILEINFO_ISINTERLEAVED
The AVI file is interleaved.

AVIFILEINFO_WASCAPTUREFILE
The AVI file is a specially allocated file used for capturing real-time video. Applications should
warn the user before writing over a file with this flag set because the user probably defragmented
this file.

AVIFILEINFO_COPYRIGHTED
The AVI file contains copyrighted data and software. When this flag is used, software should not
permit the data to be duplicated.

dwCaps
Capability flags. The following flags are defined:
AVIFILECAPS_CANREAD

An application can open the AVI file with with the read privilege.
AVIFILECAPS_CANWRITE

An application can open the AVI file with the write privilege.
AVIFILECAPS_ALLKEYFRAMES

Every frame in the AVI file is a key frame.
AVIFILECAPS_NOCOMPRESSION

The AVI file does not use a compression method.
dwStreams

Number of streams in the file. For example, a file with audio and video has at least two streams.
dwSuggestedBufferSize

Suggested buffer size, in bytes, for reading the file. Generally, this size should be large enough to
contain the largest chunk in the file. For an interleaved file, this size should be large enough to read

an entire record, not just a chunk.
If the buffer size is too small or is set to zero, the playback software will have to reallocate memory
during playback, reducing performance.

dwScale
Time scale applicable for the entire file. Dividing dwRate by dwScale gives the number of samples
per second.
Any stream can define its own time scale to supersede the file time scale.

dwLength
Length of the AVI file. The units are defined by dwRate and dwScale.

dwEditCount
Number of streams that have been added to or deleted from the AVI file.

szFileType
Null-terminated string containing descriptive information for the file type.

 AVISTREAMINFO

typedef struct { \\ see below
DWORD fccType; \\ see below
DWORD fccHandler; \\ see below
DWORD dwFlags; \\ see below
DWORD dwCaps; \\ capability flags; currently unused
WORD wPriority; \\ priority of the stream
WORD wLanguage; \\ language of the stream
DWORD dwScale; \\ see below
DWORD dwRate; \\ see dwScale
DWORD dwStart; \\ see below
DWORD dwLength; \\ see below
DWORD dwInitialFrames; \\ see below
DWORD dwSuggestedBufferSize; \\ see below
DWORD dwQuality; \\ see below
DWORD dwSampleSize; \\ see below
RECT rcFrame; \\ see below
DWORD dwEditCount; \\ see below
DWORD dwFormatChangeCount; \\ see below
char szName[64]; \\ see below

} AVISTREAMINFO; \\ see below

Contains information for a single stream.

fccType
Four-character code indicating the stream type. The following constants have been defined for the
data commonly found in AVI streams:
streamtypeAUDIO Indicates an audio stream.
streamtypeMIDI Indicates a MIDI stream.
streamtypeTEXT Indicates a text stream.
streamtypeVIDEO Indicates a video stream.

fccHandler
Four-character code of the compressor handler that will compress this video stream when it is saved
(for example, mmioFOURCC('M','S','V','C')). This member is not used for audio streams.

dwFlags
Applicable flags for the stream. The bits in the high-order word of these flags are specific to the type
of data contained in the stream. The following flags are defined:
AVISTREAMINFO_DISABLED

Indicates this stream should be rendered when explicitly enabled by the user.
AVISTREAMINFO_FORMATCHANGES

Indicates this video stream contains palette changes. This flag warns the playback software that it
will need to animate the palette.

dwScale
Time scale applicable for the stream. Dividing dwRate by dwScale gives the playback rate in
number of samples per second.
For video streams, this rate should be the frame rate. For audio streams, this rate should correspond
to the audio block size (the nBlockAlign member of the WAVEFORMAT or PCMWAVEFORMAT
structure), which for PCM (Pulse Code Modulation) audio reduces to the sample rate.

dwStart
Sample number of the first frame of the AVI file. The units are defined by dwRate and dwScale.
Normally, this is zero, but it can specify a delay time for a stream that does not start concurrently

with the file.
The 1.0 release of the AVI tools does not support a nonzero starting time.

dwLength
Length of this stream. The units are defined by dwRate and dwScale.

dwInitialFrames
Audio skew. This member specifies how much to skew the audio data ahead of the video frames in
interleaved files. Typically, this is about 0.75 seconds.

dwSuggestedBufferSize
Recommended buffer size, in bytes, for the stream. Typically, this member contains a value
corresponding to the largest chunk in the stream. Using the correct buffer size makes playback more
efficient. Use zero if you do not know the correct buffer size.

dwQuality
Quality indicator of the video data in the stream. Quality is represented as a number between 0 and
10,000. For compressed data, this typically represents the value of the quality parameter passed to
the compression software. If set to - 1, drivers use the default quality value.

dwSampleSize
Size, in bytes, of a single data sample. If the value of this member is zero, the samples can vary in
size and each data sample (such as a video frame) must be in a separate chunk. A nonzero value
indicates that multiple samples of data can be grouped into a single chunk within the file.
For video streams, this number is typically zero, although it can be nonzero if all video frames are
the same size. For audio streams, this number should be the same as the nBlockAlign member of
the WAVEFORMAT or WAVEFORMATEX structure describing the audio.

rcFrame
Dimensions of the video destination rectangle. The values represent the coordinates of upper left
corner, the height, and the width of the rectangle.

dwEditCount
Number of times the stream has been edited. The stream handler maintains this count.

dwFormatChangeCount
Number of times the stream format has changed. The stream handler maintains this count.

szName
Null-terminated string containing a description of the stream.

 DrawDib Functions

The DrawDib functions are a group of functions that provide high performance image-drawing
capabilities for device-independent bitmaps (DIBs). DrawDib functions support DIBs of 8-bit, 16-bit, 24-
bit, and 32-bit image depths.

DrawDib functions write directly to video memory. They do not rely upon functions of the graphics
device interface (GDI).

 Do I Need DrawDib?

Collectively, the DrawDib functions are similar to the StretchDIBits function in that they provide image-
stretching and dithering capabilities. But, the DrawDib functions support image decompression, data-
streaming, and a greater number of display adapters.

You will find it beneficial to use the DrawDib functions in some circumstances. Still, StretchDIBits is
more diverse than the DrawDib functions and should be used when the DrawDib functions cannot
provide the desired functionality. The following list describes factors to consider when deciding whether
to use the DrawDib functions or StretchDIBits.

· Color table information format. DrawDib functions display images that use the
DIB_RGB_COLORS format for their color table. If images in your application store color table
information with the DIB_PAL_COLORS or DIB_PAL_INDICES format, you must use StretchDIBits
to display them.

· Transfer mode. DrawDib functions require that your application use the SRCCOPY transfer mode.
If your application uses StretchDIBits with a transfer mode other than SRCCOPY, you should
continue to use StretchDIBits. Similarly, if you need to use other raster operations in your
application, such as an XOR, use StretchDIBits.

· Quality of video and animation playback. You can use the DrawDib functions for data-streaming
applications, such as playing video clips and animated sequences. The DrawDib functions
outperform StretchDIBits in that they provide higher-quality images and improve motion during
playback.

· Display adapters. DrawDib functions support a greater number of display adapters than
StretchDIBits. The DrawDib functions support VGA color adapters that provide 16-color palettes
using 4-bit image depth, SVGA adapters that provide 256-color palettes using 8-bit image depth,
and true-color display adapters that provide thousands of colors using 16-bit, 24-bit, and 32-bit
image depths.
The DrawDib functions also improve the speed and quality of displaying images on display adapters
with more limited capabilities. For example, when using an 8-bit display adapter, the DrawDib
functions efficiently dither true-color images to 256 colors. They also dither 8-bit images when using
4-bit display adapters.

· Image-stretching. Like StretchDIBits, the DrawDib functions use source and destination
rectangles to control the portion of an image that is displayed. You can crop unwanted portions of an
image or stretch an image by varying the position and size of the source and destination rectangles.
If a display driver does not support image-stretching, the DrawDib functions provide more efficient
stretching capabilities than StretchDIBits.

· Compressed images. The DrawDib functions support several compression and decompression
methods, including run-length encoding, JPEG, Cinepak, 411 YUV, and Indeo™.

 DrawDib Operations

You can access the entire group of DrawDib functions by using the DrawDibOpen function.
DrawDibOpen loads the dynamic-link library (DLL), allocates memory resources, creates a DrawDib
device context (DC), and maintains a reference count of the number of DCs that are initialized.
DrawDibOpen also returns a handle of the new DC that you use with the other DrawDib functions.

You can release a DrawDib DC when you finish using it by using the DrawDibClose function.
DrawDibClose also decrements the reference count of the applications accessing the DLL. The call to
DrawDibClose should be the last DrawDib function in your application.

You can create as many DrawDib DCs as you want. You can use multiple DrawDib DCs to draw
several bitmaps simultaneously. You can also create multiple DrawDib DCs, each with unique
characteristics, so your application can choose and then use the DC with the most appropriate settings.
For example, you can create two DrawDib DCs in an application, one that displays an image at its
normal resolution and the other that displays an enlarged portion of the image.

To run efficiently, DrawDib functions require information about the display adapter and its driver. The
display profile is obtained by running a series of tests on the display adapter the first time the DLL
containing the DrawDib functions is accessed. The DrawDib functions use this information for all
applications. You can repeat these tests when necessary by using the DrawDibProfileDisplay
function.

Note Retrieving and storing the display profile is typically a one-time occurrence. If, however, the
profile information deleted or another display driver is installed in the system, DrawDib reruns the tests.

 Image Rendering

After you create a DrawDib DC, you can draw a DIB to the screen by using the DrawDibDraw function.
DrawDibDraw dithers true-color bitmaps when displaying them with 8-bit display adapters.

DrawDibDraw also supports video compressors transparently when displaying compressed bitmaps.
You can access the buffer that contains the decompressed image by using the DrawDibGetBuffer
function. DrawDibGetBuffer returns NULL when drawing an uncompressed bitmap. You should
prepare your application to handle compressed and uncompressed bitmaps.

You can refresh an image or a portion of an image displayed by your application by using the
DrawDibUpdate macro.

 Sequences of Images

You can display a sequence of bitmaps with the same dimensions and formats by using the
DrawDibDraw function with the DrawDibBegin function. DrawDibBegin improves the efficiency of
DrawDibDraw by preparing the DrawDib DC for drawing.

Note If your application does not use DrawDibBegin, DrawDibDraw implicitly executes it prior to
drawing. If your application uses DrawDibBegin prior to DrawDibDraw, DrawDibDraw does not have
to process the function and wait for it to complete.

DrawDibBegin provides DrawDibDraw with the DrawDib DC, the DC handle, the address of the
BITMAPINFOHEADER structure, and the source and destination rectangle dimensions. When you
display a sequence of bitmaps, DrawDibDraw checks the values of these items for each image in the
sequence. If DrawDibDraw detects changes to any of these items, it implicitly calls DrawDibBegin
again to adjust the DrawDib DC settings.

After using DrawDibBegin, you can draw the image sequence by using DrawDibDraw and specifying
one or more flags as appropriate. Specify the DDF_SAME_HDC flag as long as the DC handle has not
changed. Specify the DDF_SAME_DRAW flag when the following parameters for DrawDibDraw have
not changed: the address of the BITMAPINFOHEADER structure and the source and destination
rectangle dimensions.

You can update the flags set with DrawDibBegin by using the DrawDibEnd function followed by
another call to DrawDibBegin. DrawDibEnd clears the DrawDib DC of its current flags and settings.
The subsequent call to DrawDibBegin reinitializes the DrawDib DC with the appropriate flags and
settings. Alternatively, you can update the flags for a DrawDib DC by using DrawDibBegin without
DrawDibEnd, as long as you change at least one of the following settings concurrently with the flags:
the address of the BITMAPINFOHEADER structure or the source or destination rectangle dimensions.

You can increase the efficiency of DrawDibDraw for data-streaming operations that use compressed
images, such as playing a video clip, by using the DrawDibStart and DrawDibStop functions.
DrawDibStart prepares the DrawDib DC to receive a stream of images by sending a message to the
video compression manager (VCM). When streaming has ended, DrawDibStop sends a message to
VCM indicating that it can release resources it allocated for the data-streaming operation. For more
information about VCM, see Chapter 7, "Video Compression Manager."

Note You must specify the width and height of the source and destination rectangles in your
application; however, you do not need to specify the origins of the rectangles. Your application can
redefine the origins in DrawDibDraw to use different portions of the image or to update different
portions of the display.

 Palettes

The DrawDib functions require that an application respond to two palette-oriented messages:
WM_QUERYNEWPALETTE and WM_PALETTECHANGED. If your application is not palette-aware,
you will need to add a handler for each of these messages. For more information about processing the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages, see "Adding Palette Message
Handlers" later in this chapter.

You can realize the current DrawDib palette to the DC by using the DrawDibRealize function. You
should realize the palette in response to the WM_QUERYNEWPALETTE or WM_PALETTECHANGED
message, or when you prepare to display an image sequence by using the DrawDibDraw function.

You can draw an image mapped to another palette by using the DrawDibSetPalette function.
DrawDibSetPalette forces the DrawDib DC to use the specified palette. This can affect the image
quality. For example, an application that is palette-aware might have realized a palette and needs to
prevent DrawDib from realizing its own palette. The application can use DrawDibSetPalette to notify
DrawDib of the palette to use.

You can obtain a handle of the current foreground palette by using the DrawDibGetPalette function. If
your application uses the current foreground palette, it does not have exclusive use of the palette and
another application can invalidate the palette handle. Your application should not free the palette when
you finish using it. Freeing the palette could invalidate the palette handle for another application.

You can prepare DrawDib to receive new color values for its palette by using the
DrawDibChangePalette function. In the code following DrawDibChangePalette, you assign new
values for the palette color table. If the DDF_ANIMATE flag is not set in the DrawDib DC when you call
DrawDibChangePalette, you can enact the palette changes by using DrawDibRealize to realize the
palette and by using DrawDibDraw to redraw the image. If the DDF_ANIMATE flag is set in the
DrawDib DC, you can animate the palette and the colors of the displayed bitmap by using
DrawDibDraw or DrawDibRealize. You can update the DDF_ANIMATE flag by using the DrawDibEnd
and DrawDibBegin functions.

Note If you free the DrawDib palette while it is selected by a DC, a GDI error can result when the DC
uses the palette. Instead, your application should use DrawDibSetPalette to change the DrawDib DC
to use the default palette or another palette.

The following functions can free the DrawDib palette and should not be used until the palette is not
selected by the DC: DrawDibEnd, DrawDibClose, and DrawDibBegin. DrawDibDraw can also free
the palette when it uses the same DrawDib DC but specifies different drawing parameters (lpbi, dxDst,
dyDst, dxSrc, or dySrc) or a different format.

 Timing

As part of debugging an application, you can obtain information about the amount of time it takes to
complete repetitive DrawDib operations a specified number of times by using the DrawDibTime
function. DrawDibTime returns timing information for the following operations:

· Drawing a bitmap
· Decompressing a bitmap
· Dithering a bitmap
· Stretching a bitmap
· Transferring a bitmap by using the BitBlt function
· Transferring a bitmap by using the StretchDIBits function

After retrieving a set of values, DrawDibTime resets the count and value for each operation.

DrawDibTime is available only in the debug version of the DrawDib functions.

 Using DrawDib

This section contains examples demonstrating how to perform the following tasks:

· Add palette message handlers.
· Draw a DC.
· Animate a palette.

 Adding Palette Message Handlers

The following example illustrates simple message handlers for the WM_PALETTECHANGED and
WM_QUERYNEWPALETTE messages. The example uses the DrawDibRealize function to process
the WM_QUERYNEWPALETTE message.

Your application should respond to the WM_QUERYNEWPALETTE message by invalidating the
destination window to let the DrawDibDraw function redraw an image. You should respond to the
WM_PALETTECHANGED message by using the DrawDibRealize function to realize the palette.

case WM_PALETTECHANGED:
if ((HWND)wParam == hwnd)

break;
case WM_QUERYNEWPALETTE:

hdc = GetDC(hwnd);
f = DrawDibRealize(hdd, hdc, FALSE) > 0;
ReleaseDC(hwnd, hdc);
if (f)

InvalidateRect(hwnd, NULL, TRUE);
break;

 Drawing a Display Context

The following example prepares a DrawDib DC by using the DrawDibRealize function prior to
displaying several images in a bitmap sequence.

hdc = GetDC(hwnd);
DrawDibBegin(hdd, hdc, dxDest, dyDest, lpbi, dxSrc, dySrc, NULL);
DrawDibRealize(hdd, hdc, fBackground);
DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits,
 xSrc, ySrc, dxSrc, dySrc, DDF_SAME_DRAW|DDF_SAME_HDC);
DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits,
 xSrc, ySrc, dxSrc, dySrc, DDF_SAME_DRAW|DDF_SAME_HDC);
DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits,
 xSrc, ySrc, dxSrc, dySrc, DDF_SAME_DRAW|DDF_SAME_HDC);
ReleaseDC(hwnd, hdc);

 Animating a Palette

The following example animates a palette by using the DrawDibRealize, DrawDibChangePalette, and
DrawDibDraw functions.

You can change the colors of a bitmap by using the DrawDibBegin function in combination with
DrawDibChangePalette. First, allow palette changes by specifying the DDF_ANIMATE flag in the call
to DrawDibBegin. Second, set the color table values from the palette entries by using
DrawDibChangePalette.

For example, if lppe is an address of the PALETTEENTRY array containing the new colors, and lpbi is
the LPBITMAPINFOHEADER structure used in DrawDibBegin or DrawDibDraw, the following
fragment updates the DIB color table.

hdc = GetDC(hwnd);
DrawDibBegin(hdd,, DDF_ANIMATE);
DrawDibRealize(hdd, hdc, fBackground);
DrawDibDraw(hdd, hdc,, DDF_SAME_DRAW|DDF_SAME_HDC);

// Call to change color.
DrawDibChangePalette(hDD, iStart, iLen, lppe);
.
.
.
ReleaseDC(hwnd, hdc);

 DrawDib Reference

This section describes the DrawDib functions and associated structures. These elements are grouped
as follows:

DrawDib Library Operations

DrawDibOpen
DrawDibClose
DrawDibProfileDisplay
Image Rendering

DrawDibDraw
DrawDibGetBuffer
DrawDibUpdate
Sequences of Images

DrawDibBegin
DrawDibEnd
DrawDibStart
DrawDibStop
Palettes

DrawDibRealize
DrawDibSetPalette
DrawDibGetPalette
DrawDibChangePalette
Timing DrawDib

DRAWDIBTIME
DRAWDIBTIME

 DrawDib Function Reference

An application uses DrawDib functions to create and manage a DrawDib DC, display and update
images on-screen, manipulate palettes, and to close the DrawDib DC when it's no longer needed. The
DrawDib functions also include a timing function and a test function to determine display
characteristics.

 DrawDibBegin

BOOL DrawDibBegin(HDRAWDIB hdd, HDC hdc, int dxDest, int dyDest,
 LPBITMAPINFOHEADER lpbi, int dxSrc, int dySrc, UINT wFlags);

Changes parameters of a DrawDib DC or initializes a new DrawDib DC.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.
hdc

Handle of a DC for drawing. This parameter is optional.
dxDest and dyDest

Width and height, in MM_TEXT client units, of the destination rectangle.
lpbi

Address of a BITMAPINFOHEADER structure containing the image format. The color table for the
DIB follows the image format and the biHeight member must be a positive value.

dxSrc and dySrc
Width and height, in pixels, of the source rectangle.

wFlags
Applicable flags for the function. The following values are defined:
DDF_ANIMATE

Allows palette animation. If this value is present, DrawDib reserves as many entries as possible
by setting PC_RESERVED in the palPalEntry members of the LOGPALETTE structure, and the
palette can be animated by using the DrawDibChangePalette function. If your application uses
the DrawDibBegin function with the DrawDibDraw function, set this value with DrawDibBegin
rather than DrawDibDraw.

DDF_BACKGROUNDPAL
Realizes the palette used for drawing as a background task, leaving the current palette used for
the display unchanged. (This value is mutually exclusive of DDF_SAME_HDC.)

DDF_BUFFER
Causes DrawDib to try to use an off-screen buffer so DDF_UPDATE can be used. This disables
decompression and drawing directly to the screen. If DrawDib is unable to create an off-screen
buffer, it will decompress or draw directly to the screen. For more information, see the
DDF_UPDATE and DDF_DONTDRAW values described for DrawDibDraw.

DDF_DONTDRAW
Current image is not drawn, but is decompressed. DDF_UPDATE can be used later to draw the
image. This flag supercedes the DDF_PREROLL flag.

DDF_FULLSCREEN
Not supported.

DDF_HALFTONE
Always dithers the DIB to a standard palette regardless of the palette of the DIB. If your
application uses DrawDibBegin with DrawDibDraw, set this value with DrawDibBegin rather
than DrawDibDraw.

DDF_JUSTDRAWIT
Draws the image by using GDI. Prohibits DrawDib functions from decompressing, stretching, or
dithering the image. This strips DrawDib of capabilities that differentiate it from the StretchDIBits
function.

DDF_SAME_DRAW
Use the current drawing parameters for DrawDibDraw. Use this value only if lpbi, dxDest,
dyDest, dxSrc, and dySrc have not changed since using DrawDibDraw or DrawDibBegin. This

flag supercedes the DDF_SAME_DIB and DDF_SAME_SIZE flags.
DDF_SAME_HDC

Use the current DC handle and the palette currently associated with the DC.
DDF_UPDATE

Last buffered bitmap needs to be redrawn. If drawing fails with this value, a buffered image is not
available and a new image needs to be specified before the display can be updated.

This function prepares to draw a DIB specified by lpbi to the DC. The image
 is stretched to the size specified by dxDest and dyDest. If dxDest and dyDest are set to - 1, the DIB is
drawn to a 1:1 scale without stretching.

You can update the flags of a DrawDib DC by reissuing DrawDibBegin, specifying the new flags, and
changing at least one of the following settings: dxDest, dyDest, lpbi, dxSrc, or dySrc.

If the parameters of DrawDibBegin have not changed, subsequent calls to the function have no effect.

 DrawDibChangePalette

BOOL DrawDibChangePalette(HDRAWDIB hdd, int iStart, int iLen,
 LPPALETTEENTRY lppe);

Sets the palette entries used for drawing DIBs.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.
iStart

Starting palette entry number.
iLen

Number of palette entries.
lppe

Address of an array of palette entries.

This function changes the physical palette only if the current DrawDib palette is realized by calling the
DrawDibRealize function.

If the color table is not changed, the next call to the DrawDibDraw function that does not specify
DDF_SAME_DRAW calls the DrawDibBegin function implicitly.

 DrawDibClose

BOOL DrawDibClose(HDRAWDIB hdd);

Closes a DrawDib DC and frees the resources DrawDib allocated for it.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.

 DrawDibDraw

BOOL DrawDibDraw(HDRAWDIB hdd, HDC hdc, int xDst, int yDst, int dxDst,
 int dyDst, LPBITMAPINFOHEADER lpbi, LPVOID lpBits, int xSrc,
 int ySrc, int dxSrc, int dySrc, UINT wFlags);

Draws a DIB to the screen.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.
hdc

Handle of the DC.
xDst and yDst

The x- and y-coordinates, in MM_TEXT client coordinates, of the upper left corner of the destination
rectangle.

dxDst and dyDst
Width and height, in MM_TEXT client coordinates, of the destination rectangle. If dxDst is - 1, the
width of the bitmap is used. If dyDst is - 1, the height of the bitmap is used.

lpbi
Address of the BITMAPINFOHEADER structure containing the image format. The color table for the
DIB within BITMAPINFOHEADER follows the format and the biHeight member must be a positive
value; DrawDibDraw will not draw inverted DIBs.

lpBits
Address of the buffer that contains the bitmap bits.

xSrc and ySrc
The x- and y-coordinates, in pixels, of the upper left corner of the source rectangle. The coordinates
(0,0) represent the upper left corner of the bitmap.

dxSrc and dySrc
Width and height, in pixels, of the source rectangle.

wFlags
Applicable flags for drawing. The following values are defined:
DDF_BACKGROUNDPAL

Realizes the palette used for drawing in the background, leaving the actual palette used for
display unchanged. This value is valid only if DDF_SAME_HDC is not set.

DDF_DONTDRAW
Current image is decompressed but not drawn. This flag supercedes the DDF_PREROLL flag.

DDF_FULLSCREEN
Not supported.

DDF_HALFTONE
Always dithers the DIB to a standard palette regardless of the palette of the DIB. If your
application uses the DrawDibBegin function, set this value in DrawDibBegin rather than in
DrawDibDraw.

DDF_HURRYUP
Data does not have to be drawn (that is, it can be dropped) and DDF_UPDATE will not be used to
recall this information. DrawDib checks this value only if it is required to build the next frame;
otherwise, the value is ignored.
This value is usually used to synchronize video and audio. When synchronizing data, applications
should send the image with this value in case the driver needs to buffer the frame to decompress
subsequent frames.

DDF_NOTKEYFRAME

DIB data is not a key frame.
DDF_SAME_HDC

Use the current DC handle and the palette currently associated with the DC.
DDF_SAME_DRAW

Use the current drawing parameters for DrawDibDraw. Use this value only if lpbi, dxDst, dyDst,
dxSrc, and dySrc have not changed since using DrawDibDraw or DrawDibBegin. DrawDibDraw
typically checks the parameters, and if they have changed, DrawDibBegin prepares the DrawDib
DC for drawing. This flag supercedes the DDF_SAME_DIB and DDF_SAME_SIZE flags.

DDF_UPDATE
Last buffered bitmap is to be redrawn. If drawing fails with this value, a buffered image is not
available and a new image needs to be specified before the display can be updated.

DDF_DONTDRAW causes DrawDibDraw to decompress but not display an image. A subsequent call
to DrawDibDraw specifying DDF_UPDATE displays the image.

If the DrawDib DC does not have an off-screen buffer specified, specifying DDF_DONTDRAW causes
the frame to be drawn to the screen immediately. Subsequent calls to DrawDibDraw specifying
DDF_UPDATE fail.

Although they are set at different times, DDF_UPDATE and DDF_DONTDRAW can be used together
to create composite images off-screen. When the off-screen image is complete, you can display the
image by calling DrawDibDraw.

 DrawDibEnd

BOOL DrawDibEnd(HDRAWDIB hdd);

Clears the flags and other settings of a DrawDib DC that are set by the DrawDibBegin or
DrawDibDraw functions.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of the DrawDib DC to free.

 DrawDibGetBuffer

LPVOID DrawDibGetBuffer(HDRAWDIB hdd, LPBITMAPINFOHEADER lpbi,
 DWORD dwSize, DWORD dwFlags);

Retrieves the location of the buffer used by DrawDib for decompression.

· Returns the address of the buffer or NULL if no buffer is used. If lpbi is not NULL, it is filled with a
copy of the BITMAPINFO structure describing the buffer.

hdd
Handle of a DrawDib DC.

lpbi
Address of a BITMAPINFO structure. This structure is made up of a BITMAPINFOHEADER
structure and a 256-entry table defining the colors used by the bitmap.

dwSize
Size, in bytes, of the BITMAPINFO structure pointed to by lpbi

dwFlags
Reserved; must be zero.

 DrawDibGetPalette

HPALETTE DrawDibGetPalette(HDRAWDIB hdd);

Retrieves the palette used by a DrawDib DC.

· Returns a handle of the palette if successful or NULL otherwise.
hdd

Handle of a DrawDib DC.

This function assumes the DrawDib DC contains a valid palette entry, implying that a call to this
function must follow calls to the DrawDibDraw or DrawDibBegin functions.

You should rarely need to call this function because you can realize the correct palette in response to a
window message by using the DrawDibRealize function.

 DrawDibOpen

HDRAWDIB DrawDibOpen(VOID);

Opens the DrawDib library for use and creates a DrawDib DC for drawing.

· Returns a handle of a DrawDib DC if successful or NULL otherwise.

When drawing multiple DIBs simultaneously, create a DrawDib DC for each of the images that will be
simultaneously on-screen.

 DrawDibProfileDisplay

BOOL DrawDibProfileDisplay(LPBITMAPINFOHEADER lpbi);

Determines settings for the display system when using DrawDib functions.

· Returns a value that indicates the fastest drawing and stretching capabilities of the display system.
This value can be zero if the bitmap format is not supported, or one or more of the following flags:
PD_CAN_DRAW_DIB DrawDib can draw images using

this format. Stretching might or
might not also be supported.

PD_CAN_STRETCHDIB DrawDib can stretch and draw
images using this format.

PD_STRETCHDIB_1_1_OK StretchDIBits draws unstretched
images using this format faster than
an alternative method.

PD_STRETCHDIB_1_2_OK StretchDIBits draws stretched
images (in a 1:2 ratio) using this
format faster than an alternative
method.

PD_STRETCHDIB_1_N_OK StretchDIBits draws stretched
images (in a 1:N ratio) using this
format faster than an alternative
method.

lpbi
Address of a BITMAPINFOHEADER structure that contains bitmap information. You can also
specify NULL to verify that the profile information is current. If the profile information is not current,
DrawDib will rerun the profile tests to obtain a current set of information. When you call
DrawDibProfileDisplay with this parameter set to NULL, the return value is meaningless.

 DrawDibRealize

UINT DrawDibRealize(HDRAWDIB hdd, HDC hdc, BOOL fBackground);

Realizes the palette of the DrawDib DC for use with the specified DC.

· Returns the number of entries in the logical palette mapped to different values in the system palette.
If an error occurs or no colors were updated, it returns zero.

hdd
Handle of a DrawDib DC.

hdc
Handle of the DC containing the palette.

fBackground
Background palette flag. If this value is nonzero, the palette is a background palette. If this value is
zero and the DC is attached to a window, the logical palette becomes the foreground palette when
the window has the input focus. (A DC is attached to a window when the window class style is
CS_OWNDC or when the DC is obtained by using the GetDC function.)

To select the palette of the DrawDib DC as a background palette, use the DrawDibDraw function and
specify the DDF_BACKGROUNDPAL flag.

 DrawDibSetPalette

BOOL DrawDibSetPalette(HDRAWDIB hdd, HPALETTE hpal);

Sets the palette used for drawing DIBs.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.
hpal

Handle of the palette. Specify NULL to use the default palette.

 DrawDibStart

BOOL DrawDibStart(HDRAWDIB hdd, LONG rate);

Prepares a DrawDib DC for streaming playback.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.
rate

Playback rate, in microseconds per frame.

 DrawDibStop

BOOL DrawDibStop(HDRAWDIB hdd);

Frees the resources used by a DrawDib DC for streaming playback.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.

 DrawDibTime

BOOL DrawDibTime(HDRAWDIB hdd, LPDRAWDIBTIME lpddtime);

Retrieves timing information about the drawing operation and is used during debug operations.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.
lpddtime

Address of a DRAWDIBTIME structure.

This function is present only in the debug version of the Win32 Software Development Kit libraries.

 DrawDibUpdate

BOOL DrawDibUpdate(HDRAWDIB hdd, HDC hdc, int xDst, int yDst);

Draws the last frame in the DrawDib off-screen buffer.

· Returns TRUE if successful or FALSE otherwise.
hdd

Handle of a DrawDib DC.
hdc

Handle of the DC.
xDst and yDst

The x- and y-coordinates, in MM_TEXT client coordinates, of the upper left corner of the destination
rectangle.

The DrawDibUpdate macro is defined as follows:

#define DrawDibUpdate(hdd, hdc, x, y) \
 DrawDibDraw(hdd, hdc, x, y, 0, 0, NULL, NULL, 0, 0, \
 0, 0, DDF_UPDATE)

This macro can be used to refresh an image or a portion of an image displayed by your application.

 DrawDib Structure

The DrawDib functions use three structures: DRAWDIBTIME, BITMAPINFO, and
BITMAPINFOHEADER. The description for DRAWDIBTIME follows. For full descriptions of
BITMAPINFO and BITMAPINFOHEADER, see the Microsoft Win32 Programmer's Reference, Volume
5.

 DRAWDIBTIME

typedef struct {
 LONG timeCount; // see below
 LONG timeDraw; // time to draw bitmaps
 LONG timeDecompress; // time to decompress bitmaps
 LONG timeDither; // time to dither bitmaps
 LONG timeStretch; // time to stretch bitmaps
 LONG timeBlt; // time to transfer bitmaps (BitBlt)
 LONG timeSetDIBits; // time to transfer bitmaps (SetDIBits)
} DRAWDIBTIME, *LPDRAWDIBTIME;

Contains elapsed timing information for performing a set of DrawDib operations. The DrawDibTime
function resets the count and the elapsed time value for each operation each time it is called.

timeCount
Number of times the following operations have been performed since DrawDibTime was last called:
· Draw a bitmap on the screen.
· Decompress a bitmap.
· Dither a bitmap.
· Stretch a bitmap.
· Transfer bitmap data by using the BitBlt function.
· Transfer bitmap data by using the SetDIBits function.

 Audio Compression Manager

The audio compression manager (ACM) adds system-level support for the following services:

· Transparent run-time audio compression and decompression
· Waveform-audio data format selection
· Waveform-audio data filter selection
· Waveform-audio data format conversion
· Waveform-audio data filtering

This chapter describes the services available in the ACM and explains the programming techniques
used to access these services.

 Mapping Waveform-Audio Devices

The Microsoft® Win32® application programming interface (API) provides a set of standard functions
for audio devices. These functions issue calls to device drivers that manage hardware devices. The
system uses a module called a "mapper" to manage installed devices. The mapper uses special hooks
in the driver interface to intercept calls and to act as an intermediary between the system and the
drivers installed in the system. The mapper is responsible for matching an application's requests for
access to a device with the available devices and for finding a device that meets the current
application's audio requirements. The system provides mappers for standard driver types: waveform-
audio, MIDI (Musical Instrument Digital Interface), and auxiliary devices.

The ACM is an extension of the basic multimedia system and is installed as a mapper. This means the
ACM uses the driver-interface mapper hooks for waveform-audio devices. Using these hooks allows
the ACM to decode or encode waveform-audio data before passing it to or from a waveform-audio
device driver. The difference between the ACM and the standard system mapper is that the ACM can
search for a waveform-audio device that supports a given format or find a combination of a waveform-
audio device and an ACM compressor or decompressor that supports a given format.

When an application requests that the system open a waveform-audio device for input or output, the
request specifies the format and device. When the specified device is the mapper, the mapper must
find a device that supports the given format. The mapper implemented in the ACM searches for an
installed waveform-audio device that supports the given format. If the ACM cannot find such a device, it
searches for a waveform-audio device and a compressor or decompressor that together support the
format. Specifically, the ACM searches for a compressor or decompressor that converts the specified
format into a format that is supported by an installed waveform-audio device. After the ACM finds a
device that supports the converted format, it can honor requests to play or record the format originally
requested, even though no installed waveform-audio device directly supports that format.

In addition to format conversion, the ACM also offers services to support compression, decompression,
filtering, format selection, and filter selection. It provides a standard API that it supports by calling its
own drivers.

 How the Audio Compression Manager Works

The ACM uses existing driver interface hooks to override the default mapping algorithm for waveform-
audio devices. This allows the ACM to intercept device-open calls. After a call has been intercepted,
the ACM can perform a variety of tasks to process the audio data, such as inserting an external
compressor or decompressor into the sequence.

The ACM manages the following types of drivers:

· Compressor and decompressor (codec) drivers
· Format converter drivers
· Filter drivers

Compressors and decompressors change one format type to another. For example, a compressor or
decompressor can change a PCM (Pulse Code Modulation) file to an ADPCM (Adaptive Differential
Pulse Code Modulation) file. Format converters change the format, but not the data type. For example,
a converter can change 44-kHz, 16-bit data to 44-kHz, 8-bit data. Filters do not change the data format
at all, but they change the waveform-audio data in some manner. For example, a filter could combine a
data stream and an echo of itself. A single ACM driver, or a filter tag or format tag within a driver, might
also support combinations of the above types.

For waveform-audio output, the ACM passes each buffer of data to the converter as it arrives. The
converter decompresses the data and returns the decompressed data to the ACM in a "shadow" buffer.
The ACM then passes the decompressed shadow buffer to the waveform-audio driver. The ACM
allocates the shadow buffers whenever it receives a prepare message.

For waveform-audio input, the ACM passes empty shadow buffers to the driver. It uses a background
task to receive a notification after the driver has filled the shadow buffer. The ACM then passes the
buffers to the driver for compression. After compression is finished, the driver passes the data to the
application.

 Audio Compression Manager Functions and Structures

The ACM functions fall into several categories. Naming conventions for the functions make it easy to
identify these categories. Function names (with two exceptions) are of the form acmGroupFunction,
where Group designates the ACM category (such as "Driver," "Format," "FormatTag," "Filter,"
"FilterTag," or "Stream"), and Function describes the action performed by the function.

The functions in the filter and format groups are very similar. Almost every function that acts on filters
has a parallel function that acts on formats.

In the format group, some functions use waveform-audio format tags (the wFormatTag member of a
WAVEFORMATEX structure) while others require full waveform-audio formats (the full
WAVEFORMATEX structure). (For reference information about the WAVEFORMATEX structure, see
Error.)

In the filter group, some functions use waveform-audio filter tags (the dwFilterTag member of a
WAVEFILTER structure) while others require full waveform-audio filters (the full WAVEFILTER
structure).

The functions in the stream group represent the many steps involved in a conversion: opening a
conversion instance, preparing for the conversion, performing the conversion, cleaning up after the
conversion is complete, and closing the conversion instance.

 Functions Called by the System

The system calls three different kinds of application-defined functions. Callback functions are functions
in your application that the system calls in response to a request made by an application. Hook
procedures help an application handle the customization of dialog boxes. A driver procedure is an
application's implementation of its own codec, converter, or filter. In the reference section of this
chapter, the prototypes of these three function types are alphabetized with the other function
descriptions.

The callback functions have the following names:

· acmDriverEnumCallback
· acmFilterEnumCallback
· acmFilterTagEnumCallback
· acmFormatEnumCallback
· acmFormatTagEnumCallback
· acmStreamConvertCallback

Most of the enumeration functions in the ACM use callback functions. For example, when you call an
enumeration function, the ACM enumerates the items by repeatedly calling the application through the
callback function.

Some functions cannot be called from within these callback functions. Functions that cannot be called
manipulate internal ACM structures that are used by the enumeration functions. The following functions
should not be called from within a callback function:

· acmDriverAdd
· acmDriverPriority
· acmDriverRemove

The system calls the following functions to help an application handle the customization of dialog
boxes:

· acmFilterChooseHookProc
· acmFormatChooseHookProc

The following function is given as a prototype that allows an application to use a customized codec,
converter, or filter. A function conforming to this prototype may be passed as an argument to the
acmDriverAdd function.

· acmDriverProc

 Using the Audio Compression Manager

This section contains examples demonstrating how to perform the following tasks:

· Retrieve a string that describes a filter.
· Produce a dialog box for selecting a filter.
· Produce a dialog box for selecting a specific type of format.
· Produce a dialog box for selecting restricted formats.
· Produce a dialog box for selecting a format for saving.
· Produce a dialog box for selecting a format for recording.
· Convert data from one format to another.
· Multistep format conversion.
· Find a specific format.
· Find a specific driver.
· Add drivers within an application.
· Generate a nonstandard format.

 Retrieving a String That Describes a Filter

An application often needs to display a string that describes the current format. This task can be
accomplished easily with the acmFilterTagDetails and acmFilterDetail s functions. These functions
must be called with the appropriate filter or filter tag. The following example shows how to use these
functions.

BOOL GetFilterDescription
(
 LPWAVEFILTER pwfltr,
 LPTSTR pszFilterTag,
 LPTSTR pszFilter
)
{
 MMRESULT mmr;

 // Retrieve the name for the filter tag of the specified filter.
 if (NULL != pszFilterTag) {
 ACMFILTERTAGDETAILS aftd;

 // Initialize all unused members of the ACMFILTERTAGDETAILS
 // structure to zero.
 memset(&aftd, 0, sizeof(aftd));

 // Fill in the required members of the ACMFILTERTAGDETAILS
 // structure for the ACM_FILTERTAGDETAILSF_FILTERTAG query.
 aftd.cbStruct = sizeof(aftd);
 aftd.dwFilterTag = pwfltr->dwFilterTag;

 // Ask the ACM to find the first available driver that
 // supports the specified filter tag.
 mmr = acmFilterTagDetails(NULL, &aftd,
 ACM_FILTERTAGDETAILSF_FILTERTAG);
 if (MMSYSERR_NOERROR != mmr) {
 // No ACM driver is available that supports the
 // specified filter tag.
 return (FALSE);
 }

 // Copy the filter tag name into the calling application's
 // buffer.
 lstrcpy(pszFilterTag, aftd.szFilterTag);
 }

 // Retrieve the description of the attributes for the specified
 // filter.
 if (NULL != pszFilter) {
 ACMFILTERDETAILS afd;

 // Initialize all unused members of the ACMFILTERDETAILS
 // structure to zero.
 memset(&afd, 0, sizeof(afd));

 // Fill in the required members of the ACMFILTERDETAILS
 // structure for the ACM_FILTERDETAILSF_FILTER query.

 afd.cbStruct = sizeof(afd);
 afd.dwFilterTag = pwfltr->dwFilterTag;
 afd.pwfltr = pwfltr;
 afd.cbwfltr = pwfltr->cbStruct;

 // Ask the ACM to find the first available driver that
 // supports the specified filter.
 mmr = acmFilterDetails(NULL, &afd, ACM_FILTERDETAILSF_FILTER);
 if (MMSYSERR_NOERROR != mmr) {
 // No ACM driver is available that supports the
 // specified filter.
 return (FALSE);
 }

 // Copy the filter attributes description into the calling
 // application's buffer.
 lstrcpy(pszFilter, afd.szFilter);
 }

 return (TRUE);
}

 Producing a Dialog Box for Selecting a Filter

An application can allow users to select an arbitrary filter operation and apply it to waveform-audio
data. In the following example, the application allocates a buffer to hold the filter and then uses the
acmFilterChoose function to select the filter. The functions in this example must be called with the
appropriate filter or filter tag.

MMRESULT mmr;
ACMFILTERCHOOSE afc;
PWAVEFILTER pwfltr;
DWORD cbwfltr;

// Determine the maximum size required for any valid filter
// for which the ACM has a driver installed and enabled.
mmr = acmMetrics(NULL, ACM_METRIC_MAX_SIZE_FILTER, &cbwfltr);
if (MMSYSERR_NOERROR != mmr) {

 // The ACM probably has no drivers installed and
 // enabled for filter operations.
 return (mmr);
}

// Dynamically allocate a structure large enough to hold the
// maximum sized filter enabled in the system.
pwfltr = (PWAVEFILTER)LocalAlloc(LPTR, (UINT)cbwfltr);
if (NULL == pwfltr) {
 return (MMSYSERR_NOMEM);
}

// Initialize the ACMFILTERCHOOSE members.
memset(&afc, 0, sizeof(afc));

afc.cbStruct = sizeof(afc);
afc.fdwStyle = 0L; // no special style flags
afc.hwndOwner = hwnd; // hwnd of parent window
afc.pwfltr = pwfltr; // wfltr to receive selection
afc.cbwfltr = cbwfltr; // size of wfltr buffer
afc.pszTitle = TEXT("Any Filter Selection");

// Call the ACM to bring up the filter-selection dialog box.
mmr = acmFilterChoose(&afc);
if (MMSYSERR_NOERROR == mmr) {
 // The user selected a valid filter. The pwfltr buffer,
 // allocated above, contains the complete filter description.
}

// Clean up and exit.
LocalFree((HLOCAL)pwfltr);
return (mmr);

 Producing a Dialog Box for Selecting a Specific Type of Format

You might want an application to allow the user to select a format from a restricted list of formats in a
dialog box. Restrictions might limit the number of channels, the sampling rate, the waveform-audio
format tag, or the number of bits per sample. In all of these cases, the list can be automatically
generated by using the acmFormatChoose function, setting the fdwEnum and pwfxEnum members
of the ACMFORMATCHOOSE structure. The following example illustrates this process.

MMRESULT mmr;
ACMFORMATCHOOSE afc;
WAVEFORMATEX wfxSelection;
WAVEFORMATEX wfxEnum;

// Initialize the ACMFORMATCHOOSE members.
memset(&afc, 0, sizeof(afc));

afc.cbStruct = sizeof(afc);
afc.fdwStyle = 0L; // no special style flags
afc.hwndOwner = hwnd; // hwnd of parent window
afc.pwfx = &wfxSelection; // wfx to receive selection
afc.cbwfx = sizeof(wfxSelection);
afc.pszTitle = TEXT("16 Bit PCM Selection");

// Request all 16-bit PCM formats be displayed for the user
// to select from.
memset(&wfxEnum, 0, sizeof(wfxEnum));
wfxEnum.wFormatTag = WAVE_FORMAT_PCM;
wfxEnum.wBitsPerSample = 16;
afc.fdwEnum = ACM_FORMATENUMF_WFORMATTAG |
 ACM_FORMATENUMF_WBITSPERSAMPLE;
afc.pwfxEnum = &wfxEnum;
mmr = acmFormatChoose(&afc);
if ((MMSYSERR_NOERROR != mmr) && (ACMERR_CANCELED != mmr))
{
 // There was a fatal error in bringing up the list
 // dialog box (probably invalid input parameters).
}

 Producing a Dialog Box for Selecting Restricted Formats

You might want to use the dialog box created by the acmFormatChoose function, but limit or control
the formats in the dialog box. You can do this by using the
ACMFORMATCHOOSE_STYLEF_ENABLEHOOK flag to hook the dialog procedure. The application
can then filter the formats by responding to the MM_ACM_FORMATCHOOSE message in the
message procedure for the dialog box.

 Producing a Dialog Box for Selecting a Format for Saving

You might want an application to save existing waveform-audio data in another format. For example, a
waveform-audio editor could save a waveform-audio file as a compressed file. To list only the
suggested destination formats for a given source format in the dialog box created by the
acmFormatChoose function, specify the source format in the pwfxEnum member and the
ACM_FORMATENUMF_SUGGEST flag in the fdwEnum member of the ACMFORMATCHOOSE
structure.

Similarly, to list valid destination formats for a given format, use the
ACM_FORMATENUMF_CONVERT flag instead of the ACM_FORMATENUMF_SUGGEST flag.

 Producing a Dialog Box for Selecting a Format for Recording

An application can allow the user to select a format for which an installed waveform-audio device
provides native support. For example, you might want a waveform-audio editor to record new
waveform-audio data without using an ACM compressor or decompressor to provide a translation layer.
To do this, use the acmFormatChoose function, specifying the ACM_FORMATENUMF_HARDWARE
and ACM_FORMATENUMF_INPUT flags in the fdwEnum member of the ACMFORMATCHOOSE
structure.

 Converting Data from One Format to Another

The ACM uses stream functions to support data format conversion. Converters in the ACM change the
format, but not the data type. For example, a converter module can change 44-kHz, 16-bit data to 44-
kHz, 8-bit data.

The following ACM functions support data format conversion. They are listed in the order you would
typically use them.

· The acmStreamOpen function opens a conversion stream.
· The acmStreamSize function calculates the appropriate size of the source or destination buffer.
· The acmStreamPrepareHeader function prepares source and destination buffers to be used in a

conversion.
· The acmStreamConvert function converts data in a source buffer into the destination format, writing

the converted data into the destination buffer.
· The acmStreamUnprepareHeader function cleans up the preparation performed by

acmStreamPrepareHeader. You must call this function before freeing the source and destination
buffers.

· The acmStreamClose function closes a conversion stream.

When converting data, first identify the source format, and then choose the destination format. The
easiest way to do this is by using the acmFormatChoose function, which displays a format-selection
dialog box and returns the user's choice.

When you know the source and destination formats, you can use acmStreamOpen to open a
conversion stream. Then you can use the acmStreamSize function to determine the appropriate buffer
sizes.

The next step is to prepare the buffers to be used in the conversion by using
acmStreamPrepareHeader.

To perform the conversion, use acmStreamConvert until all the buffers have been processed. When
the conversion is complete, use acmStreamUnprepareHeader to clean up the buffers and then use
acmStreamClose to close the conversion stream.

 Multistep Format Conversion

Sometimes the ACM cannot convert data from one format to another in a single step. For example, an
application might need to convert 16-bit, 44-kHz stereo data to 11-kHz mono ADPCM. If the
compressor or decompressor cannot do this conversion directly, the application might attempt it in two
steps. This usually means making one conversion between two PCM formats and then another to the
final format type.

To convert in two steps, use the acmFormatSuggest function to find a PCM format that matches the
ADPCM format. Then use two conversion streams to perform the conversion. For example, perform
one conversion from 16-bit, 44-kHz stereo PCM to 16-bit, 11-kHz mono and then convert from 16-bit,
11-kHz mono to 11-kHz mono ADPCM.

Multistep conversion also happens when either the source or the destination format is not PCM. If the
source format is not PCM, it should be changed to a PCM format before conversion. If the destination
format is not PCM, the source must be converted to an intermediate PCM format and then converted to
the final destination format.

The most straightforward conversions occur when the source and destination formats are both PCM
formats. When either the source or destination format is not PCM, the conversion might require an
additional step. If both source and destination formats are not PCM, the conversion will usually require
more than one step, and, in some instances, conversion might not be possible.

 Finding a Specific Format

An application might have only a partial specification for a format when it needs the full specification.
For example, the specification might stipulate an 11-kHz mono, 4-bit ADPCM format, but not the
average bytes per second. The application can get the full format without user intervention by using the
acmFormatEnum function and specifying flags in the fdwEnum parameter.

 Finding a Specific Driver

You might want your application to send a message directly to a specific driver or to identify certain
drivers from the list. For example, you might want your application to identify those drivers which
support filters and then query each driver to determine which filter tags it supports. You can use the
acmDriverEnum function to obtain a handle of the desired driver or drivers; this handle can then be
used to communicate with that driver.

Note that when an application installs a local driver for its own use, the acmDriverAdd function returns
a driver handle, which can be used to communicate with the driver. It is not necessary to use
acmDriverEnum in this case.

 Adding Drivers Within an Application

If you need your application to implement its own compression routines internally, the application can
add drivers to the ACM by calling the acmDriverAdd function. The application implements the driver
by providing a function that conforms to the acmDriverProc prototype. Once the application has added
the driver, the application can use the driver through the ACM like any other driver.

The ACM treats drivers as either global or local. An application specifies whether a driver should be
added as global or local when it calls acmDriverAdd. There are two differences between global and
local drivers:

· For Win32 platforms, unlike the Microsoft Windows operating system versions 3.x, drivers added as
global drivers are not shared with other applications.

· An application can directly alter the priority of a global driver (but not a local driver) by calling the
acmDriverPriority function. The ACM conducts a prioritized search when seeking an appropriate
driver to satisfy a function call. The ACM always gives local drivers higher priority than global drivers.
The most recently added local driver has highest priority.

 Generating a Nonstandard Format

Sometimes an application needs a nonstandard format. For example, an application might need a 16-
kHz ADPCM-format file. Because 16 kHz is nonstandard, the enumeration functions will not generate
this format. In fact, short of custom coding the format algorithms into the application, there is no reliable
way to generate a nonstandard format. It is sometimes possible, however, to generate an analogous
format by setting up a valid PCM format with all the required information and then using the
acmFormatSuggest function. Because compressors and decompressors try to suggest a format that
is closest to the desired format, the number of channels and frequency are usually preserved.

 Audio Compression Manager Reference

This section describes the functions, messages, and structures associated with the ACM. These
elements are grouped as follows.

Drivers

acmDriverAdd
acmDriverClose
ACMDRIVERDETAILS
ACMDRIVERDETAILS
acmDriverEnum
acmDriverEnumCallback
acmDriverID
acmDriverMessage
acmDriverOpen
acmDriverPriority
acmDriverProc
acmDriverRemove
Filters

ACMFILTERCHOOSE
ACMFILTERCHOOSE
acmFilterChooseHookProc
ACMFILTERDETAILS
ACMFILTERDETAILS
acmFilterEnum
acmFilterEnumCallback
ACMFILTERTAGDETAILS
ACMFILTERTAGDETAILS
acmFilterTagEnum
acmFilterTagEnumCallback
WAVEFILTER
Formats

ACMFORMATCHOOSE
ACMFORMATCHOOSE
acmFormatChooseHookProc
ACMFORMATDETAILS
ACMFORMATDETAILS
acmFormatEnum
acmFormatEnumCallback
acmFormatSuggest
ACMFORMATTAGDETAILS
ACMFORMATTAGDETAILS
acmFormatTagEnum
acmFormatTagEnumCallback
Messages

MM_ACM_FILTERCHOOSE
MM_ACM_FORMATCHOOSE
Miscellaneous

acmGetVersion
acmMetrics
Streams

acmStreamClose
acmStreamConvert
acmStreamConvertCallback
ACMSTREAMHEADER
acmStreamMessage
acmStreamOpen
acmStreamPrepareHeader
acmStreamReset
acmStreamSize
acmStreamUnprepareHeader

 acmDriverAdd

MMRESULT acmDriverAdd(LPHACMDRIVERID phadid, HINSTANCE hinstModule,
 LPARAM lParam, DWORD dwPriority, DWORD fdwAdd);

Adds a driver to the list of available ACM drivers. The driver type and location are dependent on the
flags used to add ACM drivers. After a driver is successfully added, the driver entry function will receive
ACM driver messages.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NOMEM The system is unable to allocate

resources.

phadid
Address that is filled with a handle identifying the installed driver. This handle is used to identify the
driver in calls to other ACM functions.

hinstModule
Handle of the instance of the module whose executable or dynamic-link library (DLL) contains the
driver entry function.

lParam
Driver function address or a notification window handle, depending on the fdwAdd flags.

dwPriority
Window message to send for notification broadcasts. This parameter is used only with the
ACM_DRIVERADDF_NOTIFYHWND flag. All other flags require this member to be set to zero.

fdwAdd
Flags for adding ACM drivers. The following values are defined:
ACM_DRIVERADDF_FUNCTION

The lParam parameter is a driver function address conforming to the acmDriverProc prototype.
The function may reside in either an executable or DLL file.

ACM_DRIVERADDF_GLOBAL
Provided for compatibility with 16-bit applications. For the Win32 API, ACM drivers added by the
acmDriverAdd function can be used only by the application that added the driver. This is true
whether or not ACM_DRIVERADDF_GLOBAL is specified. For more information, see "Adding
Drivers Within an Application" earlier in this chapter.

ACM_DRIVERADDF_LOCAL
The ACM automatically gives a local driver higher priority than a global driver when searching for
a driver to satisfy a function call. For more information, see "Adding Drivers Within an Application"
earlier in this chapter.

ACM_DRIVERADDF_NOTIFYHWND
The lParam parameter is a handle of a notification window that receives messages when changes
to global driver priorities and states are made. The window message to receive is defined by the
application and must be passed in dwPriority. The wParam and lParam parameters passed with
the window message are reserved for future use and should be ignored.
ACM_DRIVERADDF_GLOBAL cannot be specified in conjunction with this flag. For more
information about driver priorities, see the description for the acmDriverPriority function.

 acmDriverClose

MMRESULT acmDriverClose(HACMDRIVER had, DWORD fdwClose);

Closes a previously opened ACM driver instance. If the function is successful, the handle is invalidated.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_BUSY The driver is in use and cannot be

closed.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

had
Handle of the open driver instance to be closed.

fdwClose
Reserved; must be zero.

 acmDriverDetails

MMRESULT acmDriverDetails(HACMDRIVERID hadid, LPACMDRIVERDETAILS padd,
 DWORD fdwDetails);

Queries a specified ACM driver to determine its capabilities.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

hadid
Handle of the driver identifier of an installed ACM driver. Disabled drivers can be queried for details.

padd
Address of an ACMDRIVERDETAILS structure that will receive the driver details. The cbStruct
member must be initialized to the size, in bytes, of the structure.

fdwDetails
Reserved; must be zero.

 acmDriverEnum

MMRESULT acmDriverEnum(ACMDRIVERENUMCB fnCallback, DWORD dwInstance,
 DWORD fdwEnum);

Enumerates the available ACM drivers, continuing until there are no more drivers or the callback
function returns FALSE.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

fnCallback
Procedure instance address of the application-defined callback function.

dwInstance
A 32-bit application-defined value that is passed to the callback function along with ACM driver
information.

fdwEnum
Flags for enumerating ACM drivers. The following values are defined:
ACM_DRIVERENUMF_DISABLED

Disabled ACM drivers should be included in the enumeration. Drivers can be disabled by the user
through the Control Panel or by an application using the acmDriverPriority function. If a driver is
disabled, the fdwSupport parameter to the callback function will have the
ACMDRIVERDETAILS_SUPPORTF_DISABLED flag set.

ACM_DRIVERENUMF_NOLOCAL
Only global drivers should be included in the enumeration.

The acmDriverEnum function will return MMSYSERR_NOERROR (zero) if no ACM drivers are
installed. Moreover, the callback function will not be called.

 acmDriverEnumCallback

BOOL ACMDRIVERENUMCB acmDriverEnumCallback(HACMDRIVERID hadid,
 DWORD dwInstance, DWORD fdwSupport);

Specifies a callback function used with the acmDriverEnum function. The acmDriverEnumCallback
name is a placeholder for an application-defined function name.

· The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.
hadid

Handle of an ACM driver identifier.
dwInstance

Application-defined value specified in acmDriverEnum.
fdwSupport

Driver-support flags specific to the driver specified by hadid. These flags are identical to the
fdwSupport flags of the ACMDRIVERDETAILS structure. This parameter can be a combination of
the following values:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags. For example, if a driver supports
compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the same format tag. For example, if
a driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_DISABLED
Driver has been disabled. An application must specify the ACM_DRIVERENUMF_DISABLED flag
with acmDriverEnum to include disabled drivers in the enumeration.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is
set.

The acmDriverEnum function will return MMSYSERR_NOERROR (zero) if no ACM drivers are
installed. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

 acmDriverID

MMRESULT acmDriverID(HACMOBJ hao, LPHACMDRIVERID phadid,
 DWORD fdwDriverID);

Returns the handle of an ACM driver identifier associated with an open ACM driver instance or stream
handle.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

hao
Handle of the open driver instance or stream handle. This is the handle of an ACM object, such
HACMDRIVER or HACMSTREAM.

phadid
Address that is filled with a handle identifying the installed driver that is associated with hao.

fdwDriverID
Reserved; must be zero.

 acmDriverMessage

LRESULT acmDriverMessage(HACMDRIVER had, UINT uMsg, LPARAM lParam1,
 LPARAM lParam2);

Sends a user-defined message to a given ACM driver instance.

· The return value is specific to the user-defined ACM driver message specified by the uMsg
parameter. However, possible error values include the following:
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM The uMsg parameter is not in the

ACMDM_USER range.
MMSYSERR_NOTSUPPORTED The ACM driver did not process the

message.

had
Handle of the ACM driver instance to which the message will be sent.

uMsg
Message that the ACM driver must process. This message must be in the ACMDM_USER message
range (above or equal to ACMDM_USER and less than ACMDM_RESERVED_LOW). The
exceptions to this restriction are the ACMDM_DRIVER_ABOUT, DRV_QUERYCONFIGURE, and
DRV_CONFIGURE messages.

lParam1 and lParam2
Message parameters.

To display a custom About dialog box from an ACM driver, an application must send the
ACMDM_DRIVER_ABOUT message to the driver. The lParam1 parameter should be the handle of the
owner window for the custom About dialog box, and lParam2 must be set to zero. If the driver does not
support a custom About dialog box, MMSYSERR_NOTSUPPORTED will be returned and it is the
application's responsibility to display its own dialog box. For example, the Control Panel Sound Mapper
option will display a default About dialog box based on the ACMDRIVERDETAILS structure when an
ACM driver returns MMSYSERR_NOTSUPPORTED. An application can query a driver for custom
About dialog box support without the dialog box being displayed by setting lParam1 to - 1L. If the driver
supports a custom About dialog box, MMSYSERR_NOERROR will be returned. Otherwise, the return
value is MMSYSERR_NOTSUPPORTED.

User-defined messages must be sent only to an ACM driver that specifically supports the messages.
The caller should verify that the ACM driver is the correct driver by retrieving the driver details and
checking the wMid, wPid, and vdwDriver members of the ACMDRIVERDETAILS structure.

Never send user-defined messages to an unknown ACM driver.

 acmDriverOpen

MMRESULT acmDriverOpen(LPHACMDRIVER phad, HACMDRIVERID hadid,
 DWORD fdwOpen);

Opens the specified ACM driver and returns a driver instance handle that can be used to communicate
with the driver.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NOMEM The system is unable to allocate

resources.
MMSYSERR_NOTENABLED The driver is not enabled.

phad
Address that will receive the new driver instance handle that can be used to communicate with the
driver.

hadid
Handle of the driver identifier of an installed and enabled ACM driver.

fdwOpen
Reserved; must be zero.

 acmDriverPriority

MMRESULT acmDriverPriority(HACMDRIVERID hadid, DWORD dwPriority,
 DWORD fdwPriority);

Modifies the priority and state of an ACM driver.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_ALLOCATED The deferred broadcast lock is

owned by a different task.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NOTSUPPORTED The requested operation is not

supported for the specified driver.
For example, local and notify driver
identifiers do not support priorities
(but can be enabled and disabled).
If an application specifies a nonzero
value for dwPriority for local and
notify driver identifiers, this error will
be returned.

hadid
Handle of the driver identifier of an installed ACM driver. If the ACM_DRIVERPRIORITYF_BEGIN
and ACM_DRIVERPRIORITYF_END flags are specified, this parameter must be NULL.

dwPriority
New priority for a global ACM driver identifier. A zero value specifies that the priority of the driver
identifier should remain unchanged. A value of 1 specifies that the driver should be placed as the
highest search priority driver. A value of - 1 specifies that the driver should be placed as the lowest
search priority driver. Priorities are used only for global drivers.

fdwPriority
Flags for setting priorities of ACM drivers. The following values are defined:
ACM_DRIVERPRIORITYF_BEGIN

Change notification broadcasts should be deferred. An application must reenable notification
broadcasts as soon as possible with the ACM_DRIVERPRIORITYF_END flag. Note that hadid
must be NULL, dwPriority must be zero, and only the ACM_DRIVERPRIORITYF_BEGIN flag can
be set.

ACM_DRIVERPRIORITYF_DISABLE
ACM driver should be disabled if it is currently enabled. Disabling a disabled driver does nothing.

ACM_DRIVERPRIORITYF_ENABLE
ACM driver should be enabled if it is currently disabled. Enabling an enabled driver does nothing.

ACM_DRIVERPRIORITYF_END
Calling task wants to reenable change notification broadcasts. An application must call
acmDriverPriority with ACM_DRIVERPRIORITYF_END for each successful call with the
ACM_DRIVERPRIORITYF_BEGIN flag. Note that hadid must be NULL, dwPriority must be zero,
and only the ACM_DRIVERPRIORITYF_END flag can be set.

All driver identifiers can be enabled and disabled, including global, local and notification driver
identifiers.

If more than one global driver identifier needs to be enabled, disabled or shifted in priority, an
application should defer change notification broadcasts by using the

ACM_DRIVERPRIORITYF_BEGIN flag. A single change notification will be broadcast when the
ACM_DRIVERPRIORITYF_END flag is specified.

An application can use the acmMetrics function with the ACM_METRIC_DRIVER_PRIORITY metric
index to retrieve the current priority of a global driver. Drivers are always enumerated from highest to
lowest priority by the acmDriverEnum function.

All enabled driver identifiers will receive change notifications. An application can register a notification
message by using the acmDriverAdd function in conjunction with the
ACM_DRIVERADDF_NOTIFYHWND flag. Changes to nonglobal driver identifiers will not be
broadcast.

Priorities are simply used for the search order when an application does not specify a driver. Boosting
the priority of a driver will have no effect on the performance of a driver.

 acmDriverProc

LRESULT CALLBACK acmDriverProc(DWORD dwID, HDRIVER hdrvr, UINT uMsg,
 LPARAM lParam1, LPARAM lParam2);

Specifies a callback function used with the ACM driver. The acmDriverProc name is a placeholder for
an application-defined function name. The actual name must be exported by including it in the module-
definition file of the executable or DLL file.

dwID
Identifier of the installable ACM driver.

hdrvr
Handle of the installable ACM driver. This parameter is a unique handle the ACM assigns to the
driver.

uMsg
ACM driver message.

lParam1 and lParam2
Message parameters.

Applications should not call any system-defined functions from inside a callback function, except for
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent,
midiOutShortMsg, midiOutLongMsg, and OutputDebugStr.

 acmDriverRemove

MMRESULT acmDriverRemove(HACMDRIVERID hadid, DWORD fdwRemove);

Removes an ACM driver from the list of available ACM drivers. The driver will be removed for the
calling application only. If the driver is globally installed, other applications will still be able to use it.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_BUSY The driver is in use and cannot be

removed.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

hadid
Handle of the driver identifier to be removed.

fdwRemove
Reserved; must be zero.

 acmFilterChoose

MMRESULT acmFilterChoose(LPACMFILTERCHOOSE pafltrc);

Creates an ACM-defined dialog box that enables the user to select a waveform-audio filter.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
ACMERR_CANCELED The user chose the Cancel button

or the Close command on the
System menu to close the dialog
box.

ACMERR_NOTPOSSIBLE The buffer identified by the pwfltr
member of the
ACMFILTERCHOOSE structure is
too small to contain the selected
filter.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NODRIVER A suitable driver is not available to

provide valid filter selections.

pafltrc
Address of an ACMFILTERCHOOSE structure that contains information used to initialize the dialog
box. When acmFilterChoose returns, this structure contains information about the user's filter
selection.
The pwfltr member of this structure must contain a valid pointer to a memory location that will
contain the returned filter header structure. The cbwfltr member must be filled in with the size, in
bytes, of this memory buffer.

 acmFilterChooseHookProc

UINT ACMFILTERCHOOSEHOOKPROC acmFilterChooseHookProc(HWND hwnd,
 UINT uMsg, WPARAM wParam, LPARAM lParam);

Specifies a user-defined function that hooks the acmFilterChoose dialog box.

hwnd
Window handle for the dialog box.

uMsg
Window message.

wParam and lParam
Message parameters.

To customize the dialog box selections, a hook function can optionally process the
MM_ACM_FILTERCHOOSE message.

You should use this function the same way as you use the Common Dialog hook functions for
customizing common dialog boxes.

 acmFilterDetails

MMRESULT acmFilterDetails(HACMDRIVER had, LPACMFILTERDETAILS pafd,
 DWORD fdwDetails);

Queries the ACM for details about a filter with a specific waveform-audio filter tag.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The details requested are not

available.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio filter details for a filter tag. If this parameter is
NULL, the ACM uses the details from the first suitable ACM driver.

pafd
Address of the ACMFILTERDETAILS structure that is to receive the filter details for the given filter
tag.

fdwDetails
Flags for getting the details. The following values are defined:
ACM_FILTERDETAILSF_FILTER

A WAVEFILTER structure pointed to by the pwfltr member of the ACMFILTERDETAILS structure
was given and the remaining details should be returned. The dwFilterTag member of the
ACMFILTERDETAILS structure must be initialized to the same filter tag pwfltr specifies. This
query type can be used to get a string description of an arbitrary filter structure. If an application
specifies an ACM driver handle for had, details on the filter will be returned for that driver. If an
application specifies NULL for had, the ACM finds the first acceptable driver to return the details.

ACM_FILTERDETAILSF_INDEX
A filter index for the filter tag was given in the dwFilterIndex member of the
ACMFILTERDETAILS structure. The filter details will be returned in the structure defined by pafd.
The index ranges from zero to one less than the cStandardFilters member returned in the
ACMFILTERTAGDETAILS structure for a filter tag. An application must specify a driver handle for
had when retrieving filter details with this flag. For information about what members should be
initialized before calling this function, see the ACMFILTERDETAILS structure.

 acmFilterEnum

MMRESULT acmFilterEnum(HACMDRIVER had, LPACMFILTERDETAILS pafd,
 ACMFILTERENUMCB fnCallback, DWORD dwInstance, DWORD fdwEnum);

Enumerates waveform-audio filters available for a given filter tag from an ACM driver. This function
continues enumerating until there are no more suitable filters for the filter tag or the callback function
returns FALSE.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The details for the filter cannot be

returned.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio filter details. If this parameter is NULL, the
ACM uses the details from the first suitable ACM driver.

pafd
Address of the ACMFILTERDETAILS structure that contains the filter details when it is passed to
the function specified by fnCallback. When your application calls acmFilterEnum, the cbStruct,
pwfltr, and cbwfltr members of this structure must be initialized. The dwFilterTag member must
also be initialized to either WAVE_FILTER_UNKNOWN or a valid filter tag.

fnCallback
Procedure-instance address of the application-defined callback function.

dwInstance
A 32-bit, application-defined value that is passed to the callback function along with ACM filter
details.

fdwEnum
Flags for enumerating the filters for a given filter tag. The following values are defined:
ACM_FILTERENUMF_DWFILTERTAG

The dwFilterTag member of the WAVEFILTER structure pointed to by the pwfltr member of the
ACMFILTERDETAILS structure is valid. The enumerator will enumerate only a filter that conforms
to this attribute. The dwFilterTag member of the ACMFILTERDETAILS structure must be equal
to the dwFilterTag member of the WAVEFILTER structure.

The acmFilterEnum function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are
installed. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, acmDriverPriority.

 acmFilterEnumCallback

BOOL ACMFILTERENUMCB acmFilterEnumCallback(HACMDRIVERID hadid,
 LPACMFILTERDETAILS pafd, DWORD dwInstance, DWORD fdwSupport);

Specifies a callback function used with the acmFilterEnum function. The acmFilterEnumCallback
name is a placeholder for an application-defined function name.

· The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.
hadid

Handle of the ACM driver identifier.
pafd

Address of an ACMFILTERDETAILS structure that contains the enumerated filter details for a filter
tag.

dwInstance
Application-defined value specified in acmFilterEnum.

fdwSupport
Driver-support flags specific to the driver identified by hadid for the specified filter. These flags are
identical to the fdwSupport flags of the ACMDRIVERDETAILS structure, but they are specific to the
filter that is being enumerated. This parameter can be a combination of the following values and
identifies which operations the driver supports for the filter tag:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter. For
example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the same format tag while using the
specified filter. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the
specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is
set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE
Driver supports hardware input, output, or both with the specified filter through a waveform-audio
device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indices to get the waveform-audio device identifiers associated with the supporting ACM
driver.

The acmFilterEnum function will return MMSYSERR_NOERROR (zero) if no filters are to be
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, acmDriverPriority.

 acmFilterTagDetails

MMRESULT acmFilterTagDetails(HACMDRIVER had,
 LPACMFILTERTAGDETAILS paftd, DWORD fdwDetails);

Queries the ACM for details about a specific waveform-audio filter tag.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The details requested are not

available.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio filter tag details. If this parameter is NULL,
the ACM uses the details from the first suitable ACM driver. An application must specify a valid
HACMDRIVER or HACMDRIVERID identifier when using the ACM_FILTERTAGDETAILSF_INDEX
query type. Driver identifiers for disabled drivers are not allowed.

paftd
Address of the ACMFILTERTAGDETAILS structure that is to receive the filter tag details.

fdwDetails
Flags for getting the details. The following values are defined:
ACM_FILTERTAGDETAILSF_FILTERTAG

A filter tag was given in the dwFilterTag member of the ACMFILTERTAGDETAILS structure. The
filter tag details will be returned in the structure pointed to by paftd. If an application specifies an
ACM driver handle for had, details on the filter tag will be returned for that driver. If an application
specifies NULL for had, the ACM finds the first acceptable driver to return the details.

ACM_FILTERTAGDETAILSF_INDEX
A filter tag index was given in the dwFilterTagIndex member of the ACMFILTERTAGDETAILS
structure. The filter tag and details will be returned in the structure pointed to by paftd. The index
ranges from zero to one less than the cFilterTags member returned in the
ACMDRIVERDETAILS structure for an ACM driver. An application must specify a driver handle
for had when retrieving filter tag details with this flag.

ACM_FILTERTAGDETAILSF_LARGESTSIZE
Details on the filter tag with the largest filter size, in bytes, are to be returned. The dwFilterTag
member must either be WAVE_FILTER_UNKNOWN or the filter tag to find the largest size for. If
an application specifies an ACM driver handle for had, details on the largest filter tag will be
returned for that driver. If an application specifies NULL for had, the ACM finds an acceptable
driver with the largest filter tag requested to return the details.

 acmFilterTagEnum

MMRESULT acmFilterTagEnum(HACMDRIVER had, LPACMFILTERTAGDETAILS paftd,
 ACMFILTERTAGENUMCB fnCallback, DWORD dwInstance, DWORD fdwEnum);

Enumerates waveform-audio filter tags available from an ACM driver. This function continues
enumerating until there are no more suitable filter tags or the callback function returns FALSE.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio filter tag details. If this parameter is NULL,
the ACM uses the details from the first suitable ACM driver.

paftd
Address of the ACMFILTERTAGDETAILS structure that contains the filter tag details when it is
passed to the fnCallback function. When your application calls acmFilterTagEnum, the cbStruct
member of this structure must be initialized.

fnCallback
Procedure instance address of the application-defined callback function.

dwInstance
A 32-bit application-defined value that is passed to the callback function along with ACM filter tag
details.

fdwEnum
Reserved; must be zero.

This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed.
Moreover, the callback function will not be called.

 acmFilterTagEnumCallback

BOOL ACMFILTERTAGENUMCB acmFilterTagEnumCallback(HACMDRIVERID hadid,
 LPACMFILTERTAGDETAILS paftd, DWORD dwInstance, DWORD fdwSupport);

Specifies a callback function used with the acmFilterTagEnum function. The
acmFilterTagEnumCallback function name is a placeholder for an application-defined function name.

· The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.
hadid

Handle of the ACM driver identifier.
paftd

Address of an ACMFILTERTAGDETAILS structure that contains the enumerated filter tag details.
dwInstance

Application-defined value specified in acmFilterTagEnum.
fdwSupport

Driver-support flags specific to the driver identifier hadid. These flags are identical to the
fdwSupport flags of the ACMDRIVERDETAILS structure. This parameter can be a combination of
the following values and identifies which operations the driver supports with the filter tag:
ACMSDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter tag.
For example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the same format tag while using the
specified filter tag. For example, if a driver supports resampling of WAVE_FORMAT_PCM with
the specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is
set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE
Driver supports hardware input, output, or both with the specified filter tag through a waveform-
audio device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indices to get the waveform-audio device identifiers associated with the supporting ACM
driver.

The acmFilterTagEnum function will return MMSYSERR_NOERROR (zero) if no filter tags are to be
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

 acmFormatChoose

MMRESULT acmFormatChoose(LPACMFORMATCHOOSE pfmtc);

Creates an ACM-defined dialog box that enables the user to select a waveform-audio format.

· Returns MMSYSERR_NOERROR if the function was successful or an error otherwise. Possible
error values include the following:
ACMERR_CANCELED The user chose the Cancel button

or the Close command on the
System menu to close the dialog
box.

ACMERR_NOTPOSSIBLE The buffer identified by the pwfx
member of the
ACMFORMATCHOOSE structure is
too small to contain the selected
format.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NODRIVER A suitable driver is not available to

provide valid format selections.

pfmtc
Address of an ACMFORMATCHOOSE structure that contains information used to initialize the
dialog box. When this function returns, this structure contains information about the user's format
selection.
The pwfx member of this structure must contain a valid pointer to a memory location that will
contain the returned format header structure. Moreover, the cbwfx member must be filled in with the
size, in bytes, of this memory buffer.

 acmFormatChooseHookProc

UINT ACMFORMATCHOOSEHOOKPROC acmFormatChooseHookProc(HWND hwnd,
 UINT uMsg, WPARAM wParam, LPARAM lParam);

Specifies a user-defined function that hooks the acmFormatChoose dialog box. The
acmFormatChooseHookProc name is a placeholder for an application-defined name.

hwnd
Window handle for the dialog box.

uMsg
Window message.

wParam and lParam
Message parameters.

If the hook function processes one of the WM_CTLCOLOR messages, this function must return a
handle of the brush that should be used to paint the control background.

A hook function can optionally process the MM_ACM_FORMATCHOOSE message.

You should use this function the same way as you use the Common Dialog hook functions for
customizing common dialog boxes.

 acmFormatDetails

MMRESULT acmFormatDetails(HACMDRIVER had, LPACMFORMATDETAILS pafd,
 DWORD fdwDetails);

Queries the ACM for format details for a specific waveform-audio format tag.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The details requested are not

available.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio format details for a format tag. If this
parameter is NULL, the ACM uses the details from the first suitable ACM driver.

pafd
Address of an ACMFORMATDETAILS structure to contain the format details for the given format
tag.

fdwDetails
Flags for getting the waveform-audio format tag details. The following values are defined:
ACM_FORMATDETAILSF_FORMAT

A WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS
structure was given and the remaining details should be returned. The dwFormatTag member of
the ACMFORMATDETAILS structure must be initialized to the same format tag as pwfx
specifies. This query type can be used to get a string description of an arbitrary format structure.
If an application specifies an ACM driver handle for had, details on the format will be returned for
that driver. If an application specifies NULL for had, the ACM finds the first acceptable driver to
return the details.

ACM_FORMATDETAILSF_INDEX
A format index for the format tag was given in the dwFormatIndex member of the
ACMFORMATDETAILS structure. The format details will be returned in the structure defined by
pafd. The index ranges from zero to one less than the cStandardFormats member returned in
the ACMFORMATTAGDETAILS structure for a format tag. An application must specify a driver
handle for had when retrieving format details with this flag. For information about which members
should be initialized before calling this function, see the ACMFORMATDETAILS structure.

 acmFormatEnum

MMRESULT acmFormatEnum(HACMDRIVER had, LPACMFORMATDETAILS pafd,
 ACMFORMATENUMCB fnCallback, DWORD dwInstance, DWORD fdwEnum);

Enumerates waveform-audio formats available for a given format tag from an ACM driver. This function
continues enumerating until there are no more suitable formats for the format tag or the callback
function returns FALSE.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The details for the format cannot be

returned.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio format details. If this parameter is NULL, the
ACM uses the details from the first suitable ACM driver.

pafd
Address of an ACMFORMATDETAILS structure to contain the format details passed to the
fnCallback function. This structure must have the cbStruct, pwfx, and cbwfx members of the
ACMFORMATDETAILS structure initialized. The dwFormatTag member must also be initialized to
either WAVE_FORMAT_UNKNOWN or a valid format tag.

fnCallback
Procedure instance address of the application-defined callback function.

dwInstance
A 32-bit application-defined value that is passed to the callback function along with ACM format
details.

fdwEnum
Flags for enumerating the formats for a given format tag. The following values are defined:
ACM_FORMATENUMF_CONVERT

The WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS
structure is valid. The enumerator will only enumerate destination formats that can be converted
from the given pwfx format.

ACM_FORMATENUMF_HARDWARE
The enumerator should only enumerate formats that are supported as native input or output
formats on one or more of the installed waveform-audio devices. This flag provides a way for an
application to choose only formats native to an installed waveform-audio device. This flag must be
used with one or both of the ACM_FORMATENUMF_INPUT and
ACM_FORMATENUMF_OUTPUT flags. Specifying both ACM_FORMATENUMF_INPUT and
ACM_FORMATENUMF_OUTPUT will enumerate only formats that can be opened for input or
output. This is true regardless of whether this flag is specified.

ACM_FORMATENUMF_INPUT
Enumerator should enumerate only formats that are supported for input (recording).

ACM_FORMATENUMF_NCHANNELS
The nChannels member of the WAVEFORMATEX structure pointed to by the pwfx member of
the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that
conforms to this attribute.

ACM_FORMATENUMF_NSAMPLESPERSEC
The nSamplesPerSec member of the WAVEFORMATEX structure pointed to by the pwfx
member of the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a

format that conforms to this attribute.
ACM_FORMATENUMF_OUTPUT

Enumerator should enumerate only formats that are supported for output (playback).
ACM_FORMATENUMF_SUGGEST

The WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS
structure is valid. The enumerator will enumerate all suggested destination formats for the given
pwfx format. This mechanism can be used instead of the acmFormatSuggest function to allow
an application to choose the best suggested format for conversion. The dwFormatIndex member
will always be set to zero on return.

ACM_FORMATENUMF_WBITSPERSAMPLE
The wBitsPerSample member of the WAVEFORMATEX structure pointed to by the pwfx
member of the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a
format that conforms to this attribute.

ACM_FORMATENUMF_WFORMATTAG
The wFormatTag member of the WAVEFORMATEX structure pointed to by the pwfx member of
the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that
conforms to this attribute. The dwFormatTag member of the ACMFORMATDETAILS structure
must be equal to the wFormatTag member.

This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed.
Moreover, the callback function will not be called.

 acmFormatEnumCallback

BOOL ACMFORMATENUMCB acmFormatEnumCallback(HACMDRIVERID hadid,
 LPACMFORMATDETAILS pafd, DWORD dwInstance, DWORD fdwSupport);

Specifies a callback function used with the acmFormatEnum function. The
acmFormatEnumCallback name is a placeholder for the application-defined function name.

· The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.
hadid

Handle of the ACM driver identifier.
pafd

Address of an ACMFORMATDETAILS structure that contains the enumerated format details for a
format tag.

dwInstance
Application-defined value specified in the acmFormatEnum function.

fdwSupport
Driver support flags specific to the driver identified by hadid for the specified format. These flags are
identical to the fdwSupport flags of the ACMDRIVERDETAILS structure, but they are specific to the
format that is being enumerated. This parameter can be a combination of the following values and
indicates which operations the driver supports for the format tag:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags for the specified format. For
example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the same format tag while using the
specified format. For example, if a driver supports resampling of WAVE_FORMAT_PCM to the
specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes) with
the specified format. For example, if a driver supports volume or echo operations on
WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE
Driver supports hardware input, output, or both of the specified format tags through a waveform-
audio device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM
driver.

The acmFormatEnum function will return MMSYSERR_NOERROR (zero) if no formats are to be
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

 acmFormatSuggest

MMRESULT acmFormatSuggest(HACMDRIVER had, LPWAVEFORMATEX pwfxSrc,
 LPWAVEFORMATEX pwfxDst, DWORD cbwfxDst, DWORD fdwSuggest);

Queries the ACM or a specified ACM driver to suggest a destination format for the supplied source
format. For example, an application can use this function to determine one or more valid PCM formats
to which a compressed format can be decompressed.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of an open instance of a driver to query for a suggested destination format. If this parameter
is NULL, the ACM attempts to find the best driver to suggest a destination format.

pwfxSrc
Address of a WAVEFORMATEX structure that identifies the source format for which a destination
format will be suggested by the ACM or specified driver.

pwfxDst
Address of a WAVEFORMATEX structure that will receive the suggested destination format for the
pwfxSrc format. Depending on the fdwSuggest parameter, some members of the structure pointed
to by pwfxDst may require initialization.

cbwfxDst
Size, in bytes, available for the destination format. The acmMetrics and acmFormatTagDetails
functions can be used to determine the maximum size required for any format available for the
specified driver (or for all installed ACM drivers).

fdwSuggest
Flags for matching the desired destination format. The following values are defined:
ACM_FORMATSUGGESTF_NCHANNELS

The nChannels member of the structure pointed to by pwfxDst is valid. The ACM will query
acceptable installed drivers that can suggest a destination format matching nChannels or fail.

ACM_FORMATSUGGESTF_NSAMPLESPERSEC
The nSamplesPerSec member of the structure pointed to by pwfxDst is valid. The ACM will
query acceptable installed drivers that can suggest a destination format matching
nSamplesPerSec or fail.

ACM_FORMATSUGGESTF_WBITSPERSAMPLE
The wBitsPerSample member of the structure pointed to by pwfxDst is valid. The ACM will query
acceptable installed drivers that can suggest a destination format matching wBitsPerSample or
fail.

ACM_FORMATSUGGESTF_WFORMATTAG
The wFormatTag member of the structure pointed to by pwfxDst is valid. The ACM will query
acceptable installed drivers that can suggest a destination format matching wFormatTag or fail.

 acmFormatTagDetails

MMRESULT acmFormatTagDetails(HACMDRIVER had,
 LPACMFORMATTAGDETAILS paftd, DWORD fdwDetails);

Queries the ACM for details on a specific waveform-audio format tag.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The details requested are not

available.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio format tag details. If this parameter is NULL,
the ACM uses the details from the first suitable ACM driver. An application must specify a valid
handle or driver identifier when using the ACM_FORMATTAGDETAILSF_INDEX query type. Driver
identifiers for disabled drivers are not allowed.

paftd
Address of the ACMFORMATTAGDETAILS structure that is to receive the format tag details.

fdwDetails
Flags for getting the details. The following values are defined:
ACM_FORMATTAGDETAILSF_FORMATTAG

A format tag was given in the dwFormatTag member of the ACMFORMATTAGDETAILS
structure. The format tag details will be returned in the structure pointed to by paftd. If an
application specifies an ACM driver handle for had, details on the format tag will be returned for
that driver. If an application specifies NULL for had, the ACM finds the first acceptable driver to
return the details.

ACM_FORMATTAGDETAILSF_INDEX
A format tag index was given in the dwFormatTagIndex member of the
ACMFORMATTAGDETAILS structure. The format tag and details will be returned in the structure
defined by paftd. The index ranges from zero to one less than the cFormatTags member
returned in the ACMDRIVERDETAILS structure for an ACM driver. An application must specify a
driver handle for had when retrieving format tag details with this flag.

ACM_FORMATTAGDETAILSF_LARGESTSIZE
Details on the format tag with the largest format size, in bytes, are to be returned. The
dwFormatTag member of the ACMFORMATTAGDETAILS structure must either be
WAVE_FORMAT_UNKNOWN or the format tag to find the largest size for. If an application
specifies an ACM driver handle for had, details on the largest format tag will be returned for that
driver. If an application specifies NULL for had, the ACM finds an acceptable driver with the
largest format tag requested to return the details.

 acmFormatTagEnum

MMRESULT acmFormatTagEnum(HACMDRIVER had, LPACMFORMATTAGDETAILS paftd,
 ACMFORMATTAGENUMCB fnCallback, DWORD dwInstance, DWORD fdwEnum);

Enumerates waveform-audio format tags available from an ACM driver. This function continues
enumerating until there are no more suitable format tags or the callback function returns FALSE.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

had
Handle of the ACM driver to query for waveform-audio format tag details. If this parameter is NULL,
the ACM uses the details from the first suitable ACM driver.

paftd
Address of the ACMFORMATTAGDETAILS structure that is to receive the format tag details passed
to the function specified in fnCallback. This structure must have the cbStruct member of the
ACMFORMATTAGDETAILS structure initialized.

fnCallback
Procedure instance address of the application-defined callback function.

dwInstance
A 32-bit application-defined value that is passed to the callback function along with ACM format tag
details.

fdwEnum
Reserved; must be zero.

This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed.
Moreover, the callback function will not be called.

 acmFormatTagEnumCallback

BOOL ACMFORMATTAGENUMCB acmFormatTagEnumCallback(HACMDRIVERID hadid,
 LPACMFORMATTAGDETAILS paftd, DWORD dwInstance, DWORD fdwSupport);

Specifies a callback function used with the acmFormatTagEnum function. The
acmFormatTagEnumCallback name is a placeholder for an application-defined function name.

· The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.
hadid

Handle of the ACM driver identifier.
paftd

Address of an ACMFORMATTAGDETAILS structure that contains the enumerated format tag
details.

dwInstance
Application-defined value specified in the acmFormatTagEnum function.

fdwSupport
Driver-support flags specific to the format tag. These flags are identical to the fdwSupport flags of
the ACMDRIVERDETAILS structure. This parameter can be a combination of the following values
and indicates which operations the driver supports with the format tag:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags where one of the tags is the
specified format tag. For example, if a driver supports compression from WAVE_FORMAT_PCM
to WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the specified format tag. For
example, if a driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on the specified format tag, this flag is
set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE
Driver supports hardware input, output, or both of the specified format tag through a waveform-
audio device. An application should use acmMetrics with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM
driver.

The acmFormatTagEnum function will return MMSYSERR_NOERROR (zero) if no format tags are to
be enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

 acmGetVersion

DWORD acmGetVersion(VOID);

Returns the version number of the ACM.

· The version number is returned as a hexadecimal number of the form 0xAABBCCCC, where AA is
the major version number, BB is the minor version number, and CCCC is the build number.

Win32 applications must verify that the ACM version is at least 0x03320000 (version 3.50) or greater
before attempting to use any other ACM functions. The build number (CCCC) is always zero for the
retail (non-debug) version of the ACM.

To display the ACM version for a user, an application should use the following format (note that the
values should be printed as unsigned decimals):

{
 DWORD dw;
 TCHAR ach[10];

 dw = acmGetVersion();
 wsprintf(ach, "%u.%.02u", HIWORD(dw) >> 8, HIWORD(dw) & 0x00FF);
}

 acmMetrics

MMRESULT acmMetrics(HACMOBJ hao, UINT uMetric, LPVOID pMetric);

Returns various metrics for the ACM or related ACM objects.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The index specified in uMetric

cannot be returned for the specified
hao.

MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NOTSUPPORTED The index specified in uMetric is not

supported.

hao
Handle of the ACM object to query for the metric specified in uMetric. For some queries, this
parameter can be NULL.

uMetric
Metric index to be returned in pMetric.
ACM_METRIC_COUNT_CODECS

Returned value is the number of global ACM compressor or decompressor drivers in the system.
The hao parameter must be NULL for this metric index. The pMetric parameter must point to a
buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_CONVERTERS
Returned value is the number of global ACM converter drivers in the system. The hao parameter
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal
to a doubleword value.

ACM_METRIC_COUNT_DISABLED
Returned value is the total number of global disabled ACM drivers (of all support types) in the
system. The hao parameter must be NULL for this metric index. The pMetric parameter must
point to a buffer of a size equal to a doubleword value. The sum of the
ACM_METRIC_COUNT_DRIVERS and ACM_METRIC_COUNT_DISABLED metric indices is the
total number of globally installed ACM drivers.

ACM_METRIC_COUNT_DRIVERS
Returned value is the total number of enabled global ACM drivers (of all support types) in the
system. The hao parameter must be NULL for this metric index. The pMetric parameter must
point to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_FILTERS
Returned value is the number of global ACM filter drivers in the system. The hao parameter must
be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to a
doubleword value.

ACM_METRIC_COUNT_HARDWARE
Returned value is the number of global ACM hardware drivers in the system. The hao parameter
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal
to a doubleword value.

ACM_METRIC_COUNT_LOCAL_CODECS
Returned value is the number of local ACM compressor drivers, ACM decompressor drivers, or
both for the calling task. The hao parameter must be NULL for this metric index. The pMetric
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_CONVERTERS
Returned value is the number of local ACM converter drivers for the calling task. The hao

parameter must be NULL for this metric index. The pMetric parameter must point to a buffer of a
size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_DISABLED
Returned value is the total number of local disabled ACM drivers, of all support types, for the
calling task. The hao parameter must be NULL for this metric index. The pMetric parameter must
point to a buffer of a size equal to a doubleword value. The sum of the
ACM_METRIC_COUNT_LOCAL_DRIVERS and ACM_METRIC_COUNT_LOCAL_DISABLED
metric indices is the total number of locally installed ACM drivers.

ACM_METRIC_COUNT_LOCAL_DRIVERS
Returned value is the total number of enabled local ACM drivers (of all support types) for the
calling task. The hao parameter must be NULL for this metric index. The pMetric parameter must
point to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_FILTERS
Returned value is the number of local ACM filter drivers for the calling task. The hao parameter
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal
to a doubleword value.

ACM_METRIC_DRIVER_PRIORITY
Returned value is the current priority for the specified driver. The hao parameter must be a valid
ACM driver identifier of the HACMDRIVERID data type. The pMetric parameter must point to a
buffer of a size equal to a doubleword value.

ACM_METRIC_DRIVER_SUPPORT
Returned value is the fdwSupport flags for the specified driver. The hao parameter must be a
valid ACM driver identifier of the HACMDRIVERID data type. The pMetric parameter must point to
a buffer of a size equal to a doubleword value.

ACM_METRIC_HARDWARE_WAVE_INPUT
Returned value is the waveform-audio input device identifier associated with the specified driver.
The hao parameter must be a valid ACM driver identifier of the HACMDRIVERID data type that
supports the ACMDRIVERDETAILS_SUPPORTF_HARDWARE flag. If no waveform-audio input
device is associated with the driver, MMSYSERR_NOTSUPPORTED is returned. The pMetric
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_HARDWARE_WAVE_OUTPUT
Returned value is the waveform-audio output device identifier associated with the specified driver.
The hao parameter must be a valid ACM driver identifier of the HACMDRIVERID data type that
supports the ACMDRIVERDETAILS_SUPPORTF_HARDWARE flag. If no waveform-audio output
device is associated with the driver, MMSYSERR_NOTSUPPORTED is returned. The pMetric
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_MAX_SIZE_FILTER
Returned value is the size of the largest WAVEFILTER structure. If hao is NULL, the return value
is the largest WAVEFILTER structure in the system. If hao identifies an open instance of an ACM
driver of the HACMDRIVER data type or an ACM driver identifier of the HACMDRIVERID data
type, the largest WAVEFILTER structure for that driver is returned. The pMetric parameter must
point to a buffer of a size equal to a doubleword value. This metric is not allowed for an ACM
stream handle of the HACMSTREAM data type.

ACM_METRIC_MAX_SIZE_FORMAT
Returned value is the size of the largest WAVEFORMATEX structure. If hao is NULL, the return
value is the largest WAVEFORMATEX structure in the system. If hao identifies an open instance
of an ACM driver of the HACMDRIVER data type or an ACM driver identifier of the
HACMDRIVERID data type, the largest WAVEFORMATEX structure for that driver is returned.
The pMetric parameter must point to a buffer of a size equal to a doubleword value. This metric is
not allowed for an ACM stream handle of the HACMSTREAM data type.

pMetric
Address of the buffer to receive the metric details. The exact definition depends on the uMetric

index.

 acmStreamClose

MMRESULT acmStreamClose(HACMSTREAM has, DWORD fdwClose);

Closes an ACM conversion stream. If the function is successful, the handle is invalidated.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_BUSY The conversion stream cannot be

closed because an asynchronous
conversion is still in progress.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

has
Handle of the open conversion stream to be closed.

fdwClose
Reserved; must be zero.

 acmStreamConvert

MMRESULT acmStreamConvert(HACMSTREAM has, LPACMSTREAMHEADER pash,
 DWORD fdwConvert);

Requests the ACM to perform a conversion on the specified conversion stream. A conversion may be
synchronous or asynchronous, depending on how the stream was opened.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_BUSY The stream header specified in

pash is currently in use and cannot
be reused.

ACMERR_UNPREPARED The stream header specified in
pash is currently not prepared by
the acmStreamPrepareHeader
function.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

has
Handle of the open conversion stream.

pash
Address of a stream header that describes source and destination buffers for a conversion. This
header must have been prepared previously by using the acmStreamPrepareHeader function.

fdwConvert
Flags for doing the conversion. The following values are defined:
ACM_STREAMCONVERTF_BLOCKALIGN

Only integral numbers of blocks will be converted. Converted data will end on block-aligned
boundaries. An application should use this flag for all conversions on a stream until there is not
enough source data to convert to a block-aligned destination. In this case, the last conversion
should be specified without this flag.

ACM_STREAMCONVERTF_END
ACM conversion stream should begin returning pending instance data. For example, if a
conversion stream holds instance data, such as the end of an echo filter operation, this flag will
cause the stream to start returning this remaining data with optional source data. This flag can be
specified with the ACM_STREAMCONVERTF_START flag.

ACM_STREAMCONVERTF_START
ACM conversion stream should reinitialize its instance data. For example, if a conversion stream
holds instance data, such as delta or predictor information, this flag will restore the stream to
starting defaults. This flag can be specified with the ACM_STREAMCONVERTF_END flag.

You must use the acmStreamPrepareHeader function to prepare the source and destination buffers
before they are passed to acmStreamConvert.

If an asynchronous conversion request is successfully queued by the ACM or driver and the conversion
is later determined to be impossible, the ACMSTREAMHEADER structure is posted back to the
application's callback function with the cbDstLengthUsed member set to zero.

 acmStreamConvertCallback

void CALLBACK acmStreamConvertCallback(HACMSTREAM has, UINT uMsg,
 DWORD dwInstance, LPARAM lParam1, LPARAM lParam2);

Specifies an application-provided callback function to be used when the acmStreamOpen function
specifies the CALLBACK_FUNCTION flag. The acmStreamConvertCallback name is a placeholder
for an application-defined function name.

has
Handle of the ACM conversion stream associated with the callback function.

uMsg
ACM conversion stream message. The following values are defined:
MM_ACM_CLOSE

ACM has successfully closed the conversion stream identified by has. The handle specified by
has is no longer valid after receiving this message.

MM_ACM_DONE
ACM has successfully converted the buffer identified by lParam1 (which is a pointer to the
ACMSTREAMHEADER structure) for the stream handle identified by has.

MM_ACM_OPEN
ACM has successfully opened the conversion stream identified by has.

dwInstance
User-instance data given as the dwInstance parameter of the acmStreamOpen function.

lParam1 and lParam2
Message parameters.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

 acmStreamMessage

MMRESULT ACMAPI acmStreamMessage(HACMSTREAM has, UINT uMsg,
 LPARAM lParam1, LPARAM lParam2);

Sends a driver-specific message to an ACM driver.

· Returns the value returned by the ACM device driver.
has

Handle of an open conversion stream.
uMsg

Message to send.
lParam1 and lParam2

Message parameters.

 acmStreamOpen

MMRESULT acmStreamOpen(LPHACMSTREAM phas, HACMDRIVER had,
 LPWAVEFORMATEX pwfxSrc, LPWAVEFORMATEX pwfxDst, LPWAVEFILTER pwfltr,
 DWORD dwCallback, DWORD dwInstance, DWORD fdwOpen);

Opens an ACM conversion stream. Conversion streams are used to convert data from one specified
audio format to another.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The requested operation cannot be

performed.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NOMEM The system is unable to allocate

resources.

phas
Address of a handle that will receive the new stream handle that can be used to perform
conversions. This handle is used to identify the stream in calls to other ACM stream conversion
functions. If the ACM_STREAMOPENF_QUERY flag is specified, this parameter should be NULL.

had
Handle of an ACM driver. If this handle is specified, it identifies a specific driver to be used for a
conversion stream. If this parameter is NULL, all suitable installed ACM drivers are queried until a
match is found.

pwfxSrc
Address of a WAVEFORMATEX structure that identifies the desired source format for the
conversion.

pwfxDst
Address of a WAVEFORMATEX structure that identifies the desired destination format for the
conversion.

pwfltr
Address of a WAVEFILTER structure that identifies the desired filtering operation to perform on the
conversion stream. If no filtering operation is desired, this parameter can be NULL. If a filter is
specified, the source (pwfxSrc) and destination (pwfxDst) formats must be the same.

dwCallback
Address of a callback function, a handle of a window, or a handle of an event. A callback function will
be called only if the conversion stream is opened with the ACM_STREAMOPENF_ASYNC flag. A
callback function is notified when the conversion stream is opened or closed and after each buffer is
converted. If the conversion stream is opened without the ACM_STREAMOPENF_ASYNC flag, this
parameter should be set to zero.

dwInstance
User-instance data passed to the callback function specified by the dwCallback parameter. This
parameter is not used with window and event callbacks. If the conversion stream is opened without
the ACM_STREAMOPENF_ASYNC flag, this parameter should be set to zero.

fdwOpen
Flags for opening the conversion stream. The following values are defined:
ACM_STREAMOPENF_ASYNC

Stream conversion should be performed asynchronously. If this flag is specified, the application
can use a callback function to be notified when the conversion stream is opened and closed and
after each buffer is converted. In addition to using a callback function, an application can examine

the fdwStatus member of the ACMSTREAMHEADER structure for the
ACMSTREAMHEADER_STATUSF_DONE flag.

ACM_STREAMOPENF_NONREALTIME
ACM will not consider time constraints when converting the data. By default, the driver will
attempt to convert the data in real time. For some formats, specifying this flag might improve the
audio quality or other characteristics.

ACM_STREAMOPENF_QUERY
ACM will be queried to determine whether it supports the given conversion. A conversion stream
will not be opened, and no handle will be returned in the phas parameter.

CALLBACK_EVENT
The dwCallback parameter is a handle of an event.

CALLBACK_FUNCTION
The dwCallback parameter is a callback procedure address. The function prototype must conform
to the acmStreamConvertCallback prototype.

CALLBACK_WINDOW
The dwCallback parameter is a window handle.

If an ACM driver cannot perform real-time conversions and the
ACM_STREAMOPENF_NONREALTIME flag is not specified for the fdwOpen parameter, the open
operation will fail returning an ACMERR_NOTPOSSIBLE error code. An application can use the
ACM_STREAMOPENF_QUERY flag to determine if real-time conversions are supported for input.

If an application uses a window to receive callback information, the MM_ACM_OPEN,
MM_ACM_CLOSE, and MM_ACM_DONE messages are sent to the window procedure function to
indicate the progress of the conversion stream. In this case, the wParam parameter identifies the
HACMSTREAM handle. The lParam parameter identifies the ACMSTREAMHEADER structure for
MM_ACM_DONE, but it is not used for MM_ACM_OPEN and MM_ACM_CLOSE.

If an application uses a function to receive callback information, the MM_ACM_OPEN,
MM_ACM_CLOSE, and MM_ACM_DONE messages are sent to the function to indicate the progress
of waveform-audio output. The callback function must reside in a dynamic-link library (DLL).

If an application uses an event for callback notification, the event is signaled to indicate the progress of
the conversion stream. The event will be signaled when a stream is opened, after each buffer is
converted, and when the stream is closed.

 acmStreamPrepareHeader

MMRESULT acmStreamPrepareHeader(HACMSTREAM has, LPACMSTREAMHEADER pash,
 DWORD fdwPrepare);

Prepares an ACMSTREAMHEADER structure for an ACM stream conversion. This function must be
called for every stream header before it can be used in a conversion stream. An application needs to
prepare a stream header only once for the life of a given stream. The stream header can be reused as
long as the sizes of the source and destination buffers do not exceed the sizes used when the stream
header was originally prepared.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.
MMSYSERR_NOMEM The system is unable to allocate

resources.

has
Handle of the conversion steam.

pash
Address of an ACMSTREAMHEADER structure that identifies the source and destination buffers to
be prepared.

fdwPrepare
Reserved; must be zero.

Preparing a stream header that has already been prepared has no effect, and the function returns zero.
Nevertheless, you should ensure your application does not prepare a stream header multiple times.

 acmStreamReset

MMRESULT acmStreamReset(HACMSTREAM has, DWORD fdwReset);

Stops conversions for a given ACM stream. All pending buffers are marked as done and returned to the
application.

· Returns zero if successful or an error otherwise. Possible error values include the following:
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

has
Handle of the conversion stream.

fdwReset
Reserved; must be zero.

Resetting an ACM conversion stream is necessary only for asynchronous conversion streams.
Resetting a synchronous conversion stream will succeed, but no action will be taken.

 acmStreamSize

MMRESULT acmStreamSize(HACMSTREAM has, DWORD cbInput,
 LPDWORD pdwOutputBytes, DWORD fdwSize);

Returns a recommended size for a source or destination buffer on an ACM stream.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_NOTPOSSIBLE The requested operation cannot be

performed.
MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

has
Handle of the conversion stream.

cbInput
Size, in bytes, of the source or destination buffer. The fdwSize flags specify what the input
parameter defines. This parameter must be nonzero.

pdwOutputBytes
Address of a variable that contains the size, in bytes, of the source or destination buffer. The
fdwSize flags specify what the output parameter defines. If the acmStreamSize function succeeds,
this location will always be filled with a nonzero value.

fdwSize
Flags for the stream size query. The following values are defined:
ACM_STREAMSIZEF_DESTINATION

The cbInput parameter contains the size of the destination buffer. The pdwOutputBytes parameter
will receive the recommended source buffer size, in bytes.

ACM_STREAMSIZEF_SOURCE
The cbInput parameter contains the size of the source buffer. The pdwOutputBytes parameter will
receive the recommended destination buffer size, in bytes.

An application can use this function to determine suggested buffer sizes for either source or destination
buffers. The buffer sizes returned might be only an estimation of the actual sizes required for
conversion. Because actual conversion sizes cannot always be determined without performing the
conversion, the sizes returned will usually be overestimated.

In the event of an error, the location pointed to by pdwOutputBytes will receive zero. This assumes that
the pointer specified by pdwOutputBytes is valid.

 acmStreamUnprepareHeader

MMRESULT acmStreamUnprepareHeader(HACMSTREAM has,
 LPACMSTREAMHEADER pash, DWORD fdwUnprepare);

Cleans up the preparation performed by the acmStreamPrepareHeader function for an ACM stream.
This function must be called after the ACM is finished with the given buffers. An application must call
this function before freeing the source and destination buffers.

· Returns zero if successful or an error otherwise. Possible error values include the following:
ACMERR_BUSY The stream header specified in

pash is currently in use and cannot
be unprepared.

ACMERR_UNPREPARED The stream header specified in
pash is currently not prepared by
the acmStreamPrepareHeader
function.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

has
Handle of the conversion steam.

pash
Address of an ACMSTREAMHEADER structure that identifies the source and destination buffers to
be unprepared.

fdwUnprepare
Reserved; must be zero.

Unpreparing a stream header that has already been unprepared is an error. An application must
specify the source and destination buffer lengths (cbSrcLength and cbDstLength, respectively) that
were used during a call to the corresponding acmStreamPrepareHeader. Failing to reset these
member values will cause acmStreamUnprepareHeader to fail with an MMSYSERR_INVALPARAM
error.

The ACM can recover from some errors. The ACM will return a nonzero error, yet the stream header
will be properly unprepared. To determine whether the stream header was actually unprepared, an
application can examine the ACMSTREAMHEADER_STATUSF_PREPARED flag. If
acmStreamUnprepareHeader returns success, the header will always be unprepared.

 MM_ACM_FILTERCHOOSE

MM_ACM_FILTERCHOOSE
wParam = (WPARAM) wDropDown
lParam = (LONG) lCustom

Notifies an acmFilterChoose dialog box hook function before adding an element to one of the three
drop-down list boxes. This message allows an application to further customize the selections available
through the user interface.

· Returns TRUE if an application handles this message or FALSE otherwise.
wDropDown

Drop-down list box being initialized and a verify or add operation.
FILTERCHOOSE_CUSTOM_VERIFY

The lParam parameter is a pointer to a WAVEFILTER structure to be added to the custom Name
drop-down list box.

FILTERCHOOSE_FILTER_ADD
The lParam parameter is a pointer to a buffer that will accept a WAVEFILTER structure to be
added to the Filter drop-down list box. The application must copy the filter structure to be added
into this buffer.

FILTERCHOOSE_FILTER_VERIFY
The lParam parameter is a pointer to a WAVEFILTER structure to be added to the Filter drop-
down list box.

FILTERCHOOSE_FILTERTAG_ADD
The lParam parameter is a pointer to a DWORD that will accept a waveform-audio filter tag to be
added to the Filter Tag drop-down list box.

FILTERCHOOSE_FILTERTAG_VERIFY
The lParam parameter is a waveform-audio filter tag to be listed in the Filter Tag drop-down list
box.

lCustom
Value defined by the listbox specified in the wParam parameter.

If the application processes the FILTERCHOOSE_FILTER_ADD operation, the size of the memory
buffer supplied in lParam will be determined from the acmMetrics function.

If the application processes a verify operation, the application must precede the return value with
SetWindowLong(hwnd, DWL_MSGRESULT, (LONG) FALSE) to prevent the dialog box from listing
this selection or with SetWindowLong(hwnd, DWL_MSGRESULT, (LONG)TRUE) to allow the dialog
box to list this selection. If processing an add operation, the application must precede the return with
SetWindowLong(hwnd, DWL_MSGRESULT, (LONG)FALSE) to indicate that no more additions are
required or with SetWindowLong(hwnd, DWL_MSGRESULT, (LONG)TRUE) if more additions are
required.

 MM_ACM_FORMATCHOOSE

MM_ACM_FORMATCHOOSE
wParam = (WPARAM) wDropDown
lParam = (LONG) lCustom

Notifies an acmFormatChoose dialog hook function before adding an element to one of the three
drop-down list boxes. This message allows an application to further customize the selections available
through the user interface.

· Returns TRUE if an application handles this message or FALSE otherwise.
wDropDown

Drop-down listbox being initialized and a verify or add operation.
FORMATCHOOSE_CUSTOM_VERIFY

The lParam parameter is a pointer to a WAVEFORMATEX structure to be added to the custom
Name drop-down list box.

FORMATCHOOSE_FORMAT_ADD
The lParam parameter is a pointer to a buffer that will accept a WAVEFORMATEX structure to be
added to the Format drop-down list box. The application must copy the format structure to be
added into this buffer.

FORMATCHOOSE_FORMAT_VERIFY
The lParam parameter is a pointer to a WAVEFORMATEX structure to be added to the Format
drop-down list box.

FORMATCHOOSE_FORMATTAG_ADD
The lParam parameter is a pointer to a variable that will accept a waveform-audio format tag to be
added to the Format Tag drop-down list box.

FORMATCHOOSE_FORMATTAG_VERIFY
The lParam parameter is a waveform-audio format tag to be listed in the Format Tag drop-down
list box.

lCustom
Value defined by the listbox specified in the wParam parameter.

If the application processes the FILTERCHOOSE_FORMAT_ADD operation, the size of the memory
buffer supplied in lParam will be determined from the acmMetrics function.

If your application is processing a verify operation, it can prevent the dialog box from listing this
selection by calling the SetWindowLong function with nIndex set to DWL_MSGRESULT and
lNewLong set to FALSE (cast to a LONG data type). To allow the dialog box to list this selection, call
this function with lNewLong set to TRUE.

If your application is processing an add operation, it can indicate that no more additions are required by
calling the SetWindowLong function with nIndex set to DWL_MSGRESULT and lNewLong set to
FALSE (cast to a LONG data type). To indicate more additions are required, call this function with
lNewLong set to TRUE.

 ACMDRIVERDETAILS

typedef struct {
 DWORD cbStruct; // see below
 FOURCC fccType; // see below
 FOURCC fccComp; // see below
 WORD wMid; // manufacturer identifier
 WORD wPid; // product identifier
 DWORD vdwACM; // see below
 DWORD vdwDriver; // see below
 DWORD fdwSupport; // see below
 DWORD cFormatTags; // see below
 DWORD cFilterTags; // see below
 HICON hicon; // see below
 char szShortName[ACMDRIVERDETAILS_SHORTNAME_CHARS]; // see below
 char szLongName[ACMDRIVERDETAILS_LONGNAME_CHARS]; // see below
 char szCopyright[ACMDRIVERDETAILS_COPYRIGHT_CHARS]; // see below
 char szLicensing[ACMDRIVERDETAILS_LICENSING_CHARS]; // see below
 char szFeatures[ACMDRIVERDETAILS_FEATURES_CHARS]; // see below
} ACMDRIVERDETAILS;

Describes the features of an ACM driver.

cbStruct
Size, in bytes, of the valid information contained in the ACMDRIVERDETAILS structure. An
application should initialize this member to the size, in bytes, of the desired information. The size
specified in this member must be large enough to contain the cbStruct member of the
ACMDRIVERDETAILS structure. When the acmDriverDetails function returns, this member
contains the actual size of the information returned. The returned information will never exceed the
requested size.

fccType
Type of the driver. For ACM drivers, set this member to
ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC.

fccComp
Subtype of the driver. This member is currently set to
ACMDRIVERDETAILS_FCCCOMP_UNDEFINED (zero).

vdwACM
Version of the ACM for which this driver was compiled. The version number is a hexadecimal
number in the format 0xAABBCCCC, where AA is the major version number, BB is the minor version
number, and CCCC is the build number. The version parts (major, minor, and build) should be
displayed as decimal numbers.

vdwDriver
Version of the driver. The version number is a hexadecimal number in the format 0xAABBCCCC,
where AA is the major version number, BB is the minor version number, and CCCC is the build
number. The version parts (major, minor, and build) should be displayed as decimal numbers.

fdwSupport
Support flags for the driver. The following values are defined:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags. For example, if a driver supports
compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag. For example, if
a driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_DISABLED
Driver has been disabled. This flag is set by the ACM for a driver when it has been disabled for
any of a number of reasons. Disabled drivers cannot be opened and can be used only under very
limited circumstances.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is
set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE
Driver supports hardware input, output, or both through a waveform-audio device. An application
should use the acmMetrics function with the ACM_METRIC_HARDWARE_WAVE_INPUT and
ACM_METRIC_HARDWARE_WAVE_OUTPUT metric indexes to get the waveform-audio device
identifiers associated with the supporting ACM driver.

ACMDRIVERDETAILS_SUPPORTF_LOCAL
The driver has been installed locally with respect to the current task.

cFormatTags
Number of unique format tags supported by this driver.

cFilterTags
Number of unique filter tags supported by this driver.

hicon
Handle of a custom icon for this driver. An application can use this icon for referencing the driver
visually. This member can be NULL.

szShortName
Null-terminated string that describes the name of the driver. This string is intended to be displayed in
small spaces.

szLongName
Null-terminated string that describes the full name of the driver. This string is intended to be
displayed in large (descriptive) spaces.

szCopyright
Null-terminated string that provides copyright information for the driver.

szLicensing
Null-terminated string that provides special licensing information for the driver.

szFeatures
Null-terminated string that provides special feature information for the driver.

 ACMFILTERCHOOSE

typedef struct {
 DWORD cbStruct;
 DWORD fdwStyle;
 HWND hwndOwner;
 LPWAVEFILTER pwfltr;
 DWORD cbwfltr;
 LPCSTR pszTitle;
 char szFilterTag[ACMFILTERTAGDETAILS_FILTERTAG_CHARS];
 char szFilter[ACMFILTERDETAILS_FILTER_CHARS];
 LPSTR pszName;
 DWORD cchName;
 DWORD fdwEnum;
 LPWAVEFILTER pwfltrEnum;
 HINSTANCE hInstance;
 LPCSTR pszTemplateName;
 LPARAM lCustData;
 ACMFILTERCHOOSEHOOKPROC pfnHook;
} ACMFILTERCHOOSE;

Contains information the ACM uses to initialize the system-defined waveform-audio filter selection
dialog box. After the user closes the dialog box, the system returns information about the user's
selection in this structure.

cbStruct
Size, in bytes, of the ACMFILTERCHOOSE structure. This member must be initialized before an
application calls the acmFilterChoose function. The size specified in this member must be large
enough to contain the base ACMFILTERCHOOSE structure.

fdwStyle
Optional style flags for the acmFilterChoose function. This member must be initialized to a valid
combination of the following flags before an application calls the acmFilterChoose function. The
following values are defined:
ACMFILTERCHOOSE_STYLEF_CONTEXTHELP

Context-sensitive help will be available in the dialog box. To use this feature, an application must
register the ACMHELPMSGCONTEXTMENU and ACMHELPMSGCONTEXTHELP constants,
using the RegisterWindowMessage function. When the user invokes help, the registered
message will be posted to the owning window. The message will contain the wParam and lParam
parameters from the original WM_CONTEXTMENU or WM_CONTEXTHELP message.

ACMFILTERCHOOSE_STYLEF_ENABLEHOOK
Enables the hook function specified in the pfnHook member. An application can use hook
functions for a variety of customizations, including answering the MM_ACM_FILTERCHOOSE
message.

ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATE
Causes the ACM to create the dialog box template identified by the hInstance and
pszTemplateName members.

ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATEHANDLE
The hInstance member identifies a data block that contains a preloaded dialog box template. If
this flag is specified, the ACM ignores the pszTemplateName member.

ACMFILTERCHOOSE_STYLEF_INITTOFILTERSTRUCT
The buffer pointed to by pwfltr contains a valid WAVEFILTER structure that the dialog box will
use as the initial selection.

ACMFILTERCHOOSE_STYLEF_SHOWHELP

A help button will appear in the dialog box. To use a custom Help file, an application must register
the ACMHELPMSGSTRING value with the RegisterWindowMessage function. When the user
presses the help button, the registered message is posted to the owner.

hwndOwner
Handle of the window that owns the dialog box. This member can be any valid window handle or
NULL if the dialog box has no owner. This member must be initialized before calling the
acmFilterChoose function.

pwfltr
Address of a WAVEFILTER structure. If the
ACMFILTERCHOOSE_STYLEF_INITTOFILTERSTRUCT flag is specified in the fdwStyle member,
this structure must be initialized to a valid filter. When the acmFilterChoose function returns, this
buffer contains the selected filter. If the user cancels the dialog box, no changes will be made to this
buffer.

cbwfltr
Size, in bytes, of the buffer pointed to by the pwfltr member. The acmFilterChoose function returns
ACMERR_NOTPOSSIBLE if the buffer is too small to contain the filter information; the ACM also
copies the required size into this member. An application can use the acmMetrics and
acmFilterTagDetails functions to determine the largest size required for this buffer.

pszTitle
Address of a string to be placed in the title bar of the dialog box. If this member is NULL, the ACM
uses the default title (that is, "Filter Selection").

szFilterTag
Buffer containing a null-terminated string describing the filter tag of the filter selection when the
acmFilterChoose function returns. This string is equivalent to the szFilterTag member of the
ACMFILTERTAGDETAILS structure returned by acmFilterTagDetails. If the user cancels the dialog
box, this member will contain a null-terminated string.

szFilter
Buffer containing a null-terminated string describing the filter attributes of the filter selection when
the acmFilterChoose function returns. This string is equivalent to the szFilter member of the
ACMFILTERDETAILS structure returned by acmFilterDetails. If the user cancels the dialog box,
this member will contain a null-terminated string.

pszName
Address of a string for a user-defined filter name. If this is a non-null-terminated string, the ACM
attempts to match the name with a previously saved user-defined filter name. If a match is found, the
dialog box is initialized to that filter. If a match is not found or this member is a null-terminated string,
this member is ignored for input. When the acmFilterChoose function returns, this buffer contains a
null-terminated string describing the user-defined filter. If the filter name is untitled (that is, the user
has not given a name for the filter), this member will be a null-terminated string on return. If the user
cancels the dialog box, no changes will be made to this buffer.
If the ACMFILTERCHOOSE_STYLEF_INITTOFILTERSTRUCT flag is specified by the fdwStyle
member, the pszName member is ignored as an input member.

cchName
Size, in characters, of the buffer identified by the pszName member. This buffer should be at least
128 characters long. If pszName is NULL, this member is ignored.

fdwEnum
Optional flags for restricting the type of filters listed in the dialog box. These flags are identical to the
fdwEnum flags for the acmFilterEnum function. If pwfltrEnum is NULL, this member should be
zero.
ACM_FILTERENUMF_DWFILTERTAG

The dwFilterTag member of the WAVEFILTER structure pointed to by the pwfltrEnum member
is valid. The enumerator will only enumerate a filter that conforms to this attribute.

pwfltrEnum

Address of a WAVEFILTER structure that will be used to restrict the filters listed in the dialog box.
The fdwEnum member defines which members of this structure should be used for the enumeration
restrictions. The cbStruct member of this WAVEFILTER structure must be initialized to the size of
the WAVEFILTER structure. If no special restrictions are desired, this member can be NULL.

hInstance
Handle of a data block that contains a dialog box template specified by the pszTemplateName
member. This member is used only if the fdwStyle member specifies the
ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATE or
ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATEHANDLE flag; otherwise, this member should
be NULL on input.

pszTemplateName
Address of a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the dialog box template in the ACM. An application can use the
MAKEINTRESOURCE macro for numbered dialog box resources. This member is used only if the
fdwStyle member specifies the ACMFILTERCHOOSE_STYLEF_ENABLETEMPLATE flag;
otherwise, this member should be NULL on input.

lCustData
Application-defined data that the ACM passes to the hook function identified by the pfnHook
member. The system passes the data in the lParam parameter of the WM_INITDIALOG message.

pfnHook
Address of a hook function that processes messages intended for the dialog box. An application
must specify the ACMFILTERCHOOSE_STYLEF_ENABLEHOOK flag in the fdwStyle member to
enable the hook; otherwise, this member should be NULL. The hook function should return FALSE
to pass a message to the standard dialog box procedure or TRUE to discard the message.

 ACMFILTERDETAILS

typedef struct {
 DWORD cbStruct;
 DWORD dwFilterIndex;
 DWORD dwFilterTag;
 DWORD fdwSupport;
 LPWAVEFILTER pwfltr;
 DWORD cbwfltr;
 char szFilter[ACMFILTERDETAILS_FILTER_CHARS];
} ACMFILTERDETAILS;

Details a waveform-audio filter for a specific filter tag for an ACM driver.

cbStruct
Size, in bytes, of the ACMFILTERDETAILS structure. This member must be initialized before calling
the acmFilterDetails or acmFilterEnum functions. The size specified in this member must be large
enough to contain the base ACMFILTERDETAILS structure. When the acmFilterDetails function
returns, this member contains the actual size of the information returned. The returned information
will never exceed the requested size.

dwFilterIndex
Index of the filter about which details will be retrieved. The index ranges from zero to one less than
the number of standard filters supported by an ACM driver for a filter tag. The number of standard
filters supported by a driver for a filter tag is contained in the cStandardFilters member of the
ACMFILTERTAGDETAILS structure. The dwFilterIndex member is used only when querying
standard filter details about a driver by index; otherwise, this member should be zero. Also, this
member will be set to zero by the ACM when an application queries for details on a filter; in other
words, this member is used only for input and is never returned by the ACM or an ACM driver.

dwFilterTag
Waveform-audio filter tag that the ACMFILTERDETAILS structure describes. This member is used
as an input for the ACM_FILTERDETAILSF_INDEX query flag. For the
ACM_FILTERDETAILSF_FORMAT query flag, this member must be initialized to the same filter tag
as the pwfltr member specifies. If the acmFilterDetails function is successful, this member is
always returned. This member should be set to WAVE_FILTER_UNKNOWN for all other query flags.

fdwSupport
Driver-support flags specific to the specified filter. These flags are identical to the fdwSupport flags
of the ACMDRIVERDETAILS structure, but they are specific to the filter that is being queried. This
member can be a combination of the following values and identifies which operations the driver
supports for the filter tag:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter. For
example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the same format tag while using the
specified filter. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the
specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is
set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE
Driver supports hardware input, output, or both with the specified filter through a waveform-audio
device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to retrieve the waveform-audio device identifiers associated with the supporting
ACM driver.

pwfltr
Address of a WAVEFILTER structure that will receive the filter details. This structure requires no
initialization by the application unless the ACM_FILTERDETAILSF_FILTER flag is specified with the
acmFilterDetails function. In this case, the dwFilterTag member of the WAVEFILTER structure
must be equal to the dwFilterTag member of the ACMFILTERDETAILS structure.

cbwfltr
Size, in bytes, available for pwfltr to receive the filter details. The acmMetrics and
acmFilterTagDetails functions can be used to determine the maximum size required for any filter
available for the specified driver (or for all installed ACM drivers).

szFilter
String that describes the filter for the dwFilterTag type. If the acmFilterDetails function is
successful, this string is always returned.

 ACMFILTERTAGDETAILS

typedef struct {
 DWORD cbStruct;
 DWORD dwFilterTagIndex;
 DWORD dwFilterTag;
 DWORD cbFilterSize;
 DWORD fdwSupport;
 DWORD cStandardFilters;
 char szFilterTag[ACMFILTERTAGDETAILS_FILTERTAG_CHARS];
} ACMFILTERTAGDETAILS;

Details a waveform-audio filter tag for an ACM filter driver.

cbStruct
Size, in bytes, of the ACMFILTERTAGDETAILS structure. This member must be initialized before
an application calls the acmFilterTagDetails or acmFilterTagEnum function. The size specified in
this member must be large enough to contain the base ACMFILTERTAGDETAILS structure. When
the acmFilterTagDetails function returns, this member contains the actual size of the information
returned. The returned information will never exceed the requested size.

dwFilterTagIndex
Index of the filter tag to retrieve details for. The index ranges from zero to one less than the number
of filter tags supported by an ACM driver. The number of filter tags supported by a driver is contained
in the cFilterTags member of the ACMDRIVERDETAILS structure. The dwFilterTagIndex member
is used only when querying filter tag details about a driver by index; otherwise, this member should
be zero.

dwFilterTag
Waveform-audio filter tag that the ACMFILTERTAGDETAILS structure describes. This member is
used as an input for the ACM_FILTERTAGDETAILSF_FILTERTAG and
ACM_FILTERTAGDETAILSF_LARGESTSIZE query flags. This member is always returned if the
acmFilterTagDetails function is successful. This member should be set to
WAVE_FILTER_UNKNOWN for all other query flags.

cbFilterSize
Largest total size, in bytes, of a waveform-audio filter of the dwFilterTag type. For example, this
member will be 40 for WAVE_FILTER_ECHO and 36 for WAVE_FILTER_VOLUME.

fdwSupport
Driver-support flags specific to the filter tag. These flags are identical to the fdwSupport flags of the
ACMDRIVERDETAILS structure. This member can be a combination of the following values and
identifies which operations the driver supports with the filter tag:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter tag.
For example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the same format tag while using the
specified filter tag. For example, if a driver supports resampling of WAVE_FORMAT_PCM with
the specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is
set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE
Driver supports hardware input, output, or both with the specified filter tag through a waveform-
audio device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM
driver.

cStandardFilters
Number of standard filters of the dwFilterTag type (that is, the combination of all filter
characteristics). This value cannot specify all filters supported by the driver.

szFilterTag
String that describes the dwFilterTag type. This string is always returned if the acmFilterTagDetails
function is successful.

 ACMFORMATCHOOSE

typedef struct {
 DWORD cbStruct;
 DWORD fdwStyle;
 HWND hwndOwner;
 LPWAVEFORMATEX pwfx;
 DWORD cbwfx;
 LPCSTR pszTitle;
 char szFormatTag[ACMFORMATTAGDETAILS_FORMATTAG_CHARS];
 char szFormat[ACMFORMATDETAILS_FORMAT_CHARS];
 LPSTR pszName;
 DWORD cchName;
 DWORD fdwEnum;
 LPWAVEFORMATEX pwfxEnum;
 HINSTANCE hInstance;
 LPCSTR pszTemplateName;
 LPARAM lCustData;
 ACMFORMATCHOOSEHOOKPROC pfnHook;
} ACMFORMATCHOOSE;

Contains information the ACM uses to initialize the system-defined waveform-audio format selection
dialog box. After the user closes the dialog box, the system returns information about the user's
selection in this structure.

cbStruct
Size, in bytes, of the ACMFORMATCHOOSE structure. This member must be initialized before an
application calls the acmFormatChoose function. The size specified in this member must be large
enough to contain the base ACMFORMATCHOOSE structure.

fdwStyle
Optional style flags for the acmFormatChoose function. This member must be initialized to a valid
combination of the following flags before an application calls the acmFormatChoose function:
ACMFORMATCHOOSE_STYLEF_CONTEXTHELP

Context-sensitive help will be available in the dialog box. To use this feature, an application must
register the ACMHELPMSGCONTEXTMENU and ACMHELPMSGCONTEXTHELP constants,
using the RegisterWindowMessage function. When the user invokes help, the registered
message will be posted to the owning window. The message will contain the wParam and lParam
parameters from the original WM_CONTEXTMENU or WM_CONTEXTHELP message.

ACMFORMATCHOOSE_STYLEF_ENABLEHOOK
Enables the hook function pointed to by the pfnHook member. An application can use hook
functions for a variety of customizations, including answering the MM_ACM_FORMATCHOOSE
message.

ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATE
Causes the ACM to create the dialog box template identified by hInstance and
pszTemplateName.

ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATEHANDLE
The hInstance member identifies a data block that contains a preloaded dialog box template. If
this flag is specified, the ACM ignores the pszTemplateName member.

ACMFORMATCHOOSE_STYLEF_INITTOWFXSTRUCT
The buffer pointed to by pwfx contains a valid WAVEFORMATEX structure that the dialog box will
use as the initial selection.

ACMFORMATCHOOSE_STYLEF_SHOWHELP
A help button will appear in the dialog box. To use a custom Help file, an application must register

the ACMHELPMSGSTRING constant with the RegisterWindowMessage function. When the
user presses the help button, the registered message will be posted to the owner.

hwndOwner
Handle of the window that owns the dialog box. This member can be any valid window handle, or
NULL if the dialog box has no owner. This member must be initialized before calling the
acmFormatChoose function.

pwfx
Address of a WAVEFORMATEX structure. If the
ACMFORMATCHOOSE_STYLEF_INITTOWFXSTRUCT flag is specified in the fdwStyle member,
this structure must be initialized to a valid format. When the acmFormatChoose function returns,
this buffer contains the selected format. If the user cancels the dialog box, no changes will be made
to this buffer.

cbwfx
Size, in bytes, of the buffer pointed to by pwfx. If the buffer is too small to contain the format
information, the acmFormatChoose function returns ACMERR_NOTPOSSIBLE. Also, the ACM
copies the required size into this member. An application can use the acmMetrics and
acmFormatTagDetails functions to determine the largest size required for this buffer.

pszTitle
Address of a string to be placed in the title bar of the dialog box. If this member is NULL, the ACM
uses the default title (that is, "Sound Selection").

szFormatTag
Buffer containing a null-terminated string describing the format tag of the format selection when the
acmFormatChoose function returns. This string is equivalent to the szFormatTag member of the
ACMFORMATTAGDETAILS structure returned by the acmFormatTagDetails function. If the user
cancels the dialog box, this member will contain a null-terminated string.

szFormat
Buffer containing a null-terminated string describing the format attributes of the format selection
when the acmFormatChoose function returns. This string is equivalent to the szFormat member of
the ACMFORMATDETAILS structure returned by the acmFormatDetails function. If the user
cancels the dialog box, this member will contain a null-terminated string.

pszName
Address of a string for a user-defined format name. If this is a non-null-terminated string, the ACM
will attempt to match the name with a previously saved user-defined format name. If a match is
found, the dialog box is initialized to that format. If a match is not found or this member is a null-
terminated string, this member is ignored on input. When the acmFormatChoose function returns,
this buffer contains a null-terminated string describing the user-defined format. If the format name is
untitled (that is, the user has not given a name for the format), this member will be a null-terminated
string on return. If the user cancels the dialog box, no changes will be made to this buffer.
If the ACMFORMATCHOOSE_STYLEF_INITTOWFXSTRUCT flag is specified in the fdwStyle
member, the pszName member is ignored for input.

cchName
Size, in characters, of the buffer identified by the pszName member. This buffer should be at least
128 characters long. If the pszName member is NULL, this member is ignored.

fdwEnum
Optional flags for restricting the type of formats listed in the dialog box. These flags are identical to
the fdwEnum flags for the acmFormatEnum function. If pwfxEnum is NULL, this member should
be zero. The following values are defined:
ACM_FORMATENUMF_CONVERT

The WAVEFORMATEX structure pointed to by the pwfxEnum member is valid. The enumerator
will enumerate only destination formats that can be converted from the given pwfxEnum format.

ACM_FORMATENUMF_HARDWARE
The enumerator should enumerate only formats that are supported in hardware by one or more of

the installed waveform-audio devices. This flag provides a way for an application to choose only
formats native to an installed waveform-audio device.

ACM_FORMATENUMF_INPUT
The enumerator should enumerate only formats that are supported for input (recording).

ACM_FORMATENUMF_NCHANNELS
The nChannels member of the WAVEFORMATEX structure pointed to by the pwfxEnum
member is valid. The enumerator will enumerate only a format that conforms to this attribute.

ACM_FORMATENUMF_NSAMPLESPERSEC
The nSamplesPerSec member of the WAVEFORMATEX structure pointed to by the pwfxEnum
member is valid. The enumerator will enumerate only a format that conforms to this attribute.

ACM_FORMATENUMF_OUTPUT
The enumerator should enumerate only formats that are supported for output (playback).

ACM_FORMATENUMF_SUGGEST
The WAVEFORMATEX structure pointed to by the pwfxEnum member is valid. The enumerator
will enumerate all suggested destination formats for the given pwfxEnum format.

ACM_FORMATENUMF_WBITSPERSAMPLE
The wBitsPerSample member of the WAVEFORMATEX structure pointed to by the pwfxEnum
member is valid. The enumerator will enumerate only a format that conforms to this attribute.

ACM_FORMATENUMF_WFORMATTAG
The wFormatTag member of the WAVEFORMATEX structure pointed to by the pwfxEnum
member is valid. The enumerator will enumerate only a format that conforms to this attribute.

pwfxEnum
Address of a WAVEFORMATEX structure that will be used to restrict the formats listed in the dialog
box. The fdwEnum member defines the members of the structure pointed to by pwfxEnum that
should be used for the enumeration restrictions. If no special restrictions are desired, this member
can be NULL. For other requirements associated with the pwfxEnum member, see the description
for the acmFormatEnum function.

hInstance
Handle of a data block that contains a dialog box template specified by the pszTemplateName
member. This member is used only if the fdwStyle member specifies the
ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATE or
ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATEHANDLE flag; otherwise, this member
should be NULL on input.

pszTemplateName
Address of a null-terminated string that specifies the name of the resource file for the dialog box
template that is to be substituted for the dialog box template in the ACM. An application can use the
MAKEINTRESOURCE macro for numbered dialog box resources. This member is used only if the
fdwStyle member specifies the ACMFORMATCHOOSE_STYLEF_ENABLETEMPLATE flag;
otherwise, this member should be NULL on input.

lCustData
Application-defined data that the ACM passes to the hook function identified by the pfnHook
member. The system passes the data in the lParam parameter of the WM_INITDIALOG message.

pfnHook
Address of a hook function that processes messages intended for the dialog box. An application
must specify the ACMFORMATCHOOSE_STYLEF_ENABLEHOOK flag in the fdwStyle member to
enable the hook; otherwise, this member should be NULL. The hook function should return FALSE
to pass a message to the standard dialog box procedure or TRUE to discard the message.

 ACMFORMATDETAILS

typedef struct {
 DWORD cbStruct;
 DWORD dwFormatIndex;
 DWORD dwFormatTag;
 DWORD fdwSupport;
 LPWAVEFORMATEX pwfx;
 DWORD cbwfx;
 char szFormat[ACMFORMATDETAILS_FORMAT_CHARS];
} ACMFORMATDETAILS;

Details a waveform-audio format for a specific format tag for an ACM driver.

cbStruct
Size, in bytes, of the ACMFORMATDETAILS structure. This member must be initialized before an
application calls the acmFormatDetails or acmFormatEnum function. The size specified by this
member must be large enough to contain the base ACMFORMATDETAILS structure. When the
acmFormatDetails function returns, this member contains the actual size of the information
returned. The returned information will never exceed the requested size.

dwFormatIndex
Index of the format to retrieve details for. The index ranges from zero to one less than the number of
standard formats supported by an ACM driver for a format tag. The number of standard formats
supported by a driver for a format tag is contained in the cStandardFormats member of the
ACMFORMATTAGDETAILS structure. The dwFormatIndex member is used only when an
application queries standard format details about a driver by index; otherwise, this member should
be zero. Also, this member will be set to zero by the ACM when an application queries for details on
a format; in other words, this member is used only for input and is never returned by the ACM or an
ACM driver.

dwFormatTag
Waveform-audio format tag that the ACMFORMATDETAILS structure describes. This member is
used for input for the ACM_FORMATDETAILSF_INDEX query flag. For the
ACM_FORMATDETAILSF_FORMAT query flag, this member must be initialized to the same format
tag as the pwfx member specifies. If a call to the acmFormatDetails function is successful, this
member is always returned. This member should be set to WAVE_FORMAT_UNKNOWN for all
other query flags.

fdwSupport
Driver-support flags specific to the specified format. These flags are identical to the fdwSupport
flags of the ACMDRIVERDETAILS structure. This member can be a combination of the following
values and indicates which operations the driver supports for the format tag:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified format tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags for the specified format. For
example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the same format tag while using the
specified format. For example, if a driver supports resampling of WAVE_FORMAT_PCM to the
specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (which modifies data without changing any format attributes) with the
specified format. For example, if a driver supports volume or echo operations on

WAVE_FORMAT_PCM, this flag is set.
ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input and/or output of the specified format through a waveform-audio
device. An application should use acmMetrics with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM
driver.

pwfx
Address of a WAVEFORMATEX structure that will receive the format details. This structure requires
no initialization by the application unless the ACM_FORMATDETAILSF_FORMAT flag is specified in
the acmFormatDetails function. In this case, the wFormatTag member of the WAVEFORMATEX
structure must be equal to the dwFormatTag of the ACMFORMATDETAILS structure.

cbwfx
Size, in bytes, available for pwfx to receive the format details. The acmMetrics and
acmFormatTagDetails functions can be used to determine the maximum size required for any
format available for the specified driver (or for all installed ACM drivers).

szFormat
String that describes the format for the dwFormatTag type. If the acmFormatDetails function is
successful, this string is always returned.

 ACMFORMATTAGDETAILS

typedef struct {
 DWORD cbStruct;
 DWORD dwFormatTagIndex;
 DWORD dwFormatTag;
 DWORD cbFormatSize;
 DWORD fdwSupport;
 DWORD cStandardFormats;
 char szFormatTag[ACMFORMATTAGDETAILS_FORMATTAG_CHARS];
} ACMFORMATTAGDETAILS;

Details a waveform-audio format tag for an ACM driver.

cbStruct
Size, in bytes, of the ACMFORMATTAGDETAILS structure. This member must be initialized before
an application calls the acmFormatTagDetails or acmFormatTagEnum function. The size specified
by this member must be large enough to contain the base ACMFORMATTAGDETAILS structure.
When the acmFormatTagDetails function returns, this member contains the actual size of the
information returned. The returned information will never exceed the requested size.

dwFormatTagIndex
Index of the format tag for which details will be retrieved. The index ranges from zero to one less
than the number of format tags supported by an ACM driver. The number of format tags supported
by a driver is contained in the cFormatTags member of the ACMDRIVERDETAILS structure. The
dwFormatTagIndex member is used only when querying format tag details on a driver by index;
otherwise, this member should be zero.

dwFormatTag
Waveform-audio format tag that the ACMFORMATTAGDETAILS structure describes. This member
is used for input for the ACM_FORMATTAGDETAILSF_FORMATTAG and
ACM_FORMATTAGDETAILSF_LARGESTSIZE query flags. If the acmFormatTagDetails function is
successful, this member is always returned. This member should be set to
WAVE_FORMAT_UNKNOWN for all other query flags.

cbFormatSize
Largest total size, in bytes, of a waveform-audio format of the dwFormatTag type. For example, this
member will be 16 for WAVE_FORMAT_PCM and 50 for WAVE_FORMAT_ADPCM.

fdwSupport
Driver-support flags specific to the format tag. These flags are identical to the fdwSupport flags of
the ACMDRIVERDETAILS structure. This member may be some combination of the following
values and refer to what operations the driver supports with the format tag:
ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified format tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags where one of the tags is the
specified format tag. For example, if a driver supports compression from WAVE_FORMAT_PCM
to WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER
Driver supports conversion between two different formats of the specified format tag. For
example, if a driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER
Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on the specified format tag, this flag is
set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both of the specified format tag through a waveform-
audio device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM
driver.

cStandardFormats
Number of standard formats of the dwFormatTag type; that is, the combination of all sample rates,
bits per sample, channels, and so on. This value can specify all formats supported by the driver, but
not necessarily.

szFormatTag
String that describes the dwFormatTag type. If the acmFormatTagDetails function is successful,
this string is always returned.

 ACMSTREAMHEADER

typedef struct {
 DWORD cbStruct;
 DWORD fdwStatus;
 DWORD dwUser;
 LPBYTE pbSrc;
 DWORD cbSrcLength;
 DWORD cbSrcLengthUsed;
 DWORD dwSrcUser;
 LPBYTE pbDst;
 DWORD cbDstLength;
 DWORD cbDstLengthUsed;
 DWORD dwDstUser;
 DWORD dwReservedDriver[10];
} ACMSTREAMHEADER;

Defines the header used to identify an ACM conversion source and destination buffer pair for a
conversion stream.

cbStruct
Size, in bytes, of the ACMSTREAMHEADER structure. This member must be initialized before the
application calls any ACM stream functions using this structure. The size specified in this member
must be large enough to contain the base ACMSTREAMHEADER structure.

fdwStatus
Flags giving information about the conversion buffers. This member must be initialized to zero
before the application calls the acmStreamPrepareHeader function and should not be modified by
the application while the stream header remains prepared.
ACMSTREAMHEADER_STATUSF_DONE

Set by the ACM or driver to indicate that it is finished with the conversion and is returning the
buffers to the application.

ACMSTREAMHEADER_STATUSF_INQUEUE
Set by the ACM or driver to indicate that the buffers are queued for conversion.

ACMSTREAMHEADER_STATUSF_PREPARED
Set by the ACM to indicate that the buffers have been prepared by using the
acmStreamPrepareHeader function.

dwUser
User data. This can be any instance data specified by the application.

pbSrc
Address of the source buffer. This pointer must always refer to the same location while the stream
header remains prepared. If an application needs to change the source location, it must unprepare
the header and reprepare it with the alternate location.

cbSrcLength
Length, in bytes, of the source buffer pointed to by pbSrc. When the header is prepared, this
member must specify the maximum size that will be used in the source buffer. Conversions can be
performed on source lengths less than or equal to the original prepared size. However, this member
must be reset to the original size when an application unprepares the header.

cbSrcLengthUsed
Amount of data, in bytes, used for the conversion. This member is not valid until the conversion is
complete. This value can be less than or equal to cbSrcLength. An application must use the
cbSrcLengthUsed member when advancing to the next piece of source data for the conversion
stream.

dwSrcUser

User data. This can be any instance data specified by the application.
pbDst

Address of the destination buffer. This pointer must always refer to the same location while the
stream header remains prepared. If an application needs to change the destination location, it must
unprepare the header and reprepare it with the alternate location.

cbDstLength
Length, in bytes, of the destination buffer pointed to by pbDst. When the header is prepared, this
member must specify the maximum size that will be used in the destination buffer.

cbDstLengthUsed
Amount of data, in bytes, returned by a conversion. This member is not valid until the conversion is
complete. This value can be less than or equal to cbDstLength. An application must use the
cbDstLengthUsed member when advancing to the next destination location for the conversion
stream.

dwDstUser
User data. This can be any instance data specified by the application.

dwReservedDriver
Reserved; do not use. This member requires no initialization by the application and should never be
modified while the header remains prepared.

Before an ACMSTREAMHEADER structure can be used for a conversion, it must be prepared by
using the acmStreamPrepareHeader function. When an application is finished with an
ACMSTREAMHEADER structure, it must call the acmStreamUnprepareHeader function before
freeing the source and destination buffers.

 WAVEFILTER

typedef struct {
 DWORD cbStruct;
 DWORD dwFilterTag;
 DWORD fdwFilter;
 DWORD dwReserved[5];
} WAVEFILTER;

Defines a filter for waveform-audio data. Only filter information common to all waveform-audio data
filters is included in this structure. For filters that require additional information, this structure is included
as the first member in another structure along with the additional information.

cbStruct
Size, in bytes, of the WAVEFILTER structure. The size specified in this member must be large
enough to contain the base WAVEFILTER structure.

dwFilterTag
Waveform-audio filter type. Filter tags are registered with Microsoft Corporation for various filter
algorithms.

fdwFilter
Flags for the dwFilterTag member. The flags defined for this member are universal to all filters.
Currently, no flags are defined.

dwReserved
Reserved for system use; should not be examined or modified by an application.

 Musical Instrument Digital Interface (MIDI)

The Musical Instrument Digital Interface (MIDI) is a protocol and set of commands for storing and
transmitting information about music. MIDI output devices interpret this information and use it to
synthesize music.

The Microsoft Win32 application programming interface (API) provides the following methods for
applications to work with MIDI data:

· The Media Control Interface (MCI). Although the simplest way to play a MIDI file is to use the
MCIWnd window class, you can also use MCI commands to create a customized interface to a MIDI
device. For more information about the MCIWnd window class, see Chapter 2, "Getting Started
Using MCIWnd." For more information about MCI, see Chapter 3, "MCI Overview," or the next
section, "Media Control Interface (MCI)".

· Stream buffers. This format allows an application to manipulate buffers of time-stamped MIDI data
for playback. Stream buffers are useful to applications that require more precise control over output
than MCI offers.

· Low-level MIDI services. Applications that need the most precise control of MIDI data typically use
these low-level services.

This chapter discusses each of these methods, provides an overview of the MIDI services of the
Microsoft Windows operating system, and contains a detailed reference to the MIDI-related functions,
structures, and messages.

 Media Control Interface (MCI)

The MCI system component that plays MIDI files is the MCI MIDI sequencer. Applications can play
MIDI files easily using MCI, but MCI imposes the following restrictions on MIDI capabilities:

· MCI supports MIDI output only.
· MCI does not allow close synchronization between MIDI events and other real-time events (such as

video).

If you need accurate MIDI synchronization, you must use the stream buffers or the low-level MIDI
services. If you need MIDI input capabilities, you must use the low-level MIDI services.

The MCI MIDI sequencer plays standard MIDI files and resource interchange file format (RIFF) MIDI
files, known as RMID files. Standard MIDI files conform to the Standard MIDI Files 1.0 specification.
Because RMID files are standard MIDI files with a RIFF header, information about standard MIDI files
also applies to RMID files. For more information about RIFF files, see Chapter 15, "File Input and
Output."

Although there are currently three kinds of standard MIDI files, the MCI sequencer plays only two of
them: Format 0 and Format 1 MIDI files.

For more information about controlling multimedia devices (including sequencers) using MCI
commands, see Chapter 3, "MCI Overview."

 Stream Buffers

Applications can use stream buffers to send streams of MIDI events to a device. Each stream buffer is
a block of memory pointed to by a MIDIHDR structure. This block of memory contains data for one or
more MIDI events, each of which is defined by a MIDIEVENT structure. An application controls the
buffer by calling the stream-manipulation functions, such as midiStreamOpen, midiStreamOut, and
midiStreamClose.

 Stream Buffer Format

The lpData member of the MIDIHDR structure points to a stream buffer, and the dwBufferLength
member specifies the actual size of this buffer. The dwBytesRecorded member of MIDIHDR specifies
the number of bytes in the buffer that are actually used by the MIDI events; this value must be less
than or equal to the value specified by dwBufferLength.

Each of the MIDI events in the stream buffer is specified by a MIDIEVENT structure, which contains the
time for the event, a stream identifier, an event code, and, when appropriate, parameters for the event.
Each of these MIDIEVENT structures must begin on a doubleword boundary. If necessary, pad bytes
must be added to the end of the structure to ensure that the next one starts on a doubleword boundary.

 Timing Information

Timing information for a MIDI event is stored in the dwDeltaTime member of the MIDIEVENT
structure. Time is given in ticks, as defined in the Standard MIDI Files 1.0 specification. The length of a
tick is defined by the time format and possibly the tempo associated with the stream. For more
information about streams, see MIDI Streams.

A tick is expressed either as microseconds per quarter note or as ticks of SMPTE (Society of Motion
Picture and Television Engineers) time. Applications that send MIDI messages individually or use
unprocessed MIDI messages use quarter note time and tempo information to determine the duration of
a tick. Applications that preprocess MIDI messages can store the elapsed time as a count of the
SMPTE units being used.

Quarter note time is indicated with a 0 in the high-word bit (bit 15) of the time-division word. The
remainder of the word contains the ticks per quarter note. A tempo associated with a stream of MIDI
data is kept in units (microseconds per quarter note) consistent with the Standard MIDI Files 1.0
specification. For example, a quarter note in 4/4 time that uses a tempo of 500,000 microseconds per
quarter note plays at the rate of 120 beats per minute.

SMPTE time division formats completely specify the length of a tick without the need for tempo
information. Using SMPTE time formats, MIDI sequences can be synchronized exactly with other
SMPTE events, such as video or striped audio. SMPTE time is indicated with a 1 in the high-order bit
(bit 15) of the time-division word. The rest of the most-significant byte specifies the SMPTE format in
use as negative values. The supported SMPTE formats and their corresponding values (in
parentheses) are 24 (-24), 25 (-25), 30 (-30), and 30 drop (-29). The low byte of the time-division word
specifies the number of ticks per SMPTE frame.

 Event Types

The dwEvent member of the MIDIEVENT structure describes the MIDI event that is to take place.
Short events fit entirely into this member. Long events require one or more doubleword values in
addition to the dwEvent member to store the event descriptions.

The high byte of the dwEvent member contains information about whether the event is long or short
and about whether a callback is generated along with the event. In addition, this byte is used to
describe the event type. The remaining 24 bits of the dwEvent member are used either to contain the
event parameters (for short messages) or to contain the length of the event parameters (for long
messages). To extract information from the dwEvent member, use the MEVT_EVENTTYPE and
MEVT_EVENTPARM macros .

For a description of the predefined event types, see the reference material for the MIDIEVENT
structure.

 MIDI Streams

MIDI events occur in the context of a stream of MIDI data. Although an application can use several
streams to define musical data, the MIDI mapper does not recognize multiple streams. Most
applications that use streams will use a single MIDI stream.

The following functions work with streams:

midiStreamClose Closes a MIDI stream.
midiStreamOpen Opens a MIDI stream and retrieves a handle

of it.
midiStreamOut Plays or queues a stream (buffer) of MIDI

data to a MIDI output device.
midiStreamPause Pauses playback of a specified MIDI stream.
midiStreamPosition Retrieves the current position in a MIDI

stream.
midiStreamProperty Sets and retrieves stream properties.
midiStreamRestart Restarts playback of a paused MIDI stream.
midiStreamStop Turns off all notes on all MIDI channels for

the specified MIDI stream.

 Low-Level MIDI Services

Most applications will be able to use the MCI MIDI sequencer or stream buffers (and the
midiStreamOut function) to implement all the MIDI functionality they need. Serious MIDI developers ¾
those producing MIDI authoring or sequencing tools ¾ can use either a combination of the stream
capabilities and the low-level MIDI services or use only the low-level services. This section presents
general information about using the low-level MIDI services.

 Querying MIDI Devices

Before playing or recording MIDI data, you must determine the capabilities of the MIDI hardware
present in the system. MIDI capability can vary from one multimedia computer to the next; applications
should not make assumptions about the hardware present in a given system.

Windows provides the following functions to determine how many MIDI devices are available for input
or output in a given system:

midiInGetNumDevs Retrieves the number of MIDI input
devices present in the system.

midiOutGetNumDevs Retrieves the number of MIDI output
devices present in the system.

Like other audio devices, MIDI devices are identified by a device identifier, which is determined
implicitly from the number of devices present in a given system. Device identifiers range from zero to
one less than the number of devices present. For example, if there are two MIDI output devices in a
system, valid device identifiers are 0 and 1.

After you determine how many MIDI input or output devices are present in a system, you can inquire
about the capabilities of each device. Windows provides the following functions to determine the
capabilities of audio devices:

midiInGetDevCaps Retrieves the capabilities of a given MIDI
input device and places this information in
the MIDIINCAPS structure.

midiOutGetDevCaps Retrieves the capabilities of a given MIDI
output device and places this information
in the MIDIOUTCAPS structure.

Each of these functions has a parameter specifying the address of a structure that the function fills with
information about the capabilities of a specified device.

 Opening and Closing Device Drivers

You must open a MIDI device before using it, and you should close the device as soon as you finish
using it. Windows provides the following functions to open and close different types of MIDI devices:

midiInClose Closes a specified MIDI input device.
midiInOpen Opens a specified MIDI input device for recording.
midiOutClose Closes a specified MIDI output device.
midiOutOpen Opens a MIDI output device for playback.

Each function that opens a MIDI device takes as parameters a device identifier, an address of a
memory location, and some parameters unique to MIDI devices. The memory location is filled with a
device handle, which is used to identify the open audio device in calls to other audio functions.

Many MIDI functions can accept either a device handle or a device identifier. Although you can use a
device handle wherever you would use a device identifier, you cannot always use a device identifier
when a handle is called for.

Note MIDI devices are not guaranteed to be shareable, so a particular device might not be available
when a user requests it. If this happens, the applications should notify the user and allow the user to try
to open the device again.

 Allocating and Preparing MIDI Data Blocks

The midiOutLongMsg, midiInAddBuffer, and midiStreamOut functions require applications to
allocate data blocks to pass to the device drivers for playback or recording purposes. Each of these
functions uses a MIDIHDR structure to describe its data block.

Before you use one of these functions to pass a data block to a device driver, you must allocate
memory for the buffer and the header structure that describes the data block.

Windows provides the following functions for preparing and cleaning up MIDI data blocks:

midiInPrepareHeader Prepares a MIDI input data block.
midiInUnprepareHeader Cleans up the preparation of a MIDI input

data block.
midiOutPrepareHeader Prepares a MIDI output data block.
midiOutUnprepareHeader Cleans up the preparation of a MIDI

output data block.

Before you pass a MIDI data block to a device driver, you must prepare the buffer by passing it to the
midiInPrepareHeader or midiOutPrepareHeader function. When the device driver is finished with the
buffer and returns it, you must clean up this preparation by passing the buffer to the
midiInUnprepareHeader or midiOutUnprepareHeader function before any allocated memory can be
freed.

 Managing MIDI Data Blocks

Applications that use data blocks for passing system-exclusive messages (using the midiOutLongMsg
and midiInAddBuffer functions) and stream buffers (using the midiStreamOut function) must
continually supply the device driver with data blocks until playback or recording is complete.

Even if a single data block is used, applications must be able to determine when a device driver is
finished with the data block so that the application can free the memory associated with the data block
and header structure. Three methods can be used to determine when a device driver is finished with a
data block:

· Specify a callback function to receive a message sent by the driver when it is finished with a data
block. To get time-stamped MIDI input data, you must use a callback function.

· Use an event callback (for output only).
· Use a window or thread callback to receive a message sent by the driver when it is finished with a

data block.

If an application does not get a data block to the device driver when it is needed, there can be an
audible gap in playback or a loss of incoming recorded information. An application should use at least a
double-buffering scheme to stay at least one data block ahead of the device driver.

Using a Callback Function to Process Driver Messages

You can write your own callback function to process messages sent by the device driver. To use a
callback function, specify the CALLBACK_FUNCTION flag in the dwFlags parameter and the address
of the callback function in the dwCallback parameter of the midiInOpen or midiOutOpen function.

Messages sent to a callback function are similar to messages sent to a window, except they have two
doubleword parameters instead of a unsigned integer parameter and a doubleword parameter. For
more information about these messages, see "Sending System-Exclusive Messages" later in this
chapter and "Managing MIDI Recording" later in this chapter.

Use one of the following techniques to pass instance data from an application to a callback function:

· Use the dwCallbackInstance parameter of the function that opens the device driver.
· Use the dwUser member of the MIDIHDR structure that identifies a data block being sent to a MIDI

device driver.

If you need more than 32 bits of instance data, pass an address of a structure containing the additional
information.

Using an Event Callback to Process Driver Messages

To use an event callback, use the CreateEvent function to retrieve the handle of an event and specify
CALLBACK_EVENT in the call to the midiOutOpen function.

An event callback is set by anything that might cause a function callback. Unlike callback functions and
window or thread callbacks, event callbacks do not receive specific close, done, or open notifications.
An application might, therefore, have to check the status of the process it is waiting for after the event
occurs.

For more information about event callbacks, see "Using an Event Callback to Manage Buffered
Playback" later in this chapter.

Using a Window or Thread Callback to Process Driver Messages

To use a window callback, specify the CALLBACK_WINDOW flag in the dwFlags parameter and a
window handle in the low-order word of the dwCallback parameter of the midiInOpen or midiOutOpen
function. Driver messages will be sent to the window procedure function for the window identified by
the handle in dwCallback.

Similarly, to use a thread callback, specify the CALLBACK_THREAD flag and a thread identifier in the
call to midiInOpen or midiOutOpen. In this case, messages will be posted to the specified thread
instead of to a window.

Messages sent to a window or thread callback are specific to the MIDI device used. For more
information about these messages, see "Sending System-Exclusive Messages" later in this chapter
and "Managing MIDI Recording" later in this chapter.

 Requesting Time Formats

Windows uses the MMTIME structure to represent time in one or more different formats, including
milliseconds, samples, SMPTE, and MIDI song pointer formats. The wType member specifies the time
format.

The midiStreamPosition function uses the MMTIME structure. Before calling this function, you must
set the wType member to indicate your requested time format. To see if the requested time format is
supported, check wType after the call. If the requested time format is not supported, the time is
specified in an alternate time format selected by the device driver and the wType member is changed
to indicate the selected time format.

For more information about the MMTIME structure, see Chapter 17, "Timers."

 Handling Errors with MIDI Functions

Low-level audio functions return a nonzero error code. For MIDI-associated errors, the
midiInGetErrorText and midiOutGetErrorText functions retrieve textual descriptions for the error
codes. The application must still look at the error value itself to determine how to proceed, but it can
use the error descriptions in dialog boxes to inform users of the error conditions.

The only low-level MIDI functions that do not return error codes are the midiInGetNumDevs and
midiOutGetNumDevs functions. These functions return a value of zero if no devices are present in a
system or if any errors are encountered by the function.

 Playing MIDI Files

You should use the MCI MIDI sequencer to play MIDI files whenever you can. If the sequencer services
do not meet the needs of your application, you can manage MIDI playback by using stream buffers or
the low-level MIDI services.

 MIDI Output Data Types

Windows defines the following data types for low-level MIDI output functions:

HMIDIOUT Handle of a MIDI output device.
MIDIHDR Header for a block of MIDI system-exclusive or stream

data.
MIDIOUTCAPS Structure used to inquire about the capabilities of a

particular MIDI output device.

 Querying MIDI Output Devices

Before playing a MIDI file, you should use the midiOutGetDevCaps function to determine the
capabilities of the MIDI output device that is present in the system. This function takes an address of a
MIDIOUTCAPS structure, which it fills with information about the capabilities of the given device. This
information includes the manufacturer and product identifiers, a product name for the device, and the
version number of the device driver (specified in the wMid, wPid, szPname, and vDriverVersion
members, respectively).

MIDI output devices can be either internal synthesizers or external MIDI output ports. The
wTechnology member of the MIDIOUTCAPS structure specifies the technology of the device.

If the device is an internal synthesizer, additional device information is available in the wVoices,
wNotes, and wChannelMask members. The wVoices member specifies the number of voices that the
device supports. Each voice can have a different sound or timbre. Voices are organized into MIDI
channels. The wNotes member specifies the polyphony of the device ¾ that is, the maximum number
of notes that can be played simultaneously. The wChannelMask member is a bit representation of the
MIDI channels that the device responds to. For example, if the device responds to the first eight MIDI
channels, wChannelMask is 0x00FF. If the device is an external output port, wVoices and wNotes are
unused, and wChannelMask is set to 0xFFFF.

The dwSupport member of the MIDIOUTCAPS structure indicates whether the device driver supports
volume changes, patch caching, and streaming. Volume changes are supported only by internal
synthesizer devices. External MIDI output ports do not support volume changes. For information about
changing volume, see "Changing Internal MIDI Synthesizer Volume" later in this chapter.

 Opening MIDI Output Devices

To open a MIDI output device for playback, use the midiOutOpen function. This function opens the
device associated with the specified device identifier and returns a handle of the open device by writing
the handle to a specified memory location.

One of the parameters of midiOutOpen is a doubleword value that specifies a window or thread
handle, an event handle, or the address of a callback function that is used to monitor the progress of
the playback of MIDI system-exclusive data and stream buffers. Monitoring enables the application to
determine when to send additional data blocks and when to free data blocks that have been sent. For
more information about these methods, see "Managing MIDI Data Blocks" earlier in this chapter.

 Sending MIDI Messages with Stream Buffers

When your application works with stream buffers, it uses the midiStreamOut function to send all (short
and long) MIDI messages to the device. To specify stream data blocks, use the MIDIHDR and
MIDIEVENT structures. The MIDIHDR structure contains an address of a locked data block, the data-
block length, and some assorted flags. The data is stored in the form of MIDIEVENT structures. The
system imposes a size limit of 64K on stream buffers.

After you use midiStreamOut to send a stream buffer of data, you must wait until the device driver is
finished with the data block before freeing it. If you are sending multiple data blocks, you must monitor
the completion of each data block so that you know when to send additional blocks. For information
about different techniques for monitoring data-block completion, see "Managing MIDI Data Blocks"
earlier in this chapter.

 Sending Individual MIDI Messages

You can work with individual MIDI messages by using the following functions:

midiOutLongMsg Sends a buffer of MIDI data to the specified
MIDI output device. Use this function to send
system-exclusive messages to a MIDI device.

midiOutReset Turns off all notes on all channels for a
specified MIDI output device. Any pending
system-exclusive buffers and stream buffers
are marked as done and returned to the
application.

midiOutShortMsg Sends a MIDI message to a specified MIDI
output device.

To send any MIDI message (except for system-exclusive messages), use midiOutShortMsg.

 Sending System-Exclusive Messages

MIDI system-exclusive messages are the only MIDI messages that will not fit into a single doubleword
value. System-exclusive messages can be any length. Windows provides the midiOutLongMsg
function for sending system-exclusive messages to MIDI output devices. To specify MIDI system-
exclusive data blocks, use the MIDIHDR structure.

After you send a system-exclusive data block using midiOutLongMsg, you must wait until the device
driver is finished with the data block before freeing it. If you are sending multiple data blocks, you must
monitor the completion of each data block so that you know when to send additional blocks. For
information about different techniques for monitoring data-block completion, see "Managing MIDI Data
Blocks" earlier in this chapter.

Note Any MIDI status byte other than a system - real-time message will terminate a system-exclusive
message. If you are using multiple data blocks to send a single system-exclusive message, do not
send any MIDI messages other than system - real-time messages between data blocks.

 Using a Window or Thread to Manage Buffered Playback

The following messages can be sent to a window or thread for managing playback of MIDI system-
exclusive messages or stream buffers:

MM_MOM_CLOSE Sent when the device is closed by using the
midiOutClose function.

MM_MOM_DONE Sent when the device driver is finished with a
data block sent by using the midiOutLongMsg or
midiStreamOut function.

MM_MOM_OPEN Sent when the device is opened by using the
midiOutOpen function.

A wParam parameter and an lParam parameter are associated with each of these messages. The
wParam parameter always specifies the handle of an open MIDI device. For MM_MOM_DONE,
lParam specifies an address of a MIDIHDR structure identifying the completed data block. The lParam
parameter is unused for MM_MOM_CLOSE and MM_MOM_OPEN.

The most useful message is probably MM_MOM_DONE. Unless you need to allocate memory or
initialize variables, you probably do not need to process MM_MOM_OPEN and MM_MOM_CLOSE.
When playback of a data block is complete, you can clean up and free the data block.

 Using a Callback Function to Manage Buffered Playback

You can define your own callback function to manage buffered playback of MIDI output devices. The
callback function is documented as MidiOutProc in the Reference section of this chapter.

The following messages can be sent to the wMsg parameter of the MidiOutProc callback function.

MOM_CLOSE Sent when the device is closed by using the
midiOutClose function.

MOM_DONE Sent when the device driver is finished with a data block
sent by using the midiOutLongMsg or midiStreamOut
function.

MOM_OPEN Sent when the device is opened by using the
midiOutOpen function.

These messages are similar to those sent to window procedure functions, but the parameters are
different. A handle of the open MIDI device is passed as a parameter to the callback function, along
with the doubleword of instance data passed by using midiOutOpen.

After the driver is finished with a data block, you can clean up and free the data block.

 Using an Event Callback to Manage Buffered Playback

To use an event callback, use the CreateEvent function to retrieve the handle of an event. In a call to
the midiOutOpen function, specify CALLBACK_EVENT for the dwFlags parameter. After using the
midiOutPrepareHeader function but before sending MIDI events to the device, create a nonsignaled
event by calling the ResetEvent function, specifying the event handle retrieved by CreateEvent. Then,
inside a loop that checks whether the MHDR_DONE bit is set in the dwFlags member of the MIDIHDR
structure, use the WaitForSingleObject function, specifying the event handle and a time-out value of
INFINITE as parameters.

An event callback is set by anything that might cause a function callback.

Because event callbacks do not receive specific close, done, or open notifications, an application might
have to check the status of the process it is waiting for after the event occurs. It is possible that a
number of tasks could be completed by the time WaitForSingleObject returns.

 Resetting MIDI Output

The midiOutReset function turns off all notes on all MIDI channels for a specified MIDI device. Then
the function marks any pending system-exclusive buffers as done and returns them to the application.
This function can be useful in an application that uses MIDI output to provide the user with the ability to
reset MIDI output.

Note Terminating a system-exclusive message without sending an EOX (end-of-exclusive) byte might
cause problems for the receiving device. The midiOutReset function does not send an EOX byte when
it terminates a system-exclusive message ¾ applications are responsible for doing this.

 Changing Internal MIDI Synthesizer Volume

Windows provides the following functions to retrieve and set the volume level of internal MIDI
synthesizer devices:

midiOutGetVolume Retrieves the volume level of the specified internal
MIDI synthesizer device.

midiOutSetVolume Sets the volume level of the specified internal MIDI
synthesizer device.

Not all MIDI output devices support volume changes. Some devices can support individual volume
changes on both the left and right channels. For information about how to determine if a particular
device supports volume changes, see "Querying MIDI Output Devices" earlier in this chapter.

Unless your application is designed to be a master volume-control application providing the user with
volume control for all audio devices in a system, you should open an audio device before changing its
volume. You should also check the volume level before changing it and restore the volume level to its
previous level as soon as possible.

Volume is specified as a doubleword value. The upper 16 bits specify the relative volume of the right
channel, and the lower 16 bits specify the relative volume of the left channel.

For devices that do not support individual volume changes on both the left and right channels, the
lower 16 bits specify the volume level and the upper 16 bits are ignored. Values for the volume level
range from 0x0 (silence) to 0xFFFF (maximum volume) and are interpreted logarithmically. The
perceived volume increase is the same when increasing the volume level from 0x5000 to 0x6000 as it
is from 0x4000 to 0x5000.

 Preloading Patches with Internal MIDI Synthesizers

Some internal MIDI synthesizer devices cannot keep all of their patches loaded simultaneously. These
devices must preload their patch data.

Windows provides the following functions to request that a synthesizer preload and cache specified
patches:

midiOutCachePatches Requests that an internal MIDI synthesizer
device preload and cache specified
melodic patches.

midiOutCacheDrumPatches Requests that an internal MIDI synthesizer
device preload and cache specified key-
based percussion patches.

For information about how to determine if a particular device supports preloading patches, see
"Querying MIDI Output Devices" earlier in this chapter.

 Recording MIDI Audio

To record MIDI audio data, you must use low-level MIDI input functions. MCI does not provide a device
handler for recording MIDI audio.

 MIDI Input Data Types

Windows defines the following data types for low-level MIDI input functions:

HMIDIIN Handle of a MIDI input device.
MIDIHDR Header for a stream buffer or a block of MIDI system-

exclusive data. For input applications, this structure
records only system-exclusive data (streaming is not
supported for MIDI input).

MIDIINCAPS Structure used to inquire about the capabilities of a MIDI
input device.

 Querying MIDI Input Devices

Before recording MIDI audio, you should use the midiInGetDevCaps function to determine the
capabilities of the MIDI input device that is present in the system. This function takes an address of a
MIDIINCAPS structure, which it fills with information about the capabilities of the given device. This
information includes the manufacturer and product identifiers, a product name for the device, and the
version number of the device driver.

 Opening MIDI Input Devices

To open a MIDI input device for recording, use the midiInOpen function. This function opens the
device associated with the specified device identifier and returns a handle of the open device by writing
the handle to a specified memory location.

If you use the MIDI_IO_STATUS flag with midiInOpen, the system uses the MIM_MOREDATA
message to alert your application's callback function whenever it is not processing MIDI data fast
enough to keep up with the input device driver. (The MM_MIM_MOREDATA message does the same
job with window callbacks, but most applications will use callback functions instead of window
callbacks, for performance reasons.) If your application processes MIDI data in a separate thread,
boosting the thread's priority can have a significant impact on the application's ability to keep up with
the data flow.

 Managing MIDI Recording

After you open a MIDI device, you can begin recording MIDI data. Windows provides the following
functions for managing MIDI recording:

midiInAddBuff
er

Sends a buffer to the device driver so that it can be filled
with recorded system-exclusive MIDI data.

midiInReset Stops MIDI recording and marks all pending buffers as
done.

midiInStart Starts MIDI recording and resets the time stamp to zero.
midiInStop Stops MIDI recording.

To send buffers to the device driver for recording system-exclusive messages, use midiInAddBuffer.
The application is notified as the buffers are filled with system-exclusive recorded data. For more
information about the notification techniques, see "Managing MIDI Data Blocks" earlier in this chapter.

The midiInStart function begins the recording process. When recording system-exclusive messages,
send at least one buffer to the driver before starting recording. To stop recording, use midiInStop.
Before closing the device by using the midiInClose function, mark any pending data blocks as being
done by calling midiInReset.

Applications that require time-stamped data use a callback function to receive MIDI data. If your timing
requirements are not strict, you can use a window or thread callback. You cannot use an event callback
to receive MIDI data, however.

To record system-exclusive messages with applications that do not use stream buffers, you must
supply the device driver with buffers. These buffers are specified by using a MIDIHDR structure.

 Managing MIDI Thru

It is possible to connect a MIDI input device directly to a MIDI output device so that whenever the input
device receives an MIM_DATA message, the system sends a message with the same MIDI event data
to the output device driver. To connect a MIDI output device to a MIDI input device, use the
midiConnect function.

To achieve the best possible performance with multiple outputs, an application can choose to supply a
special form of MIDI output driver, called a thru driver. Although the system allows only one MIDI output
device to be connected to a MIDI input device, multiple MIDI output devices can be connected to a
thruing driver. An application on such a system could connect the MIDI input device to this thru device
and connect the MIDI thru device to as many MIDI output devices as needed. For more information
about thru drivers, see the Windows device-driver documentation.

Using Messages to Manage MIDI Recording

The following messages can be sent to a window or thread callback procedure for managing MIDI
recording:

MM_MIM_CLOSE Sent when a MIDI input device is closed by using
the midiInClose function.

MM_MIM_DATA Sent when a complete MIDI message is received.
(This message is used for all MIDI messages
except system-exclusive messages.)

MM_MIM_ERROR Sent when an invalid MIDI message is received.
(This message is used for all MIDI messages
except system-exclusive messages.)

MM_MIM_LONGDAT
A

Sent when either a complete MIDI system-
exclusive message is received or when a buffer
has been filled with system-exclusive data.

MM_MIM_LONGERR
OR

Sent when an invalid MIDI system-exclusive
message is received.

MM_MIM_MOREDAT
A

Sent when an application is not processing
MIM_DATA messages fast enough to keep up with
the input device driver.

MM_MIM_OPEN Sent when a MIDI input device is opened by using
the midiInOpen function.

A wParam parameter and an lParam parameter are associated with each of these messages. The
wParam parameter always specifies the handle of an open MIDI device. The lParam parameter is
unused for the MM_MIM_CLOSE and MM_MIM_OPEN messages.

For the MM_MIM_LONGDATA message, lpMidiHdr specifies an address of a MIDIHDR structure that
identifies the buffer for system-exclusive messages. The buffer might not be completely filled, because
you usually do not know the size of the system-exclusive messages before recording them and must
allocate buffers whose total size can contain the largest expected message. To determine the amount
of valid data present in the buffer, use the dwBytesRecorded member of the MIDIHDR structure.

Using a Callback Function to Manage MIDI Recording

You can define your own callback function to manage recording for MIDI input devices. The callback
function is documented as MidiInProc in the Reference section of this chapter.

The following messages can be sent to the wMsg parameter of the MidiInProc callback function:

MIM_CLOSE Sent when the device is closed by using the
midiInClose function.

MIM_DATA Sent when a complete MIDI message is received (this
message is used for all MIDI messages except
system-exclusive messages).

MIM_ERROR Sent when an invalid MIDI message is received (this
message is used for all MIDI messages except
system-exclusive messages).

MIM_LONGDATA Sent when either a complete MIDI system-exclusive
message is received or when a buffer has been filled
with system-exclusive data.

MIM_LONGERR
OR

Sent when an invalid MIDI system-exclusive message
is received.

MIM_MOREDATA Sent when an application is not processing MIM_DATA
messages fast enough to keep up with the input device
driver.

MIM_OPEN Sent when the MIDI input device is opened by using
the midiInOpen function.

These messages are similar to those sent to window procedure functions, but the parameters are
different. A handle of the open MIDI device is passed as a parameter to the callback function, along
with the doubleword of instance data that was passed by using midiInOpen.

For the MIM_LONGDATA message, lpMidiHdr specifies an address of a MIDIHDR structure that
identifies the buffer for system-exclusive messages. The buffer might not be completely filled. To
determine the amount of valid data present in the buffer, use the dwBytesRecorded member of the
MIDIHDR structure.

After the device driver is finished with a data block, you can clean up and free the data block.

 Receiving Time-Stamped MIDI Messages

Because of the delay between when the device driver receives a MIDI message and the time the
application receives the message, MIDI input device drivers time stamp the MIDI message with the
time that the message was received. MIDI time stamps, which are defined as the time the first byte of
the message was received, are specified in milliseconds. The midiInStart function resets the time
stamps for a device to zero.

As stated previously, to receive time stamps with MIDI input, you must use a callback function. The
dwParam2 parameter of the callback function specifies the time stamp for data associated with the
MIM_DATA and MIM_LONGDATA messages.

 Receiving Running-Status Messages

The Standard MIDI Files 1.0 specification allows the use of running status when a message has the
same status byte as the previous message. When running status is used, the status byte of
subsequent messages can be omitted. All MIDI input device drivers are required to expand messages
using running status into complete messages, so that you always receive complete MIDI messages
from a MIDI input device driver.

 Processing MIDI Data from Two MIDI Sources

The MIDI subsystem can route MIDI messages from two data sources to a single MIDI output device
for concurrent playback. For example, one source could be background music or a bass line that has
been pre-recorded and stored in a file. The second source could be live data from a MIDI instrument,
such as a keyboard or guitar.

Both data sources send MIDI data to a single MIDI device that is identified with one handle. You send
one data stream by using the midiStreamOut function and one or more stream buffers. This data
stream typically contains prerecorded data that is packed into the buffer.

You send the second data stream (typically from a MIDI instrument) asynchronously by using the
midiOutShortMsg function. The running status of a stream buffer will not be adversely affected by the
asynchronous calls made by the second data stream.

Each short message sent with midiOutShortMsg must be a complete MIDI message, with a status
byte and the appropriate number of data bytes. If the status byte is omitted, midiOutShortMsg returns
an error. (There is no running status with stream output, however.)

 Creating MIDI Files

When creating MIDI files, you should use the guidelines set forth in the General MIDI Level 1.0
specification published by the International MIDI Association. This document defines standard voice
and percussive patch assignments for MIDI instruments.

For more information about the general MIDI specification, contact the International MIDI Association at
the following address:

The International MIDI Association
23634 Emelita Street
Woodland Hills, CA 91367
Phone: (818) 598-0088

 Using MIDI

This section contains examples demonstrating how to perform the following tasks:

· Use the MCI MIDI sequencer.
· Send individual MIDI messages.

 Using the MCI MIDI Sequencer

Like all MCI devices, the MCI MIDI sequencer responds to standard MCI commands. This section
discusses how to retrieve a sequence division type and how to retrieve and set a tempo. For more
information about MCI, see Chapter 3, "MCI Overview."

 Retrieving the Sequence Division Type

The division type of a MIDI sequence determines the amount of time between MIDI events in the
sequence. To determine the division type of a sequence, use the MCI_STATUS command and set the
dwItem member of the MCI_STATUS_PARMS structure to MCI_SEQ_STATUS_DIVTYPE .

If the MCI_STATUS command is successful, the dwReturn member of the MCI_STATUS_PARMS
structure contains one of the following values to indicate the division type.

Value Division type
MCI_SEQ_DIV_PPQN PPQN (parts-per-quarter note)
MCI_SEQ_DIV_SMPTE_24 SMPTE, 24 fps (frames per second)
MCI_SEQ_DIV_SMPTE_25 SMPTE, 25 fps
MCI_SEQ_DIV_SMPTE_30 SMPTE, 30 fps
MCI_SEQ_DIV_SMPTE_30DROP SMPTE, 30 fps drop frame

You must know the division type of a sequence to change or query its tempo. You cannot change the
division type of a sequence by using the MCI sequencer.

 Querying and Setting the Tempo

To retrieve the tempo of a sequence, use the MCI_STATUS command and set the dwItem member of
the MCI_STATUS_PARMS structure to MCI_SEQ_STATUS_TEMPO. If the MCI_STATUS command is
successful, the dwReturn member of the MCI_STATUS_PARMS structure contains the current tempo.

To change tempo, use the MCI_SET command with the MCI_SEQ_SET_PARMS structure, specifying
the MCI_SEQ_SET_TEMPO flag and setting the dwTempo member of the structure to the desired
tempo.

The way tempo is represented depends on the division type of the sequence. If the division type is
PPQN, the tempo is represented in beats per minute. If the division type is one of the SMPTE division
types, the tempo is represented in frames per second. For information about determining the division
type of a sequence, see "Retrieving the Sequence Division Type" earlier in this chapter.

 Using midiOutShortMsg to Send Individual MIDI Messages

The following example uses the midiOutShortMsg function to send a specified MIDI event to a given
MIDI output device:

UINT sendMIDIEvent(HMIDIOUT hmo, BYTE bStatus, BYTE bData1,
 BYTE bData2)
{
 union {
 DWORD dwData;
 BYTE bData[4];
 } u;

 // Construct the MIDI message.

 u.bData[0] = bStatus; // MIDI status byte
 u.bData[1] = bData1; // first MIDI data byte
 u.bData[2] = bData2; // second MIDI data byte
 u.bData[3] = 0;

 // Send the message.
 return midiOutShortMsg(hmo, u.dwData);
}
Note MIDI output drivers are not required to verify data before sending it to an output port.
Applications must ensure that only valid data is sent.

 MIDI Reference

This section describes the functions, macros, messages, and structures associated with the Musical
Instrument Digital Interface (MIDI). These elements are grouped as follows.
Allocating and Managing Buffers

MIDIHDR
midiInAddBuffer
midiInPrepareHeader
midiInUnprepareHeader
midiOutPrepareHeader
midiOutUnprepareHeader
Callback Functions

MidiInProc
MidiOutProc
Device Capabilities

MIDIINCAPS
midiInGetDevCaps
midiInGetID
midiInGetNumDevs
MIDIOUTCAPS
midiOutGetDevCaps
midiOutGetID
midiOutGetNumDevs
MIDISTRMBUFFVER
Error Processing

midiInGetErrorText
midiOutGetErrorText
MIM_ERROR
MIM_LONGERROR
MM_MIM_ERROR
MM_MIM_LONGERROR
Managing MIDI Streams

midiStreamClose
midiStreamOpen
midiStreamOut
midiStreamPause
midiStreamPosition
midiStreamProperty
midiStreamRestart
midiStreamStop
Opening and Closing Devices

midiInClose
midiInOpen
midiOutClose
midiOutOpen
MIM_CLOSE
MIM_OPEN
MM_MIM_CLOSE
MM_MIM_OPEN
MM_MOM_CLOSE

MM_MOM_OPEN
MOM_CLOSE
MOM_OPEN
Output Devices

KEYARRAY
midiOutCacheDrumPatches
midiOutCachePatches
midiOutGetVolume
midiOutSetVolume
PATCHARRAY
Playing a Message or Messages

MEVT_EVENTPARM
MEVT_EVENTTYPE
MIDIEVENT
midiOutLongMsg
midiOutReset
midiOutShortMsg
midiStreamOut
midiStreamPause
midiStreamRestart
midiStreamStop
MM_MOM_DONE
MM_MOM_POSITIONCB
MOM_DONE
MOM_POSITIONCB
Recording

midiConnect
midiDisconnect
midiInReset
midiInStart
midiInStop
MIDIPROPTEMPO
MIDIPROPTIMEDIV
MIM_DATA
MIM_LONGDATA
MIM_MOREDATA
MM_MIM_DATA
MM_MIM_MOREDATA
MM_MIM_LONGDATA
Sending Messages to Devices

midiInMessage
midiOutMessage

 midiConnect

MMRESULT midiConnect(HMIDI hMidi, HMIDIOUT hmo,
 LPVOID pReserved);

Connects a MIDI input device to a MIDI thru or output device, or connects a MIDI thru device to a MIDI
output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_NOTREADY Specified input device is already

connected to an output device.
MMSYSERR_INVALHAND
LE

Specified device handle is invalid.

hMidi
Handle of a MIDI input device or a MIDI thru device. (For thru devices, this handle must have been
returned by a call to the midiOutOpen function.)

hmo
Handle of the MIDI output or thru device.

pReserved
Reserved; must be NULL.

After calling this function, the MIDI input device receives event data in an MIM_DATA message
whenever a message with the same event data is sent to the output device driver.

A thru driver is a special form of MIDI output driver. The system will allow only one MIDI output device
to be connected to a MIDI input device, but multiple MIDI output devices can be connected to a MIDI
thru device. Whenever the given MIDI input device receives event data in an MIM_DATA message, a
message with the same event data is sent to the given output device driver (or through the thru driver
to the output drivers).

 midiDisconnect

MMRESULT midiDisconnect(HMIDI hMidi, HMIDIOUT hmo,
 LPVOID pReserved);

Disconnects a MIDI input device from a MIDI thru or output device, or disconnects a MIDI thru device
from a MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

Specified device handle is invalid.

hMidi
Handle of a MIDI input device or a MIDI thru device.

hmo
Handle of the MIDI output device to be disconnected.

pReserved
Reserved; must be NULL.

MIDI input, output, and thru devices can be connected by using the midiConnect function. Thereafter,
whenever the MIDI input device receives event data in an MIM_DATA message, a message with the
same event data is sent to the output device driver (or through the thru driver to the output drivers).

 midiInAddBuffer

MMRESULT midiInAddBuffer(HMIDIIN hMidiIn, LPMIDIHDR lpMidiInHdr,
 UINT cbMidiInHdr);

Sends an input buffer to a specified opened MIDI input device. This function is used for system-
exclusive messages.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_STILLPLAYING The buffer pointed to by lpMidiInHdr is

still in the queue.
MIDIERR_UNPREPARED The buffer pointed to by lpMidiInHdr has

not been prepared.
MMSYSERR_INVALHANDL
E

The specified device handle is invalid.

MMSYSERR_INVALPARAM The specified pointer or structure is
invalid.

MMSYSERR_NOMEM The system is unable to allocate or lock
memory.

hMidiIn
Handle of the MIDI input device.

lpMidiInHdr
Address of a MIDIHDR structure that identifies the buffer.

cbMidiInHdr
Size, in bytes, of the MIDIHDR structure.

When the buffer is filled, it is sent back to the application.

The buffer must be prepared by using the midiInPrepareHeader function before it is passed to the
midiInAddBuffer function.

 midiInClose

MMRESULT midiInClose(HMIDIIN hMidiIn);

Closes the specified MIDI input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_STILLPLAYING Buffers are still in the queue.
MMSYSERR_INVALHANDL
E

The specified device handle is invalid.

MMSYSERR_NOMEM The system is unable to allocate or lock
memory.

hMidiIn
Handle of the MIDI input device. If the function is successful, the handle is no longer valid after the
call to this function.

If there are input buffers that have been sent by using the midiInAddBuffer function and have not
been returned to the application, the close operation will fail. To return all pending buffers through the
callback function, use the midiInReset function.

 midiInGetDevCaps

MMRESULT midiInGetDevCaps(UINT uDeviceID, LPMIDIINCAPS lpMidiInCaps,
 UINT cbMidiInCaps);

Determines the capabilities of a specified MIDI input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVICEI
D

The specified device identifier is out of
range.

MMSYSERR_INVALPARAM The specified pointer or structure is
invalid.

MMSYSERR_NODRIVER The driver is not installed.
MMSYSERR_NOMEM The system is unable to allocate or lock

memory.

uDeviceID
Identifier of the MIDI input device. The device identifier varies from zero to one less than the number
of devices present. This parameter can also be a properly cast device handle.

lpMidiInCaps
Address of a MIDIINCAPS structure that is filled with information about the capabilities of the device.

cbMidiInCaps
Size, in bytes, of the MIDIINCAPS structure. Only cbMidiInCaps bytes (or less) of information is
copied to the location pointed to by lpMidiInCaps. If cbMidiInCaps is zero, nothing is copied, and the
function returns MMSYSERR_NOERROR.

To determine the number of MIDI input devices present on the system, use the midiInGetNumDevs
function.

 midiInGetErrorText

MMRESULT midiInGetErrorText(MMRESULT wError, LPSTR lpText,
 UINT cchText);

Retrieves a textual description for an error identified by the specified error code.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADERRNUM The specified error number is out of

range.
MMSYSERR_INVALPARAM The specified pointer or structure is

invalid.
MMSYSERR_NOMEM The system is unable to allocate or lock

memory.

wError
Error code.

lpText
Address of the buffer to be filled with the textual error description.

cchText
Length, in characters, of the buffer pointed to by lpText.

If the textual error description is longer than the specified buffer, the description is truncated. The
returned error string is always null-terminated. If cchText is zero, nothing is copied, and the function
returns zero. All error descriptions are less than MAXERRORLENGTH characters long.

 midiInGetID

MMRESULT midiInGetID(HMIDIIN hmi, LPUINT puDeviceID);

Gets the device identifier for the given MIDI input device.

This function is supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The hwi parameter specifies an invalid
handle.

MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hmi
Handle of the MIDI input device.

puDeviceID
Address of a variable to be filled with the device identifier.

 midiInGetNumDevs

UINT midiInGetNumDevs(VOID);

Retrieves the number of MIDI input devices in the system.

· Returns the number of MIDI input devices present in the system. A return value of zero means that
there are no devices (not that there is no error).

 midiInMessage

DWORD midiInMessage(HMIDIIN hMidiIn, UINT msg, DWORD dw1, DWORD dw2);

Sends a message to the MIDI device driver.

· Returns the value returned by the audio device driver.
hMidiIn

Handle of the MIDI device.
msg

Message to send.
dw1 and dw2

Message parameters.

This function is used only for driver-specific messages that are not supported by the MIDI API.

 midiInOpen

MMRESULT midiInOpen(LPHMIDIIN lphMidiIn, UINT uDeviceID,
 DWORD dwCallback, DWORD dwCallbackInstance, DWORD dwFlags);

Opens a specified MIDI input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_ALLOCATED The specified resource is already

allocated.
MMSYSERR_BADDEVICEI
D

The specified device identifier is out of
range.

MMSYSERR_INVALFLAG The flags specified by dwFlags are
invalid.

MMSYSERR_INVALPARAM The specified pointer or structure is
invalid.

MMSYSERR_NOMEM The system is unable to allocate or lock
memory.

lphMidiIn
Address of an HMIDIIN handle. This location is filled with a handle identifying the opened MIDI input
device. The handle is used to identify the device in calls to other MIDI input functions.

uDeviceID
Identifier of the MIDI input device to be opened.

dwCallback
Address of a callback function, a thread identifier, or a handle of a window called with information
about incoming MIDI messages.

dwCallbackInstance
User instance data passed to the callback function. This parameter is not used with window callback
functions or threads.

dwFlags
Callback flag for opening the device and, optionally, a status flag that helps regulate rapid data
transfers. It can be the following values:
CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.
CALLBACK_NULL

There is no callback mechanism. This value is the default setting.
CALLBACK_THREAD

The dwCallback parameter is a thread identifier.
CALLBACK_WINDOW

The dwCallback parameter is a window handle.
MIDI_IO_STATUS

When this parameter also specifies CALLBACK_FUNCTION, MIM_MOREDATA messages are
sent to the callback function as well as MIM_DATA messages. Or, if this parameter also specifies
CALLBACK_WINDOW, MM_MIM_MOREDATA messages are sent to the window as well as
MM_MIM_DATA messages. This flag does not affect event or thread callbacks.

Most applications that use a callback mechanism will specify CALLBACK_FUNCTION for this
parameter.

To determine the number of MIDI input devices present in the system, use the midiInGetNumDevs
function. The device identifier specified by wDeviceID varies from zero to one less than the number of

devices present.

If a window or thread is chosen to receive callback information, the following messages are sent to the
window procedure or thread to indicate the progress of MIDI input: MM_MIM_OPEN,
MM_MIM_CLOSE, MM_MIM_DATA, MM_MIM_LONGDATA, MM_MIM_ERROR,
MM_MIM_LONGERROR, and MM_MIM_MOREDATA.

If a function is chosen to receive callback information, the following messages are sent to the function
to indicate the progress of MIDI input: MIM_OPEN, MIM_CLOSE, MIM_DATA, MIM_LONGDATA,
MIM_ERROR, MIM_LONGERROR, and MIM_MOREDATA.

 midiInPrepareHeader

MMRESULT midiInPrepareHeader(HMIDIIN hMidiIn, LPMIDIHDR lpMidiInHdr,
 UINT cbMidiInHdr);

Prepares a buffer for MIDI input.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDL
E

The specified device handle is invalid.

MMSYSERR_INVALPARAM The specified address is invalid.
MMSYSERR_NOMEM The system is unable to allocate or lock

memory.

hMidiIn
Handle of the MIDI input device.

lpMidiInHdr
Address of a MIDIHDR structure that identifies the buffer to be prepared.

cbMidiInHdr
Size, in bytes, of the MIDIHDR structure.

Preparing a header that has already been prepared has no effect, and the function returns zero.

Before using this function, you must set the lpData, dwBufferLength, and dwFlags members of the
MIDIHDR structure. The dwFlags member must be set to zero.

 MidiInProc

void CALLBACK MidiInProc(HMIDIIN hMidiIn, UINT wMsg, DWORD dwInstance,
 DWORD dwParam1, DWORD dwParam2);

Callback function for handling incoming MIDI messages. MidiInProc is a placeholder for the
application-supplied function name.

hMidiIn
Handle of the MIDI input device.

wMsg
MIDI input message.

dwInstance
Instance data supplied with the midiInOpen function.

dwParam1 and dwParam2
Message parameters.

Applications should not call any system-defined functions from inside a callback function, except for
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent,
midiOutShortMsg, midiOutLongMsg, and OutputDebugStr.

 midiInReset

MMRESULT midiInReset(HMIDIIN hMidiIn);

Stops input on a given MIDI input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hMidiIn
Handle of the MIDI input device.

This function returns all pending input buffers to the callback function and sets the MHDR_DONE flag
in the dwFlags member of the MIDIHDR structure.

 midiInStart

MMRESULT midiInStart(HMIDIIN hMidiIn);

Starts MIDI input on the specified MIDI input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hMidiIn
Handle of the MIDI input device.

This function resets the time stamp to zero; time stamp values for subsequently received messages
are relative to the time that this function was called.

All messages except system-exclusive messages are sent directly to the client when they are received.
System-exclusive messages are placed in the buffers supplied by the midiInAddBuffer function. If
there are no buffers in the queue, the system-exclusive data is thrown away without notification to the
client and input continues. Buffers are returned to the client when they are full, when a complete
system-exclusive message has been received, or when the midiInReset function is used. The
dwBytesRecorded member of the MIDIHDR structure will contain the actual length of data received.

Calling this function when input is already started has no effect, and the function returns zero.

 midiInStop

MMRESULT midiInStop(HMIDIIN hMidiIn);

Stops MIDI input on the specified MIDI input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hMidiIn
Handle of the MIDI input device.

If there are any system-exclusive messages or stream buffers in the queue, the current buffer is
marked as done (the dwBytesRecorded member of the MIDIHDR structure will contain the actual
length of data), but any empty buffers in the queue remain there and are not marked as done.

Calling this function when input is not started has no effect, and the function returns zero.

 midiInUnprepareHeader

MMRESULT midiInUnprepareHeader(HMIDIIN hMidiIn, LPMIDIHDR lpMidiInHdr,
 UINT cbMidiInHdr);

Cleans up the preparation performed by the midiInPrepareHeader function.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_STILLPLAYING The buffer pointed to by lpMidiInHdr is still

in the queue.
MMSYSERR_INVALPARA
M

The specified pointer or structure is
invalid.

MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hMidiIn
Handle of the MIDI input device.

lpMidiInHdr
Address of a MIDIHDR structure identifying the buffer to be cleaned up.

cbMidiInHdr
Size of the MIDIHDR structure.

This function is complementary to midiInPrepareHeader. You must use this function before freeing the
buffer. After passing a buffer to the device driver by using the midiInAddBuffer function, you must wait
until the driver is finished with the buffer before using midiInUnprepareHeader. Unpreparing a buffer
that has not been prepared has no effect, and the function returns MMSYSERR_NOERROR.

 midiOutCacheDrumPatches

MMRESULT midiOutCacheDrumPatches(HMIDIOUT hmo, UINT wPatch,
 WORD FAR* lpKeyArray, UINT wFlags);

Requests that an internal MIDI synthesizer device preload and cache a specified set of key-based
percussion patches.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALFLAG The flag specified by wFlags is

invalid.
MMSYSERR_INVALHANDLE The specified device handle is

invalid.
MMSYSERR_INVALPARAM The array pointed to by the

lpKeyArray array is invalid.
MMSYSERR_NOMEM The device does not have

enough memory to cache all of
the requested patches.

MMSYSERR_NOTSUPPORTED The specified device does not
support patch caching.

hmo
Handle of the opened MIDI output device. This device should be an internal MIDI synthesizer. This
parameter can also be the handle of a MIDI stream, cast to HMIDIOUT.

wPatch
Drum patch number that should be used. This parameter should be set to zero to cache the default
drum patch.

lpKeyArray
Address of a KEYARRAY array indicating the key numbers of the specified percussion patches to be
cached or uncached.

wFlags
Options for the cache operation. It can be one of the following flags:
MIDI_CACHE_ALL

Caches all of the specified patches. If they cannot all be cached, it caches none, clears the
KEYARRAY array, and returns MMSYSERR_NOMEM.

MIDI_CACHE_BESTFIT
Caches all of the specified patches. If they cannot all be cached, it caches as many patches as
possible, changes the KEYARRAY array to reflect which patches were cached, and returns
MMSYSERR_NOMEM.

MIDI_CACHE_QUERY
Changes the KEYARRAY array to indicate which patches are currently cached.

MIDI_UNCACHE
Uncaches the specified patches and clears the KEYARRAY array.

Some synthesizers are not capable of keeping all percussion patches loaded simultaneously. Caching
patches ensures that the specified patches are available.

Each element of the KEYARRAY array represents one of the 128 key-based percussion patches and
has bits set for each of the 16 MIDI channels that use the particular patch. The least-significant bit
represents physical channel 0, and the most-significant bit represents physical channel 15. For
example, if the patch on key number 60 is used by physical channels 9 and 15, element 60 would be
set to 0x8200.

This function applies only to internal MIDI synthesizer devices. Not all internal synthesizers support
patch caching. To see if a device supports patch caching, use the MIDICAPS_CACHE flag to test the
dwSupport member of the MIDIOUTCAPS structure filled by the midiOutGetDevCaps function.

 midiOutCachePatches

MMRESULT midiOutCachePatches(HMIDIOUT hmo, UINT wBank,
 WORD FAR* lpPatchArray, UINT wFlags);

Requests that an internal MIDI synthesizer device preload and cache a specified set of patches.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALFLAG The flag specified by wFlags is invalid.
MMSYSERR_INVALHANDL
E

The specified device handle is invalid.

MMSYSERR_INVALPARAM The array pointed to by lpPatchArray is
invalid.

MMSYSERR_NOMEM The device does not have enough
memory to cache all of the requested
patches.

MMSYSERR_NOTSUPPOR
TED

The specified device does not support
patch caching.

hmo
Handle of the opened MIDI output device. This device must be an internal MIDI synthesizer. This
parameter can also be the handle of a MIDI stream, cast to HMIDIOUT.

wBank
Bank of patches that should be used. This parameter should be set to zero to cache the default
patch bank.

lpPatchArray
Address of a PATCHARRAY array indicating the patches to be cached or uncached.

wFlags
Options for the cache operation. It can be one of the following flags:
MIDI_CACHE_ALL

Caches all of the specified patches. If they cannot all be cached, it caches none, clears the
PATCHARRAY array, and returns MMSYSERR_NOMEM.

MIDI_CACHE_BESTFIT
Caches all of the specified patches. If they cannot all be cached, it caches as many patches as
possible, changes the PATCHARRAY array to reflect which patches were cached, and returns
MMSYSERR_NOMEM.

MIDI_CACHE_QUERY
Changes the PATCHARRAY array to indicate which patches are currently cached.

MIDI_UNCACHE
Uncaches the specified patches and clears the PATCHARRAY array.

Some synthesizers are not capable of keeping all patches loaded simultaneously and must load data
from disk when they receive MIDI program change messages. Caching patches ensures that the
specified patches are immediately available.

Each element of the PATCHARRAY array represents one of the 128 patches and has bits set for each
of the 16 MIDI channels that use the particular patch. The least-significant bit represents physical
channel 0, and the most-significant bit represents physical channel 15 (0x0F). For example, if patch 0
is used by physical channels 0 and 8, element 0 would be set to 0x0101.

This function applies only to internal MIDI synthesizer devices. Not all internal synthesizers support
patch caching. To see if a device supports patch caching, use the MIDICAPS_CACHE flag to test the

dwSupport member of the MIDIOUTCAPS structure filled by the midiOutGetDevCaps function.

 midiOutClose

MMRESULT midiOutClose(HMIDIOUT hmo);

Closes the specified MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_STILLPLAYING Buffers are still in the queue.
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

MMSYSERR_NOMEM The system is unable to load mapper
string description.

hmo
Handle of the MIDI output device. If the function is successful, the handle is no longer valid after the
call to this function.

If there are output buffers that have been sent by using the midiOutLongMsg function and have not
been returned to the application, the close operation will fail. To mark all pending buffers as being done,
use the midiOutReset function.

 midiOutGetDevCaps

MMRESULT midiOutGetDevCaps(UINT uDeviceID, LPMIDIOUTCAPS lpMidiOutCaps,
 UINT cbMidiOutCaps);

Queries a specified MIDI output device to determine its capabilities.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVICEI
D

The specified device identifier is out of
range.

MMSYSERR_INVALPARAM The specified pointer or structure is
invalid.

MMSYSERR_NODRIVER The driver is not installed.
MMSYSERR_NOMEM The system is unable to load mapper

string description.

uDeviceID
Identifier of the MIDI output device. The device identifier specified by this parameter varies from zero
to one less than the number of devices present. The MIDI_MAPPER constant is also a valid device
identifier.
This parameter can also be a properly cast device handle.

lpMidiOutCaps
Address of a MIDIOUTCAPS structure. This structure is filled with information about the capabilities
of the device.

cbMidiOutCaps
Size, in bytes, of the MIDIOUTCAPS structure. Only cbMidiOutCaps bytes (or less) of information is
copied to the location pointed to by lpMidiOutCaps. If cbMidiOutCaps is zero, nothing is copied, and
the function returns MMSYSERR_NOERROR.

To determine the number of MIDI output devices present in the system, use the midiOutGetNumDevs
function.

 midiOutGetErrorText

UINT midiOutGetErrorText(MMRESULT mmrError, LPSTR lpText, UINT cchText);

Retrieves a textual description for an error identified by the specified error code.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADERRNUM The specified error number is out of

range.
MMSYSERR_INVALPARAM The specified pointer or structure is

invalid.

mmrError
Error code.

lpText
Address of a buffer to be filled with the textual error description.

cchText
Length, in characters, of the buffer pointed to by lpText.

If the textual error description is longer than the specified buffer, the description is truncated. The
returned error string is always null-terminated. If cchText is zero, nothing is copied, and the function
returns MMSYSERR_NOERROR. All error descriptions are less than MAXERRORLENGTH characters
long.

 midiOutGetID

MMRESULT midiOutGetID(HMIDIOUT hmo, LPUINT puDeviceID);

Retrieves the device identifier for the given MIDI output device.

This function is supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The hwo parameter specifies an invalid
handle.

MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hmo
Handle of the MIDI output device.

puDeviceID
Address of a variable to be filled with the device identifier.

 midiOutGetNumDevs

UINT midiOutGetNumDevs(VOID);

Retrieves the number of MIDI output devices present in the system.

· Returns the number of MIDI output devices. A return value of zero means that there are no devices
(not that there is no error).

 midiOutGetVolume

MMRESULT midiOutGetVolume(HMIDIOUT hmo, LPDWORD lpdwVolume);

Retrieves the current volume setting of a MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE The specified device handle is invalid.
MMSYSERR_INVALPARAM The specified pointer or structure is

invalid.
MMSYSERR_NOMEM The system is unable to allocate or

lock memory.
MMSYSERR_NOTSUPPORT
ED

The function is not supported.

hmo
Handle of an open MIDI output device. This parameter can also contain the handle of a MIDI stream,
as long as it is cast to HMIDIOUT.

lpdwVolume
Address of the location to contain the current volume setting. The low-order word of this location
contains the left-channel volume setting, and the high-order word contains the right-channel setting.
A value of 0xFFFF represents full volume, and a value of 0x0000 is silence.
If a device does not support both left and right volume control, the low-order word of the specified
location contains the mono volume level.
Any value set by using the midiOutSetVolume function is returned, regardless of whether the
device supports that value.

Not all devices support volume control. You can determine whether a device supports volume control
by querying the device by using the midiOutGetDevCaps function and specifying the
MIDICAPS_VOLUME flag.

You can also determine whether the device supports volume control on both the left and right channels
by querying the device by using the midiOutGetDevCaps function and specifying the
MIDICAPS_LRVOLUME flag.

 midiOutLongMsg

MMRESULT midiOutLongMsg(HMIDIOUT hmo, LPMIDIHDR lpMidiOutHdr,
 UINT cbMidiOutHdr);

Sends a system-exclusive MIDI message to the specified MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_NOTREADY The hardware is busy with other data.
MIDIERR_UNPREPARED The buffer pointed to by lpMidiOutHdr has

not been prepared.
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

MMSYSERR_INVALPARA
M

The specified pointer or structure is
invalid.

hmo
Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to
HMIDIOUT.

lpMidiOutHdr
Address of a MIDIHDR structure that identifies the MIDI buffer.

cbMidiOutHdr
Size, in bytes, of the MIDIHDR structure.

Before the buffer is passed to midiOutLongMsg, it must be prepared by using the
midiOutPrepareHeader function. The MIDI output device driver determines whether the data is sent
synchronously or asynchronously.

 midiOutMessage

DWORD midiOutMessage(HMIDIOUT hmo, UINT msg, DWORD dw1, DWORD dw2);

Sends a message to the MIDI device drivers. This function is used only for driver-specific messages
that are not supported by the MIDI API.

· Returns the value returned by the audio device driver.
hmo

Handle of the MIDI device. This parameter can also be the handle of a MIDI stream cast to
HMIDIOUT.

msg
Message to send.

dw1 and dw2
Message parameters.

 midiOutOpen

UINT midiOutOpen(LPHMIDIOUT lphmo, UINT uDeviceID,
 DWORD dwCallback, DWORD dwCallbackInstance, DWORD dwFlags);

Opens a MIDI output device for playback.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_NODEVICE No MIDI port was found. This error

occurs only when the mapper is
opened.

MMSYSERR_ALLOCATED The specified resource is already
allocated.

MMSYSERR_BADDEVICEID The specified device identifier is out of
range.

MMSYSERR_INVALPARAM The specified pointer or structure is
invalid.

MMSYSERR_NOMEM The system is unable to allocate or lock
memory.

lphmo
Address of an HMIDIOUT handle. This location is filled with a handle identifying the opened MIDI
output device. The handle is used to identify the device in calls to other MIDI output functions.

uDeviceID
Identifier of the MIDI output device that is to be opened.

dwCallback
Address of a callback function, an event handle, a thread identifier, or a handle of a window or
thread called during MIDI playback to process messages related to the progress of the playback. If
no callback is desired, specify NULL for this parameter.

dwCallbackInstance
User instance data passed to the callback. This parameter is not used with window callbacks or
threads.

dwFlags
Callback flag for opening the device. It can be the following values:
CALLBACK_EVENT

The dwCallback parameter is an event handle. This callback mechanism is for output only.
CALLBACK_FUNCTION

The dwCallback parameter is a callback function address.
CALLBACK_NULL

There is no callback mechanism. This value is the default setting.
CALLBACK_THREAD

The dwCallback parameter is a thread identifier.
CALLBACK_WINDOW

The dwCallback parameter is a window handle.

To determine the number of MIDI output devices present in the system, use the midiOutGetNumDevs
function. The device identifier specified by wDeviceID varies from zero to one less than the number of
devices present. MIDI_MAPPER can also be used as the device identifier.

If a window or thread is chosen to receive callback information, the following messages are sent to the
window procedure or thread to indicate the progress of MIDI output: MM_MOM_OPEN,

MM_MOM_CLOSE, and MM_MOM_DONE.

If a function is chosen to receive callback information, the following messages are sent to the function
to indicate the progress of MIDI output: MOM_OPEN, MOM_CLOSE, and MOM_DONE.

 midiOutPrepareHeader

MMRESULT midiOutPrepareHeader(HMIDIOUT hmo, LPMIDIHDR lpMidiOutHdr,
 UINT cbMidiOutHdr);

Prepares a MIDI system-exclusive or stream buffer for output.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

MMSYSERR_INVALPARA
M

The specified address is invalid or the
given stream buffer is greater than 64K.

MMSYSERR_NOMEM The system is unable to allocate or lock
memory.

hmo
Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to
HMIDIOUT.

lpMidiOutHdr
Address of a MIDIHDR structure that identifies the buffer to be prepared.

cbMidiOutHdr
Size, in bytes, of the MIDIHDR structure.

A stream buffer cannot be larger than 64K.

Preparing a header that has already been prepared has no effect, and the function returns
MMSYSERR_NOERROR.

Before using this function, you must set the lpData, dwBufferLength, and dwFlags members of the
MIDIHDR structure. The dwFlags member must be set to zero.

 MidiOutProc

void CALLBACK MidiOutProc(HMIDIOUT hmo, UINT wMsg,
 DWORD dwInstance, DWORD dwParam1, DWORD dwParam2);

Callback function for handling outgoing MIDI messages. MidiOutProc is a placeholder for the
application-supplied function name.

hmo
Handle of the MIDI device associated with the callback function.

wMsg
MIDI output message.

dwInstance
Instance data supplied by using the midiOutOpen function.

dwParam1 and dwParam2
Message parameters.

Applications should not call any system-defined functions from inside a callback function, except for
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent,
midiOutShortMsg, midiOutLongMsg, and OutputDebugStr.

 midiOutReset

MMRESULT midiOutReset(HMIDIOUT hmo);

Turns off all notes on all MIDI channels for the specified MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hmo
Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to
HMIDIOUT.

Any pending system-exclusive or stream output buffers are returned to the callback function and the
MHDR_DONE flag is set in the dwFlags member of the MIDIHDR structure.

Terminating a system-exclusive message without sending an EOX (end-of-exclusive) byte might cause
problems for the receiving device. The midiOutReset function does not send an EOX byte when it
terminates a system-exclusive message ¾ applications are responsible for doing this.

To turn off all notes, a note-off message for each note in each channel is sent. In addition, the sustain
controller is turned off for each channel.

 midiOutSetVolume

MMRESULT midiOutSetVolume(HMIDIOUT hmo, DWORD dwVolume);

Sets the volume of a MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE The specified device handle is

invalid.
MMSYSERR_NOMEM The system is unable to allocate or

lock memory.
MMSYSERR_NOTSUPPORTED The function is not supported.

hmo
Handle of an open MIDI output device. This parameter can also contain the handle of a MIDI stream,
as long as it is cast to HMIDIOUT.

dwVolume
New volume setting. The low-order word contains the left-channel volume setting, and the high-order
word contains the right-channel setting. A value of 0xFFFF represents full volume, and a value of
0x0000 is silence.
If a device does not support both left and right volume control, the low-order word of dwVolume
specifies the mono volume level, and the high-order word is ignored.

Changing the volume on a handle affects only one instance of the device. It does not change the
default volume for the device (and affect all instances of the device).

Not all devices support volume changes. You can determine whether a device supports it by querying
the device using the midiOutGetDevCaps function and the MIDICAPS_VOLUME flag.

You can also determine whether the device supports volume control on both the left and right channels
by querying the device using the midiOutGetDevCaps function and the MIDICAPS_LRVOLUME flag.

Devices that do not support a full 16 bits of volume-level control use the high-order bits of the
requested volume setting. For example, a device that supports 4 bits of volume control produces the
same volume setting for the following volume-level values: 0x4000, 0x43be, and 0x4fff. The
midiOutGetVolume function returns the full 16-bit value, as set by midiOutSetVolume, irrespective of
the device's capabilities.

Volume settings are interpreted logarithmically. This means that the perceived increase in volume is the
same when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

 midiOutShortMsg

MMRESULT midiOutShortMsg(HMIDIOUT hmo, DWORD dwMsg);

Sends a short MIDI message to the specified MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_BADOPENMOD
E

The application sent a message without a
status byte to a stream handle.

MIDIERR_NOTREADY The hardware is busy with other data.
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hmo
Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to
HMIDIOUT.

dwMsg
MIDI message. The message is packed into a doubleword value with the first byte of the message in
the low-order byte. The message is packed into this parameter as follows:
High
word

High-order
byte

Not used.

Low-order byte Contains a second byte of MIDI data (when
needed).

Low
word

High-order
byte

Contains the first byte of MIDI data (when
needed).

Low-order byte Contains the MIDI status.

The two MIDI data bytes are optional, depending on the MIDI status byte. When a series of
messages have the same status byte, the status byte can be omitted from messages after the first
one in the series, creating a running status. Pack a message for running status as follows:
High
word

High-order
byte

Not used.

Low-order byte Not used.
Low
word

High-order
byte

Contains a second byte of MIDI data (when
needed).

Low-order byte Contains the first byte of MIDI data.

This function is used to send any MIDI message except for system-exclusive or stream messages.

This function might not return until the message has been sent to the output device. You can send
short messages while streams are playing on the same device (although you cannot use a running
status in this case).

 midiOutUnprepareHeader

MMRESULT midiOutUnprepareHeader(HMIDIOUT hmo,
 LPMIDIHDR lpMidiOutHdr, UINT cbMidiOutHdr);

Cleans up the preparation performed by the midiOutPrepareHeader function.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIDIERR_STILLPLAYING The buffer pointed to by lpMidiOutHdr is

still in the queue.
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

MMSYSERR_INVALPARA
M

The specified pointer or structure is
invalid.

hmo
Handle of the MIDI output device. This parameter can also be the handle of a MIDI stream cast to
HMIDIOUT.

lpMidiOutHdr
Address of a MIDIHDR structure identifying the buffer to be cleaned up.

cbMidiOutHdr
Size, in bytes, of the MIDIHDR structure.

This function is complementary to the midiOutPrepareHeader function. You must call
midiOutUnprepareHeader before freeing the buffer. After passing a buffer to the device driver with the
midiOutLongMsg function, you must wait until the device driver is finished with the buffer before
calling midiOutUnprepareHeader.

Unpreparing a buffer that has not been prepared has no effect, and the function returns
MMSYSERR_NOERROR.

 midiStreamClose

[New - Windows 95]

MMRESULT midiStreamClose(HMIDISTRM hStream);

Closes an open MIDI stream.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use either the
midiInGetErrorText or midiOutGetErrorText function to interpret error values for the stream
functions. A possible error value is:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hStream
Handle of a MIDI stream, as retrieved by using the midiStreamOpen function.

 midiStreamOpen

[New - Windows 95]

MMRESULT midiStreamOpen(LPHMIDISTRM lphStream, LPUINT puDeviceID,
 DWORD cMidi, DWORD dwCallback, DWORD dwInstance, DWORD fdwOpen);

Opens a MIDI stream for output. By default, the device is opened in paused mode. The stream handle
retrieved by this function must be used in all subsequent references to the stream.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use the
midiOutGetErrorText function to interpret error values for the stream functions. Possible error
values include the following:
MMSYSERR_BADDEVICE
ID

The specified device identifier is out of
range.

MMSYSERR_INVALPARA
M

The given handle or flags parameter is
invalid.

MMSYSERR_NOMEM The system is unable to allocate or lock
memory.

lphStream
Address of a variable to contain the stream handle when the function returns.

puDeviceID
Address of a device identifier. The device is opened on behalf of the stream and closed again when
the stream is closed.

cMidi
Reserved; must be 1.

dwCallback
Address of a callback function, an event handle, a thread identifier, or a handle of a window or
thread called during MIDI playback to process messages related to the progress of the playback. If
no callback mechanism is desired, specify NULL for this parameter.

dwInstance
Application-specific instance data that is returned to the application with every callback function.

fdwOpen
Callback flag for opening the device. One of the following callback flags must be specified:
CALLBACK_EVENT

The dwCallback parameter is an event handle. This callback mechanism is for output only.
CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.
CALLBACK_NULL

There is no callback mechanism. This is the default setting.
CALLBACK_THREAD

The dwCallback parameter is a thread identifier.
CALLBACK_WINDOW

The dwCallback parameter is a window handle.

 midiStreamOut

[New - Windows 95]

MMRESULT midiStreamOut(HMIDISTRM hMidiStream, LPMIDIHDR lpMidiHdr,
 UINT cbMidiHdr);

Plays or queues a stream (buffer) of MIDI data to a MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use the
midiOutGetErrorText function to interpret error values for the stream functions. Possible error
values include the following:
MMSYSERR_NOMEM The system is unable to allocate or lock

memory.
MIDIERR_STILLPLAYING The output buffer pointed to by lpMidiHdr

is still playing or is queued from a
previous call to midiStreamOut.

MIDIERR_UNPREPARED The header pointed to by lpMidiHdr has
not been prepared.

MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

MMSYSERR_INVALPARA
M

The pointer specified by lpMidiHdr is
invalid.

hMidiStream
Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen
function. This handle identifies the output device.

lpMidiHdr
Address of a MIDIHDR structure that identifies the MIDI buffer.

cbMidiHdr
Size, in bytes, of the MIDIHDR structure.

Because the midiStreamOpen function opens the output device in paused mode, you must call the
midiStreamRestart function before you can use midiStreamOut to start the playback.

For the current implementation of this function, the buffer must be smaller than 64K.

The buffer pointed to by the MIDIHDR structure contains one or more MIDI events, each of which is
defined by a MIDIEVENT structure.

 midiStreamPause

[New - Windows 95]

MMRESULT midiStreamPause(HMIDISTRM hms);

Pauses playback of a specified MIDI stream.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use the
midiOutGetErrorText function to interpret error values for the stream functions. Possible error
values include the following:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hms
Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen
function. This handle identifies the output device.

The current playback position is saved when playback is paused. To resume playback from the current
position, use the midiStreamRestart function.

Calling this function when the output is already paused has no effect, and the function returns
MMSYSERR_NOERROR.

 midiStreamPosition

[New - Windows 95]

MMRESULT midiStreamPosition(HMIDISTRM hms, LPMMTIME pmmt, UINT cbmmt);

Retrieves the current position in a MIDI stream.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use the
midiOutGetErrorText function to interpret error values for the stream functions. Possible error
values include the following:
MMSYSERR_INVALHANDL
E

Specified device handle is invalid.

MMSYSERR_INVALPARAM Specified pointer or structure is invalid.

hms
Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen
function. This handle identifies the output device.

pmmt
Address of an MMTIME structure.

cbmmt
Size, in bytes, of the MMTIME structure.

Before calling midiStreamPosition, set the wType member of the MMTIME structure to indicate the
time format you desire. After calling midiStreamPosition, check the wType member to determine if the
desired time format is supported. If the desired format is not supported, wType will specify an
alternative format.

The position is set to zero when the device is opened or reset.

 midiStreamProperty

[New - Windows 95]

MMRESULT midiStreamProperty(HMIDISTRM hm, LPBYTE lppropdata,
 DWORD dwProperty);

Sets or retrieves properties of a MIDI data stream associated with a MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use the
midiOutGetErrorText function to interpret error values for the stream functions. Possible error
values include the following:
MMSYSERR_INVALHAN
DLE

The specified handle is not a stream
handle.

MMSYSERR_INVALPARA
M

The given handle or flags parameter is
invalid.

hm
Handle of the MIDI device that the property is associated with.

lppropdata
Address of the property data.

dwProperty
Flags that specify the action to perform and identify the appropriate property of the MIDI data
stream. The midiStreamProperty function requires setting two flags in each use. One flag (either
MIDIPROP_GET or MIDIPROP_SET) specifies an action, and the other identifies a specific property
to examine or edit:
MIDIPROP_GET

Retrieves the current setting of the given property.
MIDIPROP_SET

Sets the given property.
MIDIPROP_TEMPO

Retrieves the tempo property. The lppropdata parameter points to a MIDIPROPTEMPO structure.
The current tempo value can be retrieved at any time. Output devices set the tempo by inserting
MEVT_TEMPO events into the MIDI data.

MIDIPROP_TIMEDIV
Specifies the time division property. You can get or set this property. The lppropdata parameter
points to a MIDIPROPTIMEDIV structure. This property can be set only when the device is
stopped.

These properties are the default properties defined by the system. Driver writers can implement and
document their own properties.

 midiStreamRestart

[New - Windows 95]

MMRESULT midiStreamRestart(HMIDISTRM hms);

Restarts a paused MIDI stream.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use the
midiOutGetErrorText function to interpret error values for the stream functions. Possible error
values include the following:
MMSYSERR_INVALHANDL
E

The specified device handle is invalid.

hms
Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen
function. This handle identifies the output device.

Calling this function when the output is not paused has no effect, and the function returns
MMSYSERR_NOERROR.

 midiStreamStop

[New - Windows 95]

MMRESULT midiStreamStop(HMIDISTRM hms);

Turns off all notes on all MIDI channels for the specified MIDI output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. You can use the
midiOutGetErrorText function to interpret error values for the stream functions. Possible error
values include the following:
MMSYSERR_INVALHAND
LE

The specified device handle is invalid.

hms
Handle of a MIDI stream. This handle must have been returned by a call to the midiStreamOpen
function. This handle identifies the output device.

When you call this function, any pending system-exclusive or stream output buffers are returned to the
callback mechanism and the MHDR_DONE bit is set in the dwFlags member of the MIDIHDR
structure.

While the midiOutReset function turns off all notes, midiStreamStop turns off only those notes that
have been turned on by a MIDI note-on message.

 MEVT_EVENTPARM

DWORD MEVT_EVENTPARM(DWORD dwEvent)

Retrieves the event parameters or length from the value specified in the dwEvent member of a
MIDIEVENT structure.

dwEvent
Code for the MIDI event and the event parameters or length, as specified in the dwEvent member of
the MIDIEVENT structure.

The MEVT_EVENTPARM macro is defined as follows:

#define MEVT_EVENTPARM(x) ((DWORD) ((x)&0x00FFFFFFL))

 MEVT_EVENTTYPE

BYTE MEVT_EVENTTYPE(DWORD dwEvent)

Retrieves the event type from the value specified in the dwEvent member of a MIDIEVENT structure.

dwEvent
Code for the MIDI event and the event parameters or length, as specified in the dwEvent member of
the MIDIEVENT structure.

The MEVT_EVENTTYPE macro is defined as follows:

#define MEVT_EVENTTYPE(x) ((BYTE) (((x)>>24)&0xFF))

 KEYARRAY

typedef WORD KEYARRAY[MIDIPATCHSIZE];

Specifies a type used to define an array of keys. Each element in the array corresponds to a key-based
percussion patch with each of the 16 bits representing one of the 16 MIDI channels. Bits are set for
each of the channels that use that particular patch. For example, if the percussion patch for key
number 60 is used by physical MIDI channels 9 and 15, element 60 of the array should be set to
0x8200.

 MIDIEVENT

typedef struct {
 DWORD dwDeltaTime; // see below
 DWORD dwStreamID; // reserved; must be zero
 DWORD dwEvent; // see below
 DWORD dwParms[]; // see below
} MIDIEVENT;

Describes a MIDI event in a stream buffer.

dwDeltaTime
Time, in MIDI ticks, between the previous event and the current event. The length of a tick is defined
by the time format and possibly the tempo associated with the stream. (The definition is identical to
the specification for a tick in a standard MIDI file.)

dwEvent
Event code and event parameters or length. To parse this information, use the MEVT_EVENTTYPE
and MEVT_EVENTPARM macros.
The high byte of this member contains one or more of the following flags and an event code:
MEVT_F_CALLBACK

The system generates a callback when the event is about to be executed.
MEVT_F_LONG

The event is a long event. The low 24 bits of dwEvent contain the length of the event parameters.
MEVT_F_SHORT

The event is a short event. The event parameters are contained in the low 24 bits of dwEvent.
Either MEVT_F_LONG or MEVT_F_SHORT must be specified, but MEVT_F_CALLBACK is
optional.
The remainder of the high byte contains one of the following event codes:
MEVT_COMMENT

Long event. The event data will be ignored. This event is intended to store commentary
information about the stream that might be useful to authoring programs or sequencers if the
stream data were to be stored in a file in stream format. In a buffer of this data, the zero byte
identifies the comment class and subsequent bytes contain the comment data.

MEVT_LONGMSG
Long event. The event data is transmitted verbatim. The event data is assumed to be system-
exclusive data; that is, running status will be cleared when the event is executed and running
status from any previous events will not be applied to any channel events in the event data. Using
this event to send a group of channel messages at the same time is not recommended; a set of
MEVT_SHORTMSG events with zero delta times should be used instead.

MEVT_NOP
Short event. This event is a placeholder; it does nothing. The low 24 bits are ignored. This event
will still generate a callback if MEVT_F_CALLBACK is set in dwEvent.

MEVT_SHORTMSG
Short event. The data in the low 24 bits of dwEvent is a MIDI short message. (For a description
of how a short message is packed into a doubleword value, see the midiOutShortMsg function.)

MEVT_TEMPO
Short event. The data in the low 24 bits of dwEvent contain the new tempo for following events.
The tempo is specified in the same format as it is for the tempo change meta-event in a MIDI file
¾ that is, in microseconds per quarter note. (This event will have no affect if the time format
specified for the stream is SMPTE time.)

MEVT_VERSION
Long event. The event data must contain a MIDISTRMBUFFVER structure.

dwParms
Parameters for the event, if dwEvent specifies MEVT_F_LONG and the length of the buffer. This
parameter data must be padded with zeros so that an integral number of doubleword values are
stored. For example, if the event data is five bytes long, three pad bytes must follow the data for a
total of eight bytes. In this case, the low 24 bits of dwEvent would contain the value 5.

 MIDIHDR

typedef struct {
 LPSTR lpData; // address of MIDI data
 DWORD dwBufferLength; // size of the buffer
 DWORD dwBytesRecorded; // see below
 DWORD dwUser; // custom user data
 DWORD dwFlags; // see below
 struct midihdr_tag far * lpNext; // reserved; do not use
 DWORD reserved; // reserved; do not use
 DWORD dwOffset; // see below
 DWORD dwReserved[4]; // reserved; do not use
} MIDIHDR;

Defines the header used to identify a MIDI system-exclusive or stream buffer.

dwBytesRecorded
Actual amount of data in the buffer. This value should be less than or equal to the value given in the
dwBufferLength member.

dwFlags
Flags giving information about the buffer.
MHDR_DONE

Set by the device driver to indicate that it is finished with the buffer and is returning it to the
application.

MHDR_INQUEUE
Set by Windows to indicate that the buffer is queued for playback.

MHDR_ISSTRM
Set to indicate that the buffer is a stream buffer.

MHDR_PREPARED
Set by Windows to indicate that the buffer has been prepared by using the midiInPrepareHeader
or midiOutPrepareHeader function.

dwOffset
Offset into the buffer when a callback is performed. (This callback is generated because the
MEVT_F_CALLBACK flag is set in the dwEvent member of the MIDIEVENT structure.) This offset
enables an application to determine which event caused the callback.

 MIDIINCAPS

typedef struct {
 WORD wMid; // see below
 WORD wPid; // see below
 MMVERSION vDriverVersion; // see below
 CHAR szPname[MAXPNAMELEN]; // see below
 DWORD dwSupport; // reserved; must be zero
} MIDIINCAPS;

Describes the capabilities of a MIDI input device.

wMid
Manufacturer identifier of the device driver for the MIDI input device. For a list of identifiers, see
Manufacturer and Product Identifiers.

wPid
Product identifier of the MIDI input device. For a list of identifiers, see Manufacturer and Product
Identifiers.

vDriverVersion
Version number of the device driver for the MIDI input device. The high-order byte is the major
version number, and the low-order byte is the minor version number.

szPname
Product name in a null-terminated string.

 MIDIOUTCAPS

typedef struct {
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 WORD wTechnology;
 WORD wVoices;
 WORD wNotes;
 WORD wChannelMask;
 DWORD dwSupport;
} MIDIOUTCAPS;

Describes the capabilities of a MIDI output device.

wMid
Manufacturer identifier of the device driver for the MIDI output device. For a list of identifiers, see
Chapter 0, "Manufacturer and Product Identifiers."

wPid
Product identifier of the MIDI output device. For a list of identifiers, see Chapter 0, "Manufacturer
and Product Identifiers."

vDriverVersion
Version number of the device driver for the MIDI output device. The high-order byte is the major
version number, and the low-order byte is the minor version number.

szPname
Product name in a null-terminated string.

wTechnology
Flags describing the type of the MIDI output device. It can be one of the following:
MOD_FMSYNTH

The device is an FM synthesizer.
MOD_MAPPER

The device is the Microsoft MIDI mapper.
MOD_MIDIPORT

The device is a MIDI hardware port.
MOD_SQSYNTH

The device is a square wave synthesizer.
MOD_SYNTH

The device is a synthesizer.

wVoices
Number of voices supported by an internal synthesizer device. If the device is a port, this member is
not meaningful and is set to 0.

wNotes
Maximum number of simultaneous notes that can be played by an internal synthesizer device. If the
device is a port, this member is not meaningful and is set to 0.

wChannelMask
Channels that an internal synthesizer device responds to, where the least significant bit refers to
channel 0 and the most significant bit to channel 15. Port devices that transmit on all channels set
this member to 0xFFFF.

dwSupport
Optional functionality supported by the device. It can be one or more of the following:

MIDICAPS_CACHE
Supports patch caching.

MIDICAPS_LRVOLUME
Supports separate left and right volume control.

MIDICAPS_STREAM
Provides direct support for the midiStreamOut function.

MIDICAPS_VOLUME
Supports volume control.

If a device supports volume changes, the MIDICAPS_VOLUME flag will be set for the dwSupport
member. If a device supports separate volume changes on the left and right channels, both the
MIDICAPS_VOLUME and the MIDICAPS_LRVOLUME flags will be set for this member.

 MIDIPROPTEMPO

typedef struct {
 DWORD cbStruct;
 DWORD dwTempo;
} MIDIPROPTEMPO;

Contains the tempo property for a stream.

cbStruct
Length, in bytes, of this structure. This member must be filled in for both the MIDIPROP_SET and
MIDIPROP_GET operations of the midiStreamProperty function.

dwTempo
Tempo of the stream, in microseconds per quarter note. The tempo is honored only if the time
division for the stream is specified in quarter note format. This member is set in a MIDIPROP_SET
operation and is filled on return from a MIDIPROP_GET operation.

The tempo property is read or written by the midiStreamProperty function.

 MIDIPROPTIMEDIV

typedef struct {
 DWORD cbStruct;
 DWORD dwTimeDiv;
} MIDIPROPTIMEDIV;

Contains the time division property for a stream.

cbStruct
Length, in bytes, of this structure. This member must be filled in for both the MIDIPROP_SET and
MIDIPROP_GET operations of the midiStreamProperty function.

dwTimeDiv
Time division for this stream, in the format specified in the Standard MIDI Files 1.0 specification. The
low 16 bits of this doubleword value contain the time division. This member is set in a
MIDIPROP_SET operation and is filled on return from a MIDIPROP_GET operation.

The time division property is read or written by the midiStreamProperty function.

 MIDISTRMBUFFVER

typedef struct {
 DWORD dwVersion;
 DWORD dwMid;
 DWORD dwOEMVersion;
} MIDISTRMBUFFVER;

Contains version information for a long MIDI event of the MEVT_VERSION type.

dwVersion
Version of the stream. The high 16 bits contain the major version, and the low 16 bits contain the
minor version. The version number for the first implementation of MIDI streams should be 1.0.

dwMid
Manufacturer identifier. For a list of manufacturer identifiers, see Chapter 0, "Manufacturer and
Product Identifiers."

dwOEMVersion
OEM version of the stream. Original equipment manufacturers can use this field to version-stamp
any custom events they have specified. If a custom event is specified, it must be the first event sent
after the stream is opened.

 PATCHARRAY

typedef WORD PATCHARRAY[MIDIPATCHSIZE];

Specifies a type used to define an array of MIDI patches. Each element in the array corresponds to a
patch with each of the 16 bits representing one of the 16 MIDI channels. Bits are set for each of the
channels that use that particular patch. For example, if patch number 0 is used by physical MIDI
channels 0 and 8, element 0 of the array should be set to 0x0101.

 MIM_CLOSE

MIM_CLOSE
dwParam1 = reserved
dwParam2 = reserved

Sent to a MIDI input callback function when a MIDI input device is closed.

· No return value.
dwParam1 and dwParam2

Reserved; do not use.

The device handle is no longer valid after this message has been sent.

 MIM_DATA

MIM_DATA
dwParam1 = dwMidiMessage
dwParam2 = dwTimestamp

Sent to a MIDI input callback function when a MIDI message is received by a MIDI input device.

· No return value.
dwMidiMessage

MIDI message that was received. The message is packed into a doubleword value as follows:
High
word

High-order
byte

Not used.

Low-order
byte

Contains a second byte of MIDI data (when
needed).

Low
word

High-order
byte

Contains the first byte of MIDI data (when
needed).

Low-order
byte

Contains the MIDI status.

The two MIDI data bytes are optional, depending on the MIDI status byte.
dwTimestamp

Time that the message was received by the input device driver. The time stamp is specified in
milliseconds, beginning at zero when the midiInStart function was called.

MIDI messages received from a MIDI input port have running status disabled; each message is
expanded to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received.

 MIM_ERROR

MIM_ERROR
dwParam1 = dwMidiMessage
dwParam2 = dwTimestamp

Sent to a MIDI input callback function when an invalid MIDI message is received.

· No return value.
dwMidiMessage

Invalid MIDI message that was received. The message is packed into a doubleword value with the
first byte of the message in the low-order byte.

dwTimestamp
Time that the message was received by the input device driver. The time stamp is specified in
milliseconds, beginning at zero when the midiInStart function was called.

 MIM_LONGDATA

MIM_LONGDATA
dwParam1 = (DWORD) lpMidiHdr
dwParam2 = dwTimestamp

Sent to a MIDI input callback function when a system-exclusive buffer has been filled with data and is
being returned to the application.

· No return value.
lpMidiHdr

Address of a MIDIHDR structure identifying the input buffer.
dwTimestamp

Time that the data was received by the input device driver. The time stamp is specified in
milliseconds, beginning at zero when the midiInStart function was called.

The returned buffer might not be full. To determine the number of bytes recorded into the returned
buffer, use the dwBytesRecorded member of the MIDIHDR structure specified by lpMidiHdr.

 MIM_LONGERROR

MIM_LONGERROR
dwParam1 = (DWORD) lpMidiHdr
dwParam2 = dwTimestamp

Sent to a MIDI input callback function when an invalid or incomplete MIDI system-exclusive message is
received.

· No return value.
lpMidiHdr

Address of a MIDIHDR structure identifying the buffer containing the invalid message.
dwTimestamp

Time that the data was received by the input device driver. The time stamp is specified in
milliseconds, beginning at zero when the midiInStart function was called.

The returned buffer might not be full. To determine the number of bytes recorded into the returned
buffer, use the dwBytesRecorded member of the MIDIHDR structure specified by lpMidiHdr.

 MIM_MOREDATA

MIM_MOREDATA
dwParam1 = dwMidiMessage
dwParam2 = dwTimestamp

Sent to a MIDI input callback function when a MIDI message is received by a MIDI input device but the
application is not processing MIM_DATA messages fast enough to keep up with the input device driver.
The callback function receives this message only when the application specifies MIDI_IO_STATUS in
the call to the midiInOpen function.

· No return value.
dwMidiMessage

Specifies the MIDI message that was received. The message is packed into a doubleword value as
follows:
High
word

High-order
byte

Not used.

Low-order
byte

Contains a second byte of MIDI data (when
needed).

Low
word

High-order
byte

Contains the first byte of MIDI data (when
needed).

Low-order
byte

Contains the MIDI status.

The two MIDI data bytes are optional, depending on the MIDI status byte.
dwTimestamp

Specifies the time that the message was received by the input device driver. The time stamp is
specified in milliseconds, beginning at 0 when the midiInStart function was called.

An application should do only a minimal amount of processing of MIM_MOREDATA messages. (In
particular, applications should not call the PostMessage function while processing MIM_MOREDATA.)
Instead, the application should place the event data into a buffer and then return.

When an application receives an MIM_DATA message after a series of MIM_MOREDATA messages, it
has caught up with incoming MIDI events and can safely call time-intensive functions.

MIDI messages received from a MIDI input port have running status disabled; each message is
expanded to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received.

 MIM_OPEN

MIM_OPEN
dwParam1 = reserved
dwParam2 = reserved

Sent to a MIDI input callback function when a MIDI input device is opened.

· No return value.
dwParam1 and dwParam2

Reserved; do not use.

 MM_MIM_CLOSE

MM_MIM_CLOSE
wParam = (WPARAM) hInput
lParam = reserved

Sent to a window when a MIDI input device is closed.

· No return value.
hInput

Handle of the MIDI input device that was closed.
lParam

Reserved; do not use.

The device handle is no longer valid after this message has been sent.

 MM_MIM_DATA

MM_MIM_DATA
wParam = (WPARAM) hInput
lParam = (LPARAM) (DWORD) lMidiMessage

Sent to a window when a complete MIDI message is received by a MIDI input device.

· No return value.
hInput

Handle of the MIDI input device that received the MIDI message.
lMidiMessage

MIDI message that was received. The message is packed into a doubleword value as follows:
High
word

High-order
byte

Not used.

Low-order byte Contains a second byte of MIDI data (when
needed).

Low
word

High-order
byte

Contains the first byte of MIDI data (when
needed).

Low-order byte Contains the MIDI status.

The two MIDI data bytes are optional, depending on the MIDI status byte.

MIDI messages received from a MIDI input port have running status disabled; each message is
expanded to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received. No time stamp is
available with this message. For time-stamped input data, you must use the messages that are sent to
callback functions.

 MM_MIM_ERROR

MM_MIM_ERROR
wParam = (WPARAM) hInput
lParam = (LPARAM) (DWORD) lMidiMessage

Sent to a window when an invalid MIDI message is received.

· No return value.
hInput

Handle of the MIDI input device that received the invalid message.
lMidiMessage

Invalid MIDI message. The message is packed into a doubleword value with the first byte of the
message in the low-order byte.

 MM_MIM_LONGDATA

MM_MIM_LONGDATA
wParam = (WPARAM) hInput
lParam = (LPARAM) lpMidiHdr

Sent to a window when either a complete MIDI system-exclusive message is received or when a buffer
has been filled with system-exclusive data.

· No return value.
hInput

Handle of the MIDI input device that received the data.
lpMidiHdr

Address of a MIDIHDR structure identifying the buffer.

The returned buffer might not be full. To determine the number of bytes recorded into the returned
buffer, use the dwBytesRecorded member of the MIDIHDR structure pointed to by lpMidiHdr.

No time stamp is available with this message. For time-stamped input data, you must use the
messages that are sent to callback functions.

 MM_MIM_LONGERROR

MM_MIM_LONGERROR
wParam = (WPARAM) hInput
lParam = (LPARAM) lpMidiHdr

Sent to a window when an invalid or incomplete MIDI system-exclusive message is received.

· No return value.
hInput

Handle of the MIDI input device that received the invalid message.
lpMidiHdr

Address of a MIDIHDR structure identifying the buffer containing the invalid message.

The returned buffer might not be full. To determine the number of bytes recorded into the returned
buffer, use the dwBytesRecorded member of the MIDIHDR structure specified by lpMidiHdr.

 MM_MIM_MOREDATA

MM_MIM_MOREDATA
wParam = (WPARAM) hInput
lParam = (LPARAM) (DWORD) lMidiMessage

Sent to a callback window when a MIDI message is received by a MIDI input device but the application
is not processing MIM_DATA messages fast enough to keep up with the input device driver. The
window receives this message only when the application specifies MIDI_IO_STATUS in the call to the
midiInOpen function.

· No return value.
hInput

Handle of the MIDI input device that received the MIDI message.
lMidiMessage

Specifies the MIDI message that was received. The message is packed into a doubleword value as
follows:
High
word

High-order
byte

Not used.

Low-order byte Contains a second byte of MIDI data (when
needed).

Low
word

High-order
byte

Contains the first byte of MIDI data (when
needed).

Low-order byte Contains the MIDI status.

The two MIDI data bytes are optional, depending on the MIDI status byte.

If your application will receive MIDI data faster than it can process it, you should not use a window
callback mechanism. To maximize speed, use a callback function, and use the MIM_MOREDATA
message instead of MM_MIM_MOREDATA.

An application should do only a minimal amount of processing of MM_MIM_MOREDATA messages. (In
particular, applications should not call the PostMessage function while processing
MM_MIM_MOREDATA.) Instead, the application should place the event data into a buffer and then
return.

When an application receives an MM_MIM_DATA message after a series of MM_MIM_MOREDATA
messages, it has caught up with incoming MIDI events and can safely call time-intensive functions.

MIDI messages received from a MIDI input port have running status disabled; each message is
expanded to include the MIDI status byte.

This message is not sent when a MIDI system-exclusive message is received. No time stamp is
available with this message. For time-stamped input data, you must use the messages that are sent to
callback functions.

 MM_MIM_OPEN

MM_MIM_OPEN
wParam = (WPARAM) hInput
lParam = reserved

Sent to a window when a MIDI input device is opened.

· No return value.
hInput

Handle of the MIDI input device that was opened.
lParam

Reserved; do not use.

 MM_MOM_CLOSE

MM_MOM_CLOSE
wParam = (WPARAM) hOutput
lParam = reserved

Sent to a window when a MIDI output device is closed.

· No return value.
hOutput

Handle of the MIDI output device.
lParam

Reserved; do not use.

The device handle is no longer valid after this message has been sent.

 MM_MOM_DONE

MM_MOM_DONE
wParam = (WPARAM) hOutput
lParam = (LPARAM) lpMidiHdr

Sent to a window when the specified MIDI system-exclusive or stream buffer has been played and is
being returned to the application.

· No return value.
hOutput

Handle of the MIDI output device that played the buffer.
lpMidiHdr

Address of a MIDIHDR structure identifying the buffer.

 MM_MOM_OPEN

MM_MOM_OPEN
wParam = (WPARAM) hOutput
lParam = reserved

Sent to a window when a MIDI output device is opened.

· No return value.
hOutput

Handle of the MIDI output device.
lParam

Reserved; do not use.

 MM_MOM_POSITIONCB

MM_MOM_POSITIONCB
wParam = (WPARAM) lpMidiHdr
lParam = reserved

Sent to a window when an MEVT_F_CALLBACK event is reached in the MIDI output stream.

· No return value.
lpMidiHdr

Address of a MIDIHDR structure that identifies the event that caused the callback. The dwOffset
member gives the offset of the event.

lParam
Reserved; do not use.

Playback of the stream buffer continues even while the callback function is executing. Any events after
the MEVT_F_CALLBACK event in the buffer will be scheduled and sent on time regardless of how
much time is spent in the callback function.

If position callbacks are being generated more quickly than your application can process them, the
dwOffset member of the MIDIHDR structure might refer to an event your application has not yet
processed.

 MOM_CLOSE

MOM_CLOSE
dwParam1 = reserved
dwParam2 = reserved

Sent to a MIDI output callback function when a MIDI output device is closed.

· No return value.
dwParam1 and dwParam2

Reserved; do not use.

The device handle is no longer valid after this message has been sent.

 MOM_DONE

MOM_DONE
dwParam1 = (DWORD) lpMidiHdr
dwParam2 = reserved

Sent to a MIDI output callback function when the specified system-exclusive or stream buffer has been
played and is being returned to the application.

· No return value.
lpMidiHdr

Address of a MIDIHDR structure identifying the buffer.
dwParam2

Reserved; do not use.

 MOM_OPEN

MOM_OPEN
dwParam1 = reserved
dwParam2 = reserved

Sent to a MIDI output callback function when a MIDI output device is opened.

· No return value.
dwParam1 and dwParam2

Reserved; do not use.

 MOM_POSITIONCB

MOM_POSITIONCB
dwParam1 = (DWORD) hOutput
dwParam2 = (DWORD) lpMidiHdr

Sent to a window when a MEVT_F_CALLBACK event is reached in the MIDI output stream.

· No return value.
hOutput

Handle of the MIDI output device.
lpMidiHdr

Address of a MIDIHDR structure that identifies the event that caused the callback function. The
dwOffset member gives the offset of the event.

Playback of the stream buffer continues even while the callback function is executing. Any events after
the MEVT_F_CALLBACK event in the buffer will be scheduled and sent on time regardless of how
much time is spent in the callback function.

If position callbacks are being generated more quickly than your application can process them, the
dwOffset member of the MIDIHDR structure might refer to an event your application has not yet
processed.

 Audio Mixers

Audio mixer services control the routing of audio lines to a destination device for playing or recording.
These services can also control volume and other effects. Many of the techniques required to use
these services are similar to those for audio devices discussed in other chapters. This section presents
general information about using audio mixer services.

 Mixer Architecture

The basic element of the mixer architecture is an audio line. An audio line consists of one or more
channels of data originating from a single source or a system resource. For example, a stereo audio
line has two data channels, but it is considered a single audio line because it originates from a single
source.

The mixer architecture provides routing services to manage audio lines on a computer. You can use the
routing services if you have adequate hardware devices and software drivers installed. The mixer
architecture allows several audio source lines to map to a single destination audio line.

Each audio line can have mixer controls associated with it. A mixer control can perform any number of
functions (such as control volume), depending on the characteristics of the associated audio line.

 Control Types

The mixer services include the following classes of standard controls to associate with audio lines:

· Custom controls
· Faders
· Lists
· Meters
· Numbers
· Sliders
· Switches
· Time controls

 Audio Mixer Custom Controls

Custom controls are the most generic. This control allows a mixer driver to define the control's
characteristics, and by implication, the visual representation of the control.

 Faders

The fader controls are typically vertical controls that can be adjusted up or down. These controls have
a linear scale and use the MIXERCONTROLDETAILS_UNSIGNED structure to retrieve and set control
details. Types of faders include the following:

Control Description
Fader General fade control. The range of acceptable values is 0

through 65,535.
Volume General volume fade control. The range of acceptable values is

0 through 65,535. For information about changing this range,
see the documentation for your mixer device.

Bass Bass volume fade control. The range of acceptable values is 0
through 65,535. The limits of the bass frequency band are
hardware specific. For information about band limits, see the
documentation for your mixer device.

Treble Treble volume fade control. The range of acceptable values is 0
through 65,535. The limits of the treble frequency band are
hardware specific. For information about the band limits, see
the documentation for your mixer device.

Equalize
r

Graphic equalizer control. The range of acceptable values for
one band of the equalizer is 0 through 65,535. The number of
equalizer bands and their limits are hardware specific. For
information about the equalizer, see the documentation for your
mixer device. You can use the
MIXERCONTROLDETAILS_LISTTEXT structure to retrieve
text labels for the equalizer.

 Lists

The list controls provide single-select or multiple-select states for complex audio lines. These controls
use the MIXERCONTROLDETAILS_BOOLEAN structure to retrieve and set control properties. The
MIXERCONTROLDETAILS_LISTTEXT structure is also used to retrieve all text descriptions of a
multiple-item control. Types of list controls include the following:

Control Description
Single-select Restricts the control selection to one item at a time.

Unlike the multiplexer control, this control can be used
to control more than audio source lines. For example,
you could use this control to select a low-pass filter from
a list of filters supported by a mixer device.

Multiplexer
(MUX)

Restricts the line selection to one source line at a time.

Multiple-select Allows the user to select multiple items from a list
simultaneously. Unlike the mixer control, the multiple-
select control can be used to control more than audio
source lines.

Mixer Allows the user to select source lines from a list
simultaneously.

 Meters

The meter controls measure data passing through an audio line. These controls use the
MIXERCONTROLDETAILS_BOOLEAN, MIXERCONTROLDETAILS_SIGNED, and
MIXERCONTROLDETAILS_UNSIGNED structures to retrieve and set control properties. Types of
meters include the following:

Control Description

Boolean Measures whether an integer value is FALSE/OFF
(zero) or TRUE/ON (nonzero).

Peak Measures the deflection from 0 in both the positive
and negative directions. The range of integer values
for the peak meter is - 32,768 through 32,767.

Signed Measures integer values in the range of - 2 (31)
through (2 (31) - 1). The mixer driver defines the
limits of this meter.

Unsigned Measures integer values in the range of 0 through (2

(32) - 1). The mixer driver defines the limits of this
meter.

 Numbers

The number controls allow the user to enter numerical data associated with a line. The numerical data
is expressed as signed integers, unsigned integers, or integer decibel values. These controls use the
MIXERCONTROLDETAILS_SIGNED and MIXERCONTROLDETAILS_UNSIGNED structures to
retrieve and set control properties. Types of number controls include the following:

Control Description
Signed Allows integer values entered in the range of - 2 (31)

through (2 (31) - 1).
Unsigned Allows integer values entered in the range of 0

through (2 (32) - 1).
Decibel Allows integer decibel values to be entered, in tenths

of decibels. The range of values for this control is -
32,768 through 32,767.

Percent Allows values to be entered as percentages.

 Sliders

The slider controls are typically horizontal controls that can be adjusted to the left or right. These
controls use the MIXERCONTROLDETAILS_SIGNED structure to retrieve and set control properties.
Types of sliders include the following:

Control Description
Slider Has a range of - 32,768 through 32,767. The mixer

driver defines the limits of this control.
Pan Has a range of -32,768 through 32,767. The mixer

driver defines the limits of this control, with 0 as the
midrange value.

QSound® Pan Provides expanded sound control through QSound.
This control has a range of -15 through 15.

 Switches

The switch controls are two-state switches. These controls use the
MIXERCONTROLDETAILS_BOOLEAN structure to retrieve and set control properties. Types of
switches include the following:

Control Description
Boolean The generic switch. It can be set to TRUE or FALSE.
Button Set to TRUE for all buttons in an application that the

driver should handle as though they had been
pressed. If the value is FALSE, no action is taken.

On/Off An alternative switch that is represented by a different
graphic than the Boolean switch. It can be set to ON
or OFF.

Mute Mutes an audio line (suppressing the data flow of the
line) or allows the audio data to play. This switch is
frequently used to help control the lines feeding into
the mixer.

Mono Switches between mono and stereo output for a
stereo audio line. Set to OFF to play stereo data as
separate channels. Set to ON to combine data from
both channels into a mono audio line.

Loudness Boosts low-volume bass for an audio line. Set to ON
to boost low-volume bass. Set to OFF to set volume
levels to normal. The amount of boost is hardware
specific. For more information, see the documentation
for your mixer device.

Stereo Enhanced Increases stereo separation. Set to ON to increase
stereo separation. Set to OFF for no enhancement.

 Time Controls

The time controls allow the user to enter timing-related data, such as an echo delay or reverberation.
The time data is expressed as positive integers. Types of time controls include the following:

Control Description
Microsecond Supports timing data expressed in microseconds. The

range of acceptable values is 0 through (2 (32) -1).
Millisecond Supports timing data expressed in milliseconds. The

range of acceptable values is 0 through (2 (32) -1).

 Mixer Device Queries

The mixer services provide functions for determining the number of mixer devices present in the
system and the capabilities of the devices. You can also use a mixer services function to determine the
device identifier for a mixer device.

You can use the mixerGetNumDevs function to determine how many mixer devices are present in the
system. Mixer devices are identified by a device identifier. Device identifiers are determined implicitly
from the number of devices present in a given system. They range from zero through one less than the
number of devices present.

Before using a mixer device, you must determine its capabilities. Audio capabilities can vary from one
multimedia computer to another, so applications should not make assumptions about audio hardware.

You can use the mixerGetDevCaps function to determine the capabilities of mixer devices. This
function fills a MIXERCAPS structure with information about the capabilities of a specified device.

The mixerGetID function retrieves the audio mixer device identifier associated with a specified device
handle. For example, you could use this function to retrieve the device identifier for an audio mixer and
then use the device identifier to adjust the volume or to display another control.

 Opening and Closing Mixer Devices

When you want to use a mixer device, you can either simply begin using it or you can explicitly open
the device before using it. Explicitly opening a mixer device offers two main benefits:

· It guarantees the continued existence of that mixer device.
· It lets you receive notification of audio line and control changes.

You can use the mixerOpen function to explicitly open a mixer device. This function takes as
parameters a device identifier, a pointer to a memory location, and other values unique to each type of
device. The memory location is filled with a device handle. Use this device handle to identify the open
mixer device when calling other audio mixer functions. As long as a handle of a mixer device exists, the
device continues to exist in the system. If a configuration change occurs to the mixer device and it
hasn't been explicitly opened, your application might suddenly be unable to access it.

Note The difference between device identifiers and device handles is important. Device handles are
returned when you open a device driver by using mixerOpen. Device identifiers are determined
implicitly from the number of devices present in a system, which is obtained by using the
mixerGetNumDevs function.

You can use the mixerClose function to close a mixer device. You should close the device after you
finish using it.

 Window Callback Services

The mixer services provide window callback services so that your application can process messages
from mixer drivers. To use these services, specify the CALLBACK_WINDOW flag in the fdwOpen
parameter and a window handle in the dwCallback parameter of the mixerOpen function. Driver
messages are sent to the window procedure function for the window identified by the handle in
dwCallback. The messages are specific to the audio device type.

 Audio Line and Control Queries

The mixer services provide functions for determining information about audio lines, audio line controls,
and control details. The services also provide functions for setting control details.

You can use the mixerGetLineInfo function to retrieve information about a specified audio line. This
function fills the MIXERLINE structure for a specified source audio line, destination audio line, or line
identifier. The structure includes the destination line number, the number of channels in the audio line,
as well as a short and a long name for the audio line.

The mixerGetLineControls function retrieves general information about one or more controls
associated with an audio line. This function fills the MIXERLINECONTROLS structure with information
about the specified control or controls. You can use mixerGetLineControls to retrieve control
properties for one of the following:

· All controls for a specified source line
· Specified control for a specified source line
· First control of a specific class for a specified source line

The mixerGetControlDetails function retrieves properties of a single control associated with an audio
line. This function fills the MIXERCONTROLDETAILS structure with the current values for a control.

The mixerSetControlDetails function uses the contents of the MIXERCONTROLDETAILS structure to
set the properties of the specified control. You must ensure all members of this structure are filled
before you call mixerSetControlDetails.

 Audio Mixer Reference

This section describes the functions, structures, and messages associated with audio mixers. These
elements are grouped as follows.

Querying Devices

MIXERCAPS
mixerGetDevCaps
mixerGetNumDevs
Opening and Closing

mixerClose
mixerOpen
Retrieving Mixer Identifiers

mixerGetID
Retrieving Line Controls

MIXERCONTROL
mixerGetLineControls
MIXERLINECONTROLS
Changing Control Attributes

MIXERCONTROLDETAILS
MIXERCONTROLDETAILS_BOOLEAN
MIXERCONTROLDETAILS_LISTTEXT
MIXERCONTROLDETAILS_SIGNED
MIXERCONTROLDETAILS_UNSIGNED
mixerGetControlDetails
mixerSetControlDetails
Retrieving Line Information

mixerGetLineInfo
MIXERLINE
MM_MIXM_CONTROL_CHANGE
MM_MIXM_LINE_CHANGE
Sending User-Defined Messages

mixerMessage

 mixerClose

MMRESULT mixerClose(HMIXER hmx);

Closes the specified mixer device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.

hmx
Handle of the mixer device. This handle must have been returned successfully by the mixerOpen
function. If mixerClose is successful, hmx is no longer valid.

 mixerGetControlDetails

MMRESULT mixerGetControlDetails(HMIXEROBJ hmxobj,
 LPMIXERCONTROLDETAILS pmxcd, DWORD fdwDetails);

Retrieves details about a single control associated with an audio line.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIXERR_INVALCONTROL The control reference is invalid.
MMSYSERR_BADDEVICEID The hmxobj parameter specifies an

invalid device identifier.
MMSYSERR_INVALFLAG One or more flags are invalid.
MMSYSERR_INVALHANDLE The hmxobj parameter specifies an

invalid handle.
MMSYSERR_INVALPARAM One or more parameters are invalid.
MMSYSERR_NODRIVER No mixer device is available for the

object specified by hmxobj.

hmxobj
Handle of the mixer device object being queried.

pmxcd
Address of a MIXERCONTROLDETAILS structure, which is filled with state information about the
control.

fdwDetails
Flags for retrieving control details. The following values are defined:
MIXER_GETCONTROLDETAILSF_LISTTEXT

The paDetails member of the MIXERCONTROLDETAILS structure points to one or more
MIXERCONTROLDETAILS_LISTTEXT structures to receive text labels for multiple-item controls.
An application must get all list text items for a multiple-item control at once. This flag cannot be
used with MIXERCONTROL_CONTROLTYPE_CUSTOM controls.

MIXER_GETCONTROLDETAILSF_VALUE
Current values for a control are retrieved. The paDetails member of the
MIXERCONTROLDETAILS structure points to one or more details structures appropriate for the
control class.

MIXER_OBJECTF_AUX
The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN
The hmxobj parameter is the handle of a MIDI (Musical Instrument Digital Interface) input device.
This handle must have been returned by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT
The hmxobj parameter is the handle of a MIDI output device. This handle must have been
returned by the midiOutOpen function.

MIXER_OBJECTF_HMIXER
The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is
optional.

MIXER_OBJECTF_HWAVEIN
The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT
The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen

function.
MIXER_OBJECTF_MIDIIN

The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT
The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER
The hmxobj parameter is the identifier of a mixer device in the range of zero to one less than the
number of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN
The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to
one less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT
The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to
one less than the number of devices returned by the waveOutGetNumDevs function.

All members of the MIXERCONTROLDETAILS structure must be initialized before calling this function.

 mixerGetDevCaps

MMRESULT mixerGetDevCaps(UINT uMxId, LPMIXERCAPS pmxcaps,
 UINT cbmxcaps);

Queries a specified mixer device to determine its capabilities.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVICEI
D

The specified device identifier is out of
range.

MMSYSERR_INVALHANDL
E

The mixer device handle is invalid.

MMSYSERR_INVALPARAM One or more parameters are invalid.

uMxId
Identifier or handle of an open mixer device.

pmxcaps
Address of a MIXERCAPS structure that receives information about the capabilities of the device.

cbmxcaps
Size, in bytes, of the MIXERCAPS structure.

Use the mixerGetNumDevs function to determine the number of mixer devices present in the system.
The device identifier specified by uMxId varies from zero to one less than the number of mixer devices
present.

Only the number of bytes (or less) of information specified in cbmxcaps is copied to the location
pointed to by pmxcaps. If cbmxcaps is zero, nothing is copied, and the function returns successfully.

This function also accepts a mixer device handle returned by the mixerOpen function as the uMxId
parameter. The application should cast the HMIXER handle to a UINT.

 mixerGetID

MMRESULT mixerGetID(HMIXEROBJ hmxobj, UINT FAR * puMxId, DWORD fdwId);

Retrieves the device identifier for a mixer device associated with a specified device handle.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVICEI
D

The hmxobj parameter specifies an
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.
MMSYSERR_INVALHANDL
E

The hmxobj parameter specifies an
invalid handle.

MMSYSERR_INVALPARAM One or more parameters are invalid.
MMSYSERR_NODRIVER No audio mixer device is available for the

object specified by hmxobj. The location
referenced by puMxId also contains the
value -1.

hmxobj
Handle of the audio mixer object to map to a mixer device identifier.

puMxId
Address of a variable that receives the mixer device identifier. If no mixer device is available for the
hmxobj object, the value - 1 is placed in this location and the MMSYSERR_NODRIVER error value
is returned.

fdwId
Flags for mapping the mixer object hmxobj. The following values are defined:
MIXER_OBJECTF_AUX

The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN
The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT
The hmxobj parameter is the handle of a MIDI output device. This handle must have been
returned by the midiOutOpen function.

MIXER_OBJECTF_HMIXER
The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is
optional.

MIXER_OBJECTF_HWAVEIN
The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT
The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen
function.

MIXER_OBJECTF_MIDIIN
The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT
The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER

The hmxobj parameter is the identifier of a mixer device in the range of zero to one less than the
number of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN
The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to
one less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT
The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to
one less than the number of devices returned by the waveOutGetNumDevs function.

 mixerGetLineControls

MMRESULT mixerGetLineControls(HMIXEROBJ hmxobj,
 LPMIXERLINECONTROLS pmxlc, DWORD fdwControls);

Retrieves one or more controls associated with an audio line.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIXERR_INVALCONTROL The control reference is invalid.
MIXERR_INVALLINE The audio line reference is invalid.
MMSYSERR_BADDEVICEID The hmxobj parameter specifies an

invalid device identifier.
MMSYSERR_INVALFLAG One or more flags are invalid.
MMSYSERR_INVALHANDLE The hmxobj parameter specifies an

invalid handle.
MMSYSERR_INVALPARAM One or more parameters are invalid.
MMSYSERR_NODRIVER No mixer device is available for the

object specified by hmxobj.

hmxobj
Handle of the mixer device object that is being queried.

pmxlc
Address of a MIXERLINECONTROLS structure. This structure is used to reference one or more
MIXERCONTROL structures to be filled with information about the controls associated with an audio
line. The cbStruct member of the MIXERLINECONTROLS structure must always be initialized to be
the size, in bytes, of the MIXERLINECONTROLS structure.

fdwControls
Flags for retrieving information about one or more controls associated with an audio line. The
following values are defined:
MIXER_GETLINECONTROLSF_ALL

The pmxlc parameter references a list of MIXERCONTROL structures that will receive
information on all controls associated with the audio line identified by the dwLineID member of
the MIXERLINECONTROLS structure. The cControls member must be initialized to the number
of controls associated with the line. This number is retrieved from the cControls member of the
MIXERLINE structure returned by the mixerGetLineInfo function. The cbmxctrl member must
be initialized to the size, in bytes, of a single MIXERCONTROL structure. The pamxctrl member
must point to the first MIXERCONTROL structure to be filled. The dwControlID and
dwControlType members are ignored for this query.

MIXER_GETLINECONTROLSF_ONEBYID
The pmxlc parameter references a single MIXERCONTROL structure that will receive information
on the control identified by the dwControlID member of the MIXERLINECONTROLS structure.
The cControls member must be initialized to 1. The cbmxctrl member must be initialized to the
size, in bytes, of a single MIXERCONTROL structure. The pamxctrl member must point to a
MIXERCONTROL structure to be filled. The dwLineID and dwControlType members are
ignored for this query. This query is usually used to refresh a control after receiving a
MM_MIXM_CONTROL_CHANGE control change notification message by the user-defined
callback (see mixerOpen).

MIXER_GETLINECONTROLSF_ONEBYTYPE
The mixerGetLineControls function retrieves information about the first control of a specific
class for the audio line that is being queried. The pmxlc parameter references a single
MIXERCONTROL structure that will receive information about the specific control. The audio line

is identified by the dwLineID member. The control class is specified in the dwControlType
member of the MIXERLINECONTROLS structure.
The dwControlID member is ignored for this query. This query can be used by an application to
get information on a single control associated with a line. For example, you might want your
application to use a peak meter only from a waveform-audio output line.

MIXER_OBJECTF_AUX
The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN
The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT
The hmxobj parameter is the handle of a MIDI output device. This handle must have been
returned by the midiOutOpen function.

MIXER_OBJECTF_HMIXER
The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is
optional.

MIXER_OBJECTF_HWAVEIN
The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT
The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen
function.

MIXER_OBJECTF_MIDIIN
The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT
The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER
The hmxobj parameter is the identifier of a mixer device in the range of zero to one less than the
number of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN
The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to
one less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT
The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to
one less than the number of devices returned by the waveOutGetNumDevs function.

 mixerGetLineInfo

MMRESULT mixerGetLineInfo(HMIXEROBJ hmxobj, LPMIXERLINE pmxl,
 DWORD fdwInfo);

Retrieves information about a specific line of a mixer device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIXERR_INVALLINE The audio line reference is invalid.
MMSYSERR_BADDEVICEID The hmxobj parameter specifies an

invalid device identifier.
MMSYSERR_INVALFLAG One or more flags are invalid.
MMSYSERR_INVALHANDLE The hmxobj parameter specifies an

invalid handle.
MMSYSERR_INVALPARAM One or more parameters are invalid.
MMSYSERR_NODRIVER No mixer device is available for the

object specified by hmxobj.

hmxobj
Handle of the mixer device object that controls the specific audio line.

pmxl
Address of a MIXERLINE structure. This structure is filled with information about the audio line for
the mixer device. The cbStruct member must always be initialized to be the size, in bytes, of the
MIXERLINE structure.

fdwInfo
Flags for retrieving information about an audio line. The following values are defined:
MIXER_GETLINEINFOF_COMPONENTTYPE

The pmxl parameter will receive information about the first audio line of the type specified in the
dwComponentType member of the MIXERLINE structure. This flag is used to retrieve
information about an audio line of a specific component type. Remaining structure members
except cbStruct require no further initialization.

MIXER_GETLINEINFOF_DESTINATION
The pmxl parameter will receive information about the destination audio line specified by the
dwDestination member of the MIXERLINE structure. This index ranges from zero to one less
than the value in the cDestinations member of the MIXERCAPS structure. All remaining
structure members except cbStruct require no further initialization.

MIXER_GETLINEINFOF_LINEID
The pmxl parameter will receive information about the audio line specified by the dwLineID
member of the MIXERLINE structure. This is usually used to retrieve updated information about
the state of an audio line. All remaining structure members except cbStruct require no further
initialization.

MIXER_GETLINEINFOF_SOURCE
The pmxl parameter will receive information about the source audio line specified by the
dwDestination and dwSource members of the MIXERLINE structure. The index specified by
dwDestination ranges from zero to one less than the value in the cDestinations member of the
MIXERCAPS structure. The index specified by dwSource ranges from zero to one less than the
value in the cConnections member of the MIXERLINE structure returned for the audio line
stored in the dwDestination member. All remaining structure members except cbStruct require
no further initialization.

MIXER_GETLINEINFOF_TARGETTYPE
The pmxl parameter will receive information about the audio line that is for the dwType member

of the Target structure, which is a member of the MIXERLINE structure. This flag is used to
retrieve information about an audio line that handles the target type (for example,
MIXERLINE_TARGETTYPE_WAVEOUT). An application must initialize the dwType, wMid, wPid,
vDriverVersion and szPname members of the MIXERLINE structure before calling
mixerGetLineInfo. All of these values can be retrieved from the device capabilities structures for
all media devices. Remaining structure members except cbStruct require no further initialization.

MIXER_OBJECTF_AUX
The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN
The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT
The hmxobj parameter is the handle of a MIDI output device. This handle must have been
returned by the midiOutOpen function.

MIXER_OBJECTF_HMIXER
The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is
optional.

MIXER_OBJECTF_HWAVEIN
The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT
The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen
function.

MIXER_OBJECTF_MIDIIN
The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT
The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER
The hmxobj parameter is a mixer device identifier in the range of zero to one less than the
number of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN
The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to
one less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT
The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to
one less than the number of devices returned by the waveOutGetNumDevs function.

 mixerGetNumDevs

UINT mixerGetNumDevs(VOID);

Retrieves the number of mixer devices present in the system.

· Returns the number of mixer devices or zero if no mixer devices are available.

 mixerMessage

DWORD mixerMessage(HMIXER hmx, UINT uMsg, DWORD dwParam1,
 DWORD dwParam2);

Sends a custom mixer driver message directly to a mixer driver.

· Returns a value that is specific to the custom mixer driver message in the uMsg parameter.
MMSYSERR_INVALHANDLE The specified device handle is invalid.
MMSYSERR_INVALPARAM The uMsg parameter specified in the

MXDM_USER message is invalid.
MMSYSERR_NOTSUPPORT
ED

The mixer device did not process the
message.

hmx
Handle of an open instance of a mixer device. This handle is returned by the mixerOpen function.

uMsg
Custom mixer driver message to send to the mixer driver. This message must be above or equal to
the MXDM_USER constant.

dwParam1 and dwParam2
Arguments associated with the message being sent.

User-defined messages must be sent only to a mixer driver that supports the messages. The
application should verify that the mixer driver is the driver that supports the message by retrieving the
mixer capabilities and checking the wMid, wPid, vDriverVersion, and szPname members of the
MIXERCAPS structure.

 mixerOpen

MMRESULT mixerOpen(LPHMIXER phmx, UINT uMxId, DWORD dwCallback,
 DWORD dwInstance, DWORD fdwOpen);

Opens a specified mixer device and ensures that the device will not be removed until the application
closes the handle.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_ALLOCATED The specified resource is already

allocated by the maximum number of
clients possible.

MMSYSERR_BADDEVICEID The uMxId parameter specifies an
invalid device identifier.

MMSYSERR_INVALFLAG One or more flags are invalid.
MMSYSERR_INVALHANDLE The uMxId parameter specifies an

invalid handle.
MMSYSERR_INVALPARAM One or more parameters are invalid.
MMSYSERR_NODRIVER No mixer device is available for the

object specified by uMxId. Note that the
location referenced by uMxId will also
contain the value - 1.

MMSYSERR_NOMEM Unable to allocate resources.

phmx
Address of a variable that will receive a handle identifying the opened mixer device. Use this handle
to identify the device when calling other audio mixer functions. This parameter cannot be NULL.

uMxId
Identifier of the mixer device to open. Use a valid device identifier or any HMIXEROBJ (see the
mixerGetID function for a description of mixer object handles). A "mapper" for audio mixer devices
does not currently exist, so a mixer device identifier of - 1 is not valid.

dwCallback
Handle of a window called when the state of an audio line and/or control associated with the device
being opened is changed. Specify zero for this parameter if no callback mechanism is to be used.

dwInstance
User instance data passed to the callback function. This parameter is not used with window callback
functions.

fdwOpen
Flags for opening the device. The following values are defined:
CALLBACK_WINDOW

The dwCallback parameter is assumed to be a window handle.
MIXER_OBJECTF_AUX

The uMxId parameter is an auxiliary device identifier in the range of zero to one less than the
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN
The uMxId parameter is the handle of a MIDI input device. This handle must have been returned
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT
The uMxId parameter is the handle of a MIDI output device. This handle must have been returned
by the midiOutOpen function.

MIXER_OBJECTF_HMIXER
The uMxId parameter is a mixer device handle returned by the mixerOpen function. This flag is
optional.

MIXER_OBJECTF_HWAVEIN
The uMxId parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT
The uMxId parameter is a waveform-audio output handle returned by the waveOutOpen function.

MIXER_OBJECTF_MIDIIN
The uMxId parameter is the identifier of a MIDI input device. This identifier must be in the range of
zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT
The uMxId parameter is the identifier of a MIDI output device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER
The uMxId parameter is a mixer device identifier in the range of zero to one less than the number
of devices returned by the mixerGetNumDevs function. This flag is optional.

MIXER_OBJECTF_WAVEIN
The uMxId parameter is the identifier of a waveform-audio input device in the range of zero to one
less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT
The uMxId parameter is the identifier of a waveform-audio output device in the range of zero to
one less than the number of devices returned by the waveOutGetNumDevs function.

Use the mixerGetNumDevs function to determine the number of audio mixer devices present in the
system. The device identifier specified by uMxId varies from zero to one less than the number of
devices present.

If a window is chosen to receive callback information, the MM_MIXM_LINE_CHANGE and
MM_MIXM_CONTROL_CHANGE messages are sent to the window procedure function to indicate
when an audio line or control state changes. For both messages, the wParam parameter is the handle
of the mixer device. The lParam parameter is the line identifier for MM_MIXM_LINE_CHANGE or the
control identifier for MM_MIXM_CONTROL_CHANGE that changed state.

To query for audio mixer support or a media device, use the mixerGetID function.

 mixerSetControlDetails

MMRESULT mixerSetControlDetails(HMIXEROBJ hmxobj,
 LPMIXERCONTROLDETAILS pmxcd, DWORD fdwDetails);

Sets properties of a single control associated with an audio line.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MIXERR_INVALCONTROL The control reference is invalid.
MMSYSERR_BADDEVICEID The hmxobj parameter specifies an

invalid device identifier.
MMSYSERR_INVALFLAG One or more flags are invalid.
MMSYSERR_INVALHANDLE The hmxobj parameter specifies an

invalid handle.
MMSYSERR_INVALPARAM One or more parameters are invalid.
MMSYSERR_NODRIVER No mixer device is available for the

object specified by hmxobj.

hmxobj
Handle of the mixer device object for which properties are being set.

pmxcd
Address of a MIXERCONTROLDETAILS structure. This structure is used to reference control detail
structures that contain the desired state for the control.

fdwDetails
Flags for setting properties for a control. The following values are defined:
MIXER_OBJECTF_AUX

The hmxobj parameter is an auxiliary device identifier in the range of zero to one less than the
number of devices returned by the auxGetNumDevs function.

MIXER_OBJECTF_HMIDIIN
The hmxobj parameter is the handle of a MIDI input device. This handle must have been returned
by the midiInOpen function.

MIXER_OBJECTF_HMIDIOUT
The hmxobj parameter is the handle of a MIDI output device. This handle must have been
returned by the midiOutOpen function.

MIXER_OBJECTF_HMIXER
The hmxobj parameter is a mixer device handle returned by the mixerOpen function. This flag is
optional.

MIXER_OBJECTF_HWAVEIN
The hmxobj parameter is a waveform-audio input handle returned by the waveInOpen function.

MIXER_OBJECTF_HWAVEOUT
The hmxobj parameter is a waveform-audio output handle returned by the waveOutOpen
function.

MIXER_OBJECTF_MIDIIN
The hmxobj parameter is the identifier of a MIDI input device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiInGetNumDevs function.

MIXER_OBJECTF_MIDIOUT
The hmxobj parameter is the identifier of a MIDI output device. This identifier must be in the range
of zero to one less than the number of devices returned by the midiOutGetNumDevs function.

MIXER_OBJECTF_MIXER
The hmxobj parameter is a mixer device identifier in the range of zero to one less than the

number of devices returned by the mixerGetNumDevs function. This flag is optional.
MIXER_OBJECTF_WAVEIN

The hmxobj parameter is the identifier of a waveform-audio input device in the range of zero to
one less than the number of devices returned by the waveInGetNumDevs function.

MIXER_OBJECTF_WAVEOUT
The hmxobj parameter is the identifier of a waveform-audio output device in the range of zero to
one less than the number of devices returned by the waveOutGetNumDevs function.

MIXER_SETCONTROLDETAILSF_CUSTOM
A custom dialog box for the specified custom mixer control is displayed. The mixer device gathers
the required information from the user and returns the data in the specified buffer. The handle for
the owning window is specified in the hwndOwner member of the MIXERCONTROLDETAILS
structure. (This handle can be set to NULL.) The application can then save the data from the
dialog box and use it later to reset the control to the same state by using the
MIXER_SETCONTROLDETAILSF_VALUE flag.

MIXER_SETCONTROLDETAILSF_VALUE
The current value(s) for a control are set. The paDetails member of the
MIXERCONTROLDETAILS structure points to one or more mixer-control details structures of the
appropriate class for the control.

All members of the MIXERCONTROLDETAILS structure must be initialized before calling
mixerSetControlDetails.

If an application needs to retrieve only the current state of a custom mixer control and not display a
dialog box, then mixerGetControlDetails can be used with the
MIXER_GETCONTROLDETAILSF_VALUE flag.

 MIXERCAPS

typedef struct {
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 DWORD fdwSupport;
 DWORD cDestinations;
} MIXERCAPS;

Describes the capabilities of a mixer device.

wMid
A manufacturer identifier for the mixer device driver. For more information about manufacturer
identifiers, see Chapter 0, "Manufacturer and Product Identifiers."

wPid
A product identifier for the mixer device driver. For more information about product identifiers, see
Chapter 0, "Manufacturer and Product Identifiers."

vDriverVersion
Version number of the mixer device driver. The high-order byte is the major version number, and the
low-order byte is the minor version number.

szPname
Name of the product. If the mixer device driver supports multiple cards, this string must uniquely and
easily identify (potentially to a user) the specific card.

fdwSupport
Various support information for the mixer device driver. No extended support bits are currently
defined.

cDestinations
The number of audio line destinations available through the mixer device. All mixer devices must
support at least one destination line, so this member cannot be zero. Destination indexes used in
the dwDestination member of the MIXERLINE structure range from zero to the value specified in
the cDestinations member minus one.

 MIXERCONTROL

typedef struct {
 DWORD cbStruct;
 DWORD dwControlID;
 DWORD dwControlType;
 DWORD fdwControl;
 DWORD cMultipleItems;
 CHAR szShortName[MIXER_SHORT_NAME_CHARS];
 CHAR szName[MIXER_LONG_NAME_CHARS];
 union { // start Bounds union
 struct {
 LONG lMinimum;
 LONG lMaximum;
 };
 struct {
 DWORD dwMinimum;
 DWORD dwMaximum;
 };
 DWORD dwReserved[6];
 } Bounds;
 union { // start Metrics union
 DWORD cSteps;
 DWORD cbCustomData;
 DWORD dwReserved[6]; // reserved; do not use.
 } Metrics;
} MIXERCONTROL, *PMIXERCONTROL, FAR *LPMIXERCONTROL;

Describes the state and metrics of a single control for an audio line.

cbStruct
Size, in bytes, of the MIXERCONTROL structure.

dwControlID
Audio mixer-defined identifier that uniquely refers to the control described by the MIXERCONTROL
structure. This identifier can be in any format supported by the mixer device. An application should
use this identifier only as an abstract handle. No two controls for a single mixer device can ever
have the same control identifier.

dwControlType
Class of the control for which the identifier is specified in dwControlID. An application must use this
information to display the appropriate control for input from the user. An application can also display
tailored graphics based on the control class or search for a particular control class on a specific line.
If an application does not know about a control class, this control must be ignored. There are eight
control class classifications, each with one or more standard control types:
MIXERCONTROL_CT_CLASS_CUSTOM

MIXERCONTROL_CONTROLTYPE_CUSTOM
MIXERCONTROL_CT_CLASS_FADER

MIXERCONTROL_CONTROLTYPE_BASS
MIXERCONTROL_CONTROLTYPE_EQUALIZER
MIXERCONTROL_CONTROLTYPE_FADER
MIXERCONTROL_CONTROLTYPE_TREBLE
MIXERCONTROL_CONTROLTYPE_VOLUME

MIXERCONTROL_CT_CLASS_LIST
MIXERCONTROL_CONTROLTYPE_MIXER
MIXERCONTROL_CONTROLTYPE_MULTIPLESELECT

MIXERCONTROL_CONTROLTYPE_MUX
MIXERCONTROL_CONTROLTYPE_SINGLESELECT

MIXERCONTROL_CT_CLASS_METER
MIXERCONTROL_CONTROLTYPE_BOOLEANMETER
MIXERCONTROL_CONTROLTYPE_PEAKMETER
MIXERCONTROL_CONTROLTYPE_SIGNEDMETER
MIXERCONTROL_CONTROLTYPE_UNSIGNEDMETER

MIXERCONTROL_CT_CLASS_NUMBER
MIXERCONTROL_CONTROLTYPE_DECIBELS
MIXERCONTROL_CONTROLTYPE_PERCENT
MIXERCONTROL_CONTROLTYPE_SIGNED
MIXERCONTROL_CONTROLTYPE_UNSIGNED

MIXERCONTROL_CT_CLASS_SLIDER
MIXERCONTROL_CONTROLTYPE_PAN
MIXERCONTROL_CONTROLTYPE_QSOUNDPAN
MIXERCONTROL_CONTROLTYPE_SLIDER

MIXERCONTROL_CT_CLASS_SWITCH
MIXERCONTROL_CONTROLTYPE_BOOLEAN
MIXERCONTROL_CONTROLTYPE_BUTTON
MIXERCONTROL_CONTROLTYPE_LOUDNESS
MIXERCONTROL_CONTROLTYPE_MONO
MIXERCONTROL_CONTROLTYPE_MUTE
MIXERCONTROL_CONTROLTYPE_ONOFF
MIXERCONTROL_CONTROLTYPE_STEREOENH

MIXERCONTROL_CT_CLASS_TIME
MIXERCONTROL_CONTROLTYPE_MICROTIME
MIXERCONTROL_CONTROLTYPE_MILLITIME

fdwControl
Status and support flags for the audio line control. The following values are defined:
MIXERCONTROL_CONTROLF_DISABLED

The control is disabled, perhaps due to other settings for the mixer hardware, and cannot be
used. An application can read current settings from a disabled control, but it cannot apply
settings.

MIXERCONTROL_CONTROLF_MULTIPLE
The control has two or more settings per channel. An equalizer, for example, requires this flag
because each frequency band can be set to a different value. An equalizer that affects both
channels of a stereo line in a uniform fashion will also specify the
MIXERCONTROL_CONTROLF_UNIFORM flag.

MIXERCONTROL_CONTROLF_UNIFORM
The control acts on all channels of a multichannel line in a uniform fashion. For example, a control
that mutes both channels of a stereo line would set this flag. Most
MIXERCONTROL_CONTROLTYPE_MUX and MIXERCONTROL_CONTROLTYPE_MIXER
controls also specify the MIXERCONTROL_CONTROLF_UNIFORM flag.

cMultipleItems
Number of items per channel that make up a MIXERCONTROL_CONTROLF_MULTIPLE control.
This number is always two or greater for multiple-item controls. If the control is not a multiple-item
control, do not use this member; it will be zero.

szShortName
Short string that describes the audio line control specified by dwControlID. This description should
be appropriate to use as a concise label for the control.

szName
String that describes the audio line control specified by dwControlID. This description should be

appropriate to use as a complete description for the control.
Bounds

Union of boundary types.
lMinimum

Minimum signed value for a control that has a signed boundary nature. This member cannot be used
in conjunction with dwMinimun.

lMaximum
Maximum signed value for a control that has a signed boundary nature. This member cannot be
used in conjunction with dwMaximun.

dwMinimum
Minimum unsigned value for a control that has an unsigned boundary nature. This member cannot
be used in conjunction with lMinimun.

dwMaximum
Maximum unsigned value for a control that has an unsigned boundary nature. This member cannot
be used in conjunction with lMaximum.

Metrics
Union of boundary metrics.

cSteps
Number of discrete ranges within the union specified for a control specified by the Bounds member.
This member overlaps with the other members of the Metrics structure member and cannot be used
in conjunction with those members.

cbCustomData
Size, in bytes, required to contain the state of a custom control class. This member is appropriate
only for the MIXERCONTROL_CONTROLTYPE_CUSTOM control class.
To determine if the dwMinimum, dwMaximum, lMinimum, lMaximum, cSteps, and
cbCustomData members are appropriate for a control class, see "Control Types" earlier in this
chapter.
The calling application does not need to initialize any members of this structure because the
MIXERCONTROL structure is passed to the mixerGetLineControls function as a receiving buffer
that is referenced and described by the MIXERLINECONTROLS structure. When
mixerGetLineControls returns, the cbStruct member contains the actual size of the information
returned by the mixer device. The returned information will not exceed the requested size, nor will it
be smaller than the MIXERCONTROL structure.

 MIXERCONTROLDETAILS

typedef struct {
 DWORD cbStruct;
 DWORD dwControlID;
 DWORD cChannels;
 union {
 HWND hwndOwner;
 DWORD cMultipleItems;
 };
 DWORD cbDetails;
 LPVOID paDetails;
} MIXERCONTROLDETAILS;

Refers to control-detail structures, retrieving or setting state information of an audio mixer control. All
members of this structure must be initialized before calling the mixerGetControlDetails and
mixerSetControlDetails functions.

cbStruct
Size, in bytes, of the MIXERCONTROLDETAILS structure. The size must be large enough to
contain the base MIXERCONTROLDETAILS structure. When mixerGetControlDetails returns, this
member contains the actual size of the information returned. The returned information will not
exceed the requested size, nor will it be smaller than the base MIXERCONTROLDETAILS structure.

dwControlID
Control identifier on which to get or set properties.

cChannels
Number of channels on which to get or set control properties. The following values are defined:
0

Use this value when the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control.
1

Use this value when the control is a MIXERCONTROL_CONTROLF_UNIFORM control or when
an application needs to get and set all channels as if they were uniform.

MIXERLINE.cChannels
Use this value when the properties for the control are expected on all channels for a line.

An application cannot specify a value that falls between 1 and the number of channels for the audio
line. For example, specifying 2 or 3 for a four-channel line is not valid. This member cannot be 0 for
noncustom control types.

hwndOwner
Handle of the window that owns a custom dialog box for a mixer control. This member is used when
the MIXER_SETCONTROLDETAILSF_CUSTOM flag is specified in the mixerSetControlDetails
function.

cMultipleItems
Number of multiple items per channel on which to get or set properties. The following values are
defined:
0

Use this value for all controls except for a MIXERCONTROL_CONTROLF_MULTIPLE or a
MIXERCONTROL_CONTROLTYPE_CUSTOM control.

MIXERCONTROL.cMultipleItems
Use this value when the control class is MIXERCONTROL_CONTROLF_MULTIPLE.

MIXERCONTROLDETAILS.hwndOwner
Use this value when the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control and
the MIXER_SETCONTROLDETAILSF_CUSTOM flag is specified for the

mixerSetControlDetails function. In this case, the hwndOwner member overlaps with
cMultipleItems, providing the value of the window handle.

When using a MIXERCONTROL_CONTROLTYPE_CUSTOM control without the
MIXERCONTROL_CONTROLTYPE_CUSTOM flag, specify zero for this member.
An application cannot specify any value other than the value specified in the cMultipleItems
member of the MIXERCONTROL structure for a MIXERCONTROL_CONTROLF_MULTIPLE
control.

cbDetails
Size, in bytes, of one of the following details structures being used:
MIXERCONTROLDETAILS_BOOLEAN

Boolean value for an audio line control.
MIXERCONTROLDETAILS_LISTTEXT

List text buffer for an audio line control. For information about the appropriate details structure for
a specific control, see "Control Types" earlier in this chapter.

MIXERCONTROLDETAILS_SIGNED
Signed value for an audio line control.

MIXERCONTROLDETAILS_UNSIGNED
Unsigned value for an audio line control.

If the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control, this member must be equal
to the cbCustomData member of the MIXERCONTROL structure.

paDetails
Address of an array of one or more structures in which properties for the specified control are
retrieved or set. For MIXERCONTROL_CONTROLF_MULTIPLE controls, the size of this buffer
should be the product of the cChannels, cMultipleItems and cbDetails members of the
MIXERCONTROLDETAILS structure. For controls other than
MIXERCONTROL_CONTROLF_MULTIPLE types, the size of this buffer is the product of the
cChannels and cbDetails members of the MIXERCONTROLDETAILS structure.
For controls that are MIXERCONTROL_CONTROLF_MULTIPLE types, the array can be treated as
a two-dimensional array that is channel major. That is, all multiple items for the left channel are
given, then all multiple items for the right channel, and so on.
For controls other than MIXERCONTROL_CONTROLF_MULTIPLE types, each element index is
equivalent to the zero-based channel that it affects. That is, paDetails[0] is for the left channel and
paDetails[1] is for the right channel.
If the control is a MIXERCONTROL_CONTROLTYPE_CUSTOM control, this member must point to
a buffer that is at least large enough to contain the size, in bytes, specified by the cbCustomData
member of the MIXERCONTROL structure.

 MIXERCONTROLDETAILS_BOOLEAN

typedef struct {
 LONG fValue;
} MIXERCONTROLDETAILS_BOOLEAN;

Retrieves and sets Boolean control properties for an audio mixer control.

fValue
Boolean value for a single item or channel. This value is assumed to be zero for a FALSE state
(such as off or disabled), and nonzero for a TRUE state (such as on or enabled).

The following standard control types use this structure for retrieving and setting properties.

Meter controls:
MIXERCONTROL_CONTROLTYPE_BOOLEANMETER

Switch controls:
MIXERCONTROL_CONTROLTYPE_BOOLEAN
MIXERCONTROL_CONTROLTYPE_BUTTON
MIXERCONTROL_CONTROLTYPE_LOUDNESS
MIXERCONTROL_CONTROLTYPE_MONO
MIXERCONTROL_CONTROLTYPE_MUTE
MIXERCONTROL_CONTROLTYPE_ONOFF
MIXERCONTROL_CONTROLTYPE_STEREOENH

List controls:
MIXERCONTROL_CONTROLTYPE_MIXER
MIXERCONTROL_CONTROLTYPE_MULTIPLESELECT
MIXERCONTROL_CONTROLTYPE_MUX
MIXERCONTROL_CONTROLTYPE_SINGLESELECT

 MIXERCONTROLDETAILS_LISTTEXT

typedef struct {
 DWORD dwParam1;
 DWORD dwParam2;
 CHAR szName[MIXER_LONG_NAME_CHARS];
} MIXERCONTROLDETAILS_LISTTEXT;

Retrieves list text, label text, and/or band-range information for multiple-item controls. This structure is
used when the MIXER_GETCONTROLDETAILSF_LISTTEXT flag is specified in the
mixerGetControlDetails function.

dwParam1 and dwParam2
Control class-specific values. The following control types are listed with their corresponding values:
EQUALIZER

MIXERCONTROL.Bounds.dwMinimum
MIXER and MUX

MIXERLINE.dwLineID
MULTIPLESELECT and SINGLESELECT

Undefined; must be zero
szName

Name describing a single item in a multiple-item control. This text can be used as a label or item
text, depending on the control class.

The following standard control types use this structure for retrieving the item text descriptions on
multiple-item controls:

Fader control:
MIXERCONTROL_CONTROLTYPE_EQUALIZER

List controls:
MIXERCONTROL_CONTROLTYPE_MIXER
MIXERCONTROL_CONTROLTYPE_MULTIPLESELECT
MIXERCONTROL_CONTROLTYPE_MUX
MIXERCONTROL_CONTROLTYPE_SINGLESELECT

 MIXERCONTROLDETAILS_SIGNED

typedef struct {
 LONG lValue;
} MIXERCONTROLDETAILS_SIGNED;

Retrieves and sets signed type control properties for an audio mixer control.

lValue
Signed integer value for a single item or channel. This value must be inclusively within the bounds
given in the Bounds member of this structure for signed integer controls.

The following standard control types use this structure for retrieving and setting properties:

Meter controls:
MIXERCONTROL_CONTROLTYPE_PEAKMETER
MIXERCONTROL_CONTROLTYPE_SIGNEDMETER

Member controls:
MIXERCONTROL_CONTROLTYPE_SIGNED

Number controls:
MIXERCONTROL_CONTROLTYPE_DECIBELS

Slider controls:
MIXERCONTROL_CONTROLTYPE_PAN
MIXERCONTROL_CONTROLTYPE_QSOUNDPAN
MIXERCONTROL_CONTROLTYPE_SLIDER

 MIXERCONTROLDETAILS_UNSIGNED

typedef struct {
 DWORD dwValue;
} MIXERCONTROLDETAILS_UNSIGNED;

Retrieves and sets unsigned type control properties for an audio mixer control.

dwValue
Unsigned integer value for a single item or channel. This value must be inclusively within the bounds
given in the Bounds structure member of the MIXERCONTROL structure for unsigned integer
controls.

The following standard control types use this structure for retrieving and setting properties:

Meter control:
MIXERCONTROL_CONTROLTYPE_UNSIGNEDMETER

Number control:
MIXERCONTROL_CONTROLTYPE_UNSIGNED

Fader controls:
MIXERCONTROL_CONTROLTYPE_BASS
MIXERCONTROL_CONTROLTYPE_EQUALIZER
MIXERCONTROL_CONTROLTYPE_FADER
MIXERCONTROL_CONTROLTYPE_TREBLE
MIXERCONTROL_CONTROLTYPE_VOLUME

Time controls:
MIXERCONTROL_CONTROLTYPE_MICROTIME
MIXERCONTROL_CONTROLTYPE_MILLITIME
MIXERCONTROL_CONTROLTYPE_PERCENT

 MIXERLINE

typedef struct {
 DWORD cbStruct;
 DWORD dwDestination;
 DWORD dwSource;
 DWORD dwLineID;
 DWORD fdwLine;
 DWORD dwUser;
 DWORD dwComponentType;
 DWORD cChannels;
 DWORD cConnections;
 DWORD cControls;
 CHAR szShortName[MIXER_SHORT_NAME_CHARS];
 CHAR szName[MIXER_LONG_NAME_CHARS];
 struct { // start Target structure
 DWORD dwType;
 DWORD dwDeviceID;
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 } Target;
} MIXERLINE;

Describes the state and metrics of an audio line.

cbStruct
Size, in bytes, of the MIXERLINE structure. This member must be initialized before calling the
mixerGetLineInfo function. The size specified in this member must be large enough to contain the
MIXERLINE structure. When mixerGetLineInfo returns, this member contains the actual size of the
information returned. The returned information will not exceed the requested size.

dwDestination
Destination line index. This member ranges from zero to one less than the value specified in the
cDestinations member of the MIXERCAPS structure retrieved by the mixerGetDevCaps function.
When the mixerGetLineInfo function is called with the MIXER_GETLINEINFOF_DESTINATION
flag, properties for the destination line are returned. (The dwSource member must be set to zero in
this case.) When called with the MIXER_GETLINEINFOF_SOURCE flag, the properties for the
source given by the dwSource member that is associated with the dwDestination member are
returned.

dwSource
Index for the audio source line associated with the dwDestination member. That is, this member
specifies the nth audio source line associated with the specified audio destination line. This member
is not used for destination lines and must be set to zero when
MIXER_GETLINEINFOF_DESTINATION is specified in the mixerGetLineInfo function. When the
MIXER_GETLINEINFOF_SOURCE flag is specified, this member ranges from zero to one less than
the value specified in the cConnections member for the audio destination line given in the
dwDestination member.

dwLineID
An identifier defined by the mixer device that uniquely refers to the audio line described by the
MIXERLINE structure. This identifier is unique for each mixer device and can be in any format. An
application should use this identifier only as an abstract handle.

fdwLine
Status and support flags for the audio line. This member is always returned to the application and

requires no initialization.
MIXERLINE_LINEF_ACTIVE

Audio line is active. An active line indicates that a signal is probably passing through the line.
MIXERLINE_LINEF_DISCONNECTED

Audio line is disconnected. A disconnected line's associated controls can still be modified, but the
changes have no effect until the line is connected.

MIXERLINE_LINEF_SOURCE
Audio line is an audio source line associated with a single audio destination line. If this flag is not
set, this line is an audio destination line associated with zero or more audio source lines.

If an application is not using a waveform-audio output device, the audio line associated with that
device would not be active (that is, the MIXERLINE_LINEF_ACTIVE flag would not be set). If the
waveform-audio output device is opened, then the audio line is considered active and the
MIXERLINE_LINEF_ACTIVE flag will be set. A paused or starved waveform-audio output device is
still considered active. In other words, if the waveform-audio output device is opened by an
application regardless of whether data is being played, the associated audio line is considered
active. If a line cannot be strictly defined as active, the mixer device will always set the
MIXERLINE_LINEF_ACTIVE flag.

dwUser
Instance data defined by the audio device for the line. This member is intended for custom mixer
applications designed specifically for the mixer device returning this information. Other applications
should ignore this data.

dwComponentType
Component type for this audio line. An application can use this information to display tailored
graphics or to search for a particular component. If an application does not use component types,
this member should be ignored. This member can be one of the following values:
MIXERLINE_COMPONENTTYPE_DST_DIGITAL

Audio line is a digital destination (for example, digital input to a DAT or CD audio device).
MIXERLINE_COMPONENTTYPE_DST_HEADPHONES

Audio line is an adjustable (gain and/or attenuation) destination intended to drive headphones.
Most audio cards use the same audio destination line for speakers and headphones, in which
case the mixer device simply uses the MIXERLINE_COMPONENTTYPE_DST_SPEAKERS type.

MIXERLINE_COMPONENTTYPE_DST_LINE
Audio line is a line level destination (for example, line level input from a CD audio device) that will
be the final recording source for the analog-to-digital converter (ADC). Because most audio cards
for personal computers provide some sort of gain for the recording audio source line, the mixer
device will use the MIXERLINE_COMPONENTTYPE_DST_WAVEIN type.

MIXERLINE_COMPONENTTYPE_DST_MONITOR
Audio line is a destination used for a monitor.

MIXERLINE_COMPONENTTYPE_DST_SPEAKERS
Audio line is an adjustable (gain and/or attenuation) destination intended to drive speakers. This
is the typical component type for the audio output of audio cards for personal computers.

MIXERLINE_COMPONENTTYPE_DST_TELEPHONE
Audio line is a destination that will be routed to a telephone line.

MIXERLINE_COMPONENTTYPE_DST_UNDEFINED
Audio line is a destination that cannot be defined by one of the standard component types. A
mixer device is required to use this component type for line component types that have not been
defined by Microsoft Corporation.

MIXERLINE_COMPONENTTYPE_DST_VOICEIN
Audio line is a destination that will be the final recording source for voice input. This component
type is exactly like MIXERLINE_COMPONENTTYPE_DST_WAVEIN but is intended specifically
for settings used during voice recording/recognition. Support for this line is optional for a mixer

device. Many mixer devices provide only MIXERLINE_COMPONENTTYPE_DST_WAVEIN.
MIXERLINE_COMPONENTTYPE_DST_WAVEIN

Audio line is a destination that will be the final recording source for the waveform-audio input
(ADC). This line typically provides some sort of gain or attenuation. This is the typical component
type for the recording line of most audio cards for personal computers.

MIXERLINE_COMPONENTTYPE_SRC_ANALOG
Audio line is an analog source (for example, analog output from a video-cassette tape).

MIXERLINE_COMPONENTTYPE_SRC_AUXILIARY
Audio line is a source originating from the auxiliary audio line. This line type is intended as a
source with gain or attenuation that can be routed to the
MIXERLINE_COMPONENTTYPE_DST_SPEAKERS destination and/or recorded from the
MIXERLINE_COMPONENTTYPE_DST_WAVEIN destination.

MIXERLINE_COMPONENTTYPE_SRC_COMPACTDISC
Audio line is a source originating from the output of an internal audio CD. This component type is
provided for audio cards that provide an audio source line intended to be connected to an audio
CD (or CD-ROM playing an audio CD).

MIXERLINE_COMPONENTTYPE_SRC_DIGITAL
Audio line is a digital source (for example, digital output from a DAT or audio CD).

MIXERLINE_COMPONENTTYPE_SRC_LINE
Audio line is a line-level source (for example, line-level input from an external stereo) that can be
used as an optional recording source. Because most audio cards for personal computers provide
some sort of gain for the recording source line, the mixer device will use the
MIXERLINE_COMPONENTTYPE_SRC_AUXILIARY type.

MIXERLINE_COMPONENTTYPE_SRC_MICROPHONE
Audio line is a microphone recording source. Most audio cards for personal computers provide at
least two types of recording sources: an auxiliary audio line and microphone input. A microphone
audio line typically provides some sort of gain. Audio cards that use a single input for use with a
microphone or auxiliary audio line should use the
MIXERLINE_COMPONENTTYPE_SRC_MICROPHONE component type.

MIXERLINE_COMPONENTTYPE_SRC_PCSPEAKER
Audio line is a source originating from personal computer speaker. Several audio cards for
personal computers provide the ability to mix what would typically be played on the internal
speaker with the output of an audio card. Some audio cards support the ability to use this output
as a recording source.

MIXERLINE_COMPONENTTYPE_SRC_SYNTHESIZER
Audio line is a source originating from the output of an internal synthesizer. Most audio cards for
personal computers provide some sort of MIDI synthesizer (for example, an Adlib®-compatible or
OPL/3 FM synthesizer).

MIXERLINE_COMPONENTTYPE_SRC_TELEPHONE
Audio line is a source originating from an incoming telephone line.

MIXERLINE_COMPONENTTYPE_SRC_UNDEFINED
Audio line is a source that cannot be defined by one of the standard component types. A mixer
device is required to use this component type for line component types that have not been
defined by Microsoft Corporation.

MIXERLINE_COMPONENTTYPE_SRC_WAVEOUT
Audio line is a source originating from the waveform-audio output digital-to-analog converter
(DAC). Most audio cards for personal computers provide this component type as a source to the
MIXERLINE_COMPONENTTYPE_DST_SPEAKERS destination. Some cards also allow this
source to be routed to the MIXERLINE_COMPONENTTYPE_DST_WAVEIN destination.

cChannels
Maximum number of separate channels that can be manipulated independently for the audio line.
The minimum value for this field is 1 because a line must have at least one channel. Most modern

audio cards for personal computers are stereo devices; for them, the value of this member is 2.
Channel 1 is assumed to be the left channel; channel 2 is assumed to be the right channel. A
multichannel line might have one or more uniform controls (controls that affect all channels of a line
uniformly) associated with it.

cConnections
Number of connections that are associated with the audio line. This member is used only for audio
destination lines and specifies the number of audio source lines that are associated with it. This
member is always zero for source lines and for destination lines that do not have any audio source
lines associated with them.

cControls
Number of controls associated with the audio line. This value can be zero. If no controls are
associated with the line, the line is likely to be a source that might be selected in a
MIXERCONTROL_CONTROLTYPE_MUX or MIXERCONTROL_CONTROLTYPE_MIXER but
allows no manipulation of the signal.

szShortName
Short string that describes the audio mixer line specified in the dwLineID member. This description
should be appropriate as a concise label for the line.

szName
String that describes the audio mixer line specified in the dwLineID member. This description should
be appropriate as a complete description for the line.

Target
Target media information.

dwType
Target media device type associated with the audio line described in the MIXERLINE structure. An
application must ignore target information for media device types it does not use. The following
values are defined:
MIXERLINE_TARGETTYPE_AUX

The audio line described by the MIXERLINE structure is strictly bound to the auxiliary device
detailed in the remaining members of the Target structure member of the MIXERLINE structure.

MIXERLINE_TARGETTYPE_MIDIIN
The audio line described by the MIXERLINE structure is strictly bound to the MIDI input device
detailed in the remaining members of the Target structure member of the MIXERLINE structure.

MIXERLINE_TARGETTYPE_MIDIOUT
The audio line described by the MIXERLINE structure is strictly bound to the MIDI output device
detailed in the remaining members of the Target structure member of the MIXERLINE structure.

MIXERLINE_TARGETTYPE_UNDEFINED
The audio line described by the MIXERLINE structure is not strictly bound to a defined media
type. All remaining Target structure members of the MIXERLINE structure should be ignored. An
application cannot use the MIXERLINE_TARGETTYPE_UNDEFINED target type when calling
the mixerGetLineInfo function with the MIXER_GETLINEINFOF_TARGETTYPE flag.

MIXERLINE_TARGETTYPE_WAVEIN
The audio line described by the MIXERLINE structure is strictly bound to the waveform-audio
input device detailed in the remaining members of the Target structure member of the
MIXERLINE structure.

MIXERLINE_TARGETTYPE_WAVEOUT
The audio line described by the MIXERLINE structure is strictly bound to the waveform-audio
output device detailed in the remaining members of the Target structure member of the
MIXERLINE structure.

dwDeviceID
Current device identifier of the target media device when the dwType member is a target type other
than MIXERLINE_TARGETTYPE_UNDEFINED. This identifier is identical to the current media

device index of the associated media device. When calling the mixerGetLineInfo function with the
MIXER_GETLINEINFOF_TARGETTYPE flag, this member is ignored on input and will be returned
to the caller by the audio mixer manager.

wMid
Manufacturer identifier of the target media device when the dwType member is a target type other
than MIXERLINE_TARGETTYPE_UNDEFINED. This identifier is identical to the wMid member of
the device-capabilities structure for the associated media.

wPid
Product identifier of the target media device when the dwType member is a target type other than
MIXERLINE_TARGETTYPE_UNDEFINED. This identifier is identical to the wPid member of the
device-capabilities structure for the associated media.

vDriverVersion
Driver version of the target media device when the dwType member is a target type other than
MIXERLINE_TARGETTYPE_UNDEFINED. This version is identical to the vDriverVersion member
of the device-capabilities structure for the associated media.

szPname
Product name of the target media device when the dwType member is a target type other than
MIXERLINE_TARGETTYPE_UNDEFINED. This name is identical to the szPname member of the
device-capabilities structure for the associated media.

 MIXERLINECONTROLS

typedef struct {
 DWORD cbStruct;
 DWORD dwLineID;
 union {
 DWORD dwControlID;
 DWORD dwControlType;
 };
 DWORD cControls;
 DWORD cbmxctrl;
 LPMIXERCONTROL pamxctrl;
} MIXERLINECONTROLS;

Contains information about the controls of an audio line.

cbStruct
Size, in bytes, of the MIXERLINECONTROLS structure. This member must be initialized before
calling the mixerGetLineControls function. The size specified in this member must be large enough
to contain the MIXERLINECONTROLS structure. When mixerGetLineControls returns, this
member contains the actual size of the information returned. The returned information will not
exceed the requested size, nor will it be smaller than the MIXERLINECONTROLS structure.

dwLineID
Line identifier for which controls are being queried. This member is not used if the
MIXER_GETLINECONTROLSF_ONEBYID flag is specified for the mixerGetLineControls function,
but the mixer device still returns this member in this case. The dwControlID and dwControlType
members are not used when MIXER_GETLINECONTROLSF_ALL is specified.

dwControlID
Control identifier of the desired control. This member is used with the
MIXER_GETLINECONTROLSF_ONEBYID flag for the mixerGetLineControls function to retrieve
the control information of the specified control. Note that the dwLineID member of the
MIXERLINECONTROLS structure will be returned by the mixer device and is not required as an
input parameter. This member overlaps with the dwControlType member and cannot be used in
conjunction with the MIXER_GETLINECONTROLSF_ONEBYTYPE query type.

dwControlType
Class of the desired control. This member is used with the
MIXER_GETLINECONTROLSF_ONEBYTYPE flag for the mixerGetLineControls function to
retrieve the first control of the specified class on the line specified by the dwLineID member of the
MIXERLINECONTROLS structure. This member overlaps with the dwControlID member and
cannot be used in conjunction with the MIXER_GETLINECONTROLSF_ONEBYID query type.

cControls
Number of MIXERCONTROL structure elements to retrieve. This member must be initialized by the
application before calling the mixerGetLineControls function. This member can be 1 only if
MIXER_GETLINECONTROLSF_ONEBYID or MIXER_GETLINECONTROLSF_ONEBYTYPE is
specified or the value returned in the cControls member of the MIXERLINE structure returned for
an audio line. This member cannot be zero. If an audio line specifies that it has no controls,
mixerGetLineControls should not be called.

cbmxctrl
Size, in bytes, of a single MIXERCONTROL structure. The size specified in this member must be at
least large enough to contain the base MIXERCONTROL structure. The total size, in bytes, required
for the buffer pointed to by the pamxctrl member is the product of the cbmxctrl and cControls
members of the MIXERLINECONTROLS structure.

pamxctrl

Address of one or more MIXERCONTROL structures to receive the properties of the requested
audio line controls. This member cannot be NULL and must be initialized before calling the
mixerGetLineControls function. Each element of the array of controls must be at least large
enough to contain a base MIXERCONTROL structure. The cbmxctrl member must specify the size,
in bytes, of each element in this array. No initialization of the buffer pointed to by this member is
required by the application. All members are filled in by the mixer device (including the cbStruct
member of each MIXERCONTROL structure) upon returning successfully.

 MM_MIXM_CONTROL_CHANGE

MM_MIXM_CONTROL_CHANGE
wParam = (WPARAM) hMixer
lParam = (LPARAM) dwControlID

Sent by a mixer device to notify an application that the state of a control associated with an audio line
has changed. The application should refresh its display and cached values for the specified control.

hMixer
Handle of the mixer device (HMIXER) that sent the notification message.

dwControlID
Control identifier for the mixer control that has changed state. This identifier is the same as the
dwControlID member of the MIXERCONTROL structure returned by the mixerGetLineControls
function.

An application must open a mixer device and specify a callback window to receive the
MM_MIXM_CONTROL_CHANGE message.

 MM_MIXM_LINE_CHANGE

MM_MIXM_LINE_CHANGE
wParam = (WPARAM) hMixer
lParam = (LPARAM) dwLineID

Sent by a mixer device to notify an application that the state of an audio line on the specified device
has changed. The application should refresh its display and cached values for the specified audio line.

hMixer
Handle of the mixer device that sent the notification message.

dwLineID
Line identifier for the audio line that has changed state. This identifier is the same as the dwLineID
member of the MIXERLINE structure returned by the mixerGetLineInfo function.

An application must open a mixer device and specify a callback window to receive the
MM_MIXM_LINE_CHANGE message.

 Waveform Audio

This chapter explains how to use the waveform and auxiliary audio services of the Microsoft Win32
application programming interface (API) to add sound to applications.

Adding sound to your application can make it more efficient and more fun to use. You can improve your
users' efficiency by using sounds to get their attention at critical points, to help them avoid mistakes, or
to let them know that a time-consuming operation has finished. You can help them have more fun by
adding music or sound effects.

This chapter explains how to do the following things with sound:

· Play waveform audio.
· Use low-level audio services.
· Record waveform audio.
· Use auxiliary audio devices.
· Use audio clipboard formats.

This chapter documents several methods for adding sound to your application. The simplest method
documented here is using the PlaySound function. Most of the other waveform-audio API elements
documented in this chapter are relatively low-level, however. Part Two of this volume, "Media Control
Interface," documents a mid-level interface to multimedia programming that offers a simpler and faster
method of adding sound to your application than using the low-level sound API.

 The PlaySound Function

You can use the PlaySound function to play waveform audio, as long as the sound fits into available
memory. (The sndPlaySound function offers a subset of the capabilities of PlaySound. To maximize
the portability of your Win32 application, use PlaySound, not sndPlaySound.)

PlaySound allows you to specify a sound in one of three ways:

· As a system alert, using the alias stored in the WIN.INI file or the registry
· As a filename
· As a resource identifier

One PlaySound capability allows you to play a sound in a continuous loop, ending only when you call
PlaySound again, specifying either NULL or the sound identifier of another sound for the pszSound
parameter.

You can use PlaySound to play the sound synchronously or asynchronously, and to control the
behavior of the function in other ways when it must share system resources.

For examples of how to use PlaySound in your Win32 applications, see "Playing WAVE Resources"
later in this chapter.

 Waveform-Audio Files

In the Microsoft Windows operating system, most waveform-audio files use the .WAV filename
extension.

The following statement plays the C:\SOUNDS\BELLS.WAV file:

PlaySound("C:\\SOUNDS\\BELLS.WAV", NULL, SND_SYNC);

If the specified file does not exist, or if the file does not fit into the available memory, PlaySound plays
the default system sound. If no default system sound has been defined, PlaySound fails without
producing any sound. If you do not want the default system sound to play, specify the
SND_NODEFAULT flag, as shown in the following example:

PlaySound("C:\\SOUNDS\\BELLS.WAV", NULL, SND_SYNC | SND_NODEFAULT);

 Looping Sounds

If you specify the SND_LOOP and SND_ASYNC flags for the fdwSound parameter of the PlaySound
function, the sound will continue to play repeatedly as shown in the following example:

PlaySound("C:\\SOUNDS\\BELLS.WAV", NULL, SND_LOOP | SND_ASYNC);

If you want to loop a sound, you must play it asynchronously; you cannot use the SND_SYNC flag with
the SND_LOOP flag. A looped sound will continue to play until PlaySound is called to play another
sound. To stop playing a sound (looped or asynchronous) without playing another sound, use the
following statement:

PlaySound(NULL, NULL, 0);

 Playing Sounds Specified in the Registry

The PlaySound function will also play sounds referred to by a keyname in the registry. This allows
users to assign their own sounds to system alerts and warnings, or to user actions, such as a mouse
button click. Sounds that are associated with system alerts and warnings are called sound events.

To play a sound event, call PlaySound with the pszSound parameter pointing to a string containing the
name of the registry entry that identifies the sound. For example, to play the sound associated with the
"MouseClick" entry and to wait for the sound to complete before returning, use the following statement:

PlaySound("MouseClick", NULL, SND_SYNC);

If the specified registry entry or the waveform-audio file it identifies does not exist, or if the file does not
fit into the available memory, PlaySound plays the default system sound.

The sound events that are predefined by the system can vary with the Win32 platform. The following
list gives the sound events that are defined for all Win32 implementations:

SystemAsterisk
SystemExclamation
SystemExit
SystemHand
SystemQuestion
SystemStart

If an application registers its own sound events, the user can configure the sound event by using the
standard Control Panel interface. The application should register the sound event by using the
standard registry functions; for more information about the registry, see Chapter 52, "Registry." The
entries belong at the same position in the registry hierarchy as the rest of the sound events. This
position varies with the Win32 implementation. The appropriate data value also varies with the
implementation.

The sndPlaySound function always searches the registry for a keyname matching lpszSound before
attempting to load a file with this name. PlaySound accepts flags that specify the location of the sound.

 Low-Level Audio Interface

This section documents the low-level audio interface, which is used by applications that need the finest
possible control over audio devices. The functions and structures of this interface are named with the
prefix "wave".

 Devices and Data Types

This section discusses working with waveform-audio devices, such as how to open, close and query
them for their capabilities. It also describes how to keep track of the devices in a system by using
device handles and device identifiers.

Opening Waveform-Audio Output Devices

Use the waveOutOpen function to open a waveform-audio output device for playback. This function
opens the device associated with the given device identifier and returns a handle of the open device by
writing the handle of a specified memory location.

Some multimedia computers have multiple waveform-audio output devices. Unless you know you want
to open a specific waveform-audio output device in a system, you should use the WAVE_MAPPER flag
for the device identifier when you open a device. The waveOutOpen function chooses the device in
the system that is best able to play the given data format.

Querying Audio Devices

Windows provides the following functions to determine how many devices of a certain type are
available in a given system.

Function Description
auxGetNumDevs Retrieves the number of auxiliary output devices

present in the system.
waveInGetNumDevs Retrieves the number of waveform-audio input

devices present in the system.
waveOutGetNumDev
s

Retrieves the number of waveform-audio output
devices present in the system.

Audio devices are identified by a device identifier. The device identifier is determined implicitly from the
number of devices present in a given system. Device identifiers range from zero to one less than the
number of devices present. For example, if there are two waveform-audio output devices in a system,
valid device identifiers are 0 and 1.

After you determine how many devices of a certain type are present in a system, you can use one of
the following functions to query the capabilities of each device.

Function Description
auxGetDevCaps Retrieves the capabilities of a given auxiliary output

device.
waveInGetDevCap
s

Retrieves the capabilities of a given waveform-audio
input device.

waveOutGetDevCa
ps

Retrieves the capabilities of a given waveform-audio
output device.

Each of these functions fills a structure with information about the capabilities of a specified device.
The following table lists the structures that correspond to each of these functions.

Function Structure
auxGetDevCaps AUXCAPS
waveInGetDevCap
s

WAVEINCAPS

waveOutGetDevCa
ps

WAVEOUTCAPS

Waveform-audio devices can support nonstandard formats. (Standard formats are listed in the

dwFormats member of the WAVEOUTCAPS structure, later in this chapter.) To determine whether a
particular format (standard or nonstandard) is supported by a device, you can call the waveOutOpen
function with the WAVE_FORMAT_QUERY flag. This flag does not open the device. You specify the
format in question in the WAVEFORMATEX structure pointed to by the pwfx parameter passed to
waveOutOpen. For information about setting up this structure, see "Devices and Data Types" earlier in
this chapter.

Waveform-audio output devices vary in the capabilities they support. The dwSupport member of the
WAVEOUTCAPS structure indicates whether a given device supports such capabilities as volume and
pitch changes.

Device Handles and Device Identifiers

Each function that opens an audio device specifies a device identifier, a pointer to a memory location,
and some parameters that are unique to each type of device. The memory location is filled with a
device handle. Use this device handle to identify the open audio device when calling other audio
functions.

The difference between identifiers and handles for audio devices is subtle but important:

· Device identifiers are determined implicitly from the number of devices present in a system. This
number is obtained by using the auxGetNumDevs, waveInGetNumDevs, or
waveOutGetNumDevs function.

· Device handles are returned when device drivers are opened by using the waveInOpen or
waveOutOpen function.

There are no functions for opening and closing auxiliary audio devices. Auxiliary audio devices need
not be opened and closed like waveform-audio devices because there is no continuous data transfer
associated with them. All auxiliary audio functions use device identifiers to identify devices.

Waveform-Audio Output Data Types

The following data types are defined for waveform-audio output functions.

Type Description
HWAVEOUT Handle of an open waveform-audio output device.
WAVEFORMATEX Structure that specifies the data formats supported

by a particular waveform-audio input device. This
structure is used also for waveform-audio input
devices.

WAVEHDR Structure used as a header for a block of waveform-
audio input data. This structure is also used for
waveform-audio input devices.

WAVEOUTCAPS Structure used to query the capabilities of a
particular waveform-audio output device.

Specifying Waveform-Audio Data Formats

When you call the waveOutOpen function to open a device driver for playback or to query whether the
driver supports a particular data format, use the pwfx parameter to specify a pointer to a
WAVEFORMATEX structure containing the requested waveform-audio data format. The
WAVEFORMATEX structure is an extended version of the WAVEFORMAT structure. It contains all the
members of WAVEFORMAT, and adds two more: a wBitsPerSample member, which contains extra
information required for the PCM (Pulse Code Modulation) format, and a cbSize member at the end.
You can append data to the structure following cbSize as long as you fill cbSize with the size of the
data. You can use the WAVEFORMATEX structure to describe PCM data, although you could also use
the PCMWAVEFORMAT structure. When the waveform-audio format type is not PCM, you must use
WAVEFORMATEX instead of WAVEFORMAT.

The outmoded WAVEFORMAT structure does not contain all the information required to describe the
PCM format. The PCMWAVEFORMAT structure includes a WAVEFORMAT structure along with an
additional member containing PCM-specific information. The PCMWAVEFORMAT structure has also
been superseded by the WAVEFORMATEX structure.

There are also two clipboard formats you can use to represent audio data: CF_WAVE and CF_RIFF.
Use the CF_WAVE format to represent data in one of the standard formats, such as 11 kHz or 22 kHz
PCM. Use the CF_RIFF format to represent more complex data formats that cannot be represented as
standard waveform-audio files.

Writing Waveform-Audio Data

After successfully opening a waveform-audio output device driver, you can begin playing a sound.
Windows provides the waveOutWrite function for sending data blocks to waveform-audio output
devices.

Use the WAVEHDR structure to specify the waveform-audio data block you are sending using
waveOutWrite. This structure contains a pointer to a locked data block, the length of the data block,
and some flags. This data block must be prepared before you use it; for information about preparing a
data block, see "Audio Data Blocks" later in this chapter.

After you send a data block to an output device by using waveOutWrite, you must wait until the device
driver is finished with the data block before freeing it. If you are sending multiple data blocks, you must
monitor the completion of data blocks to know when to send additional blocks. For more information
about data blocks, see "Audio Data Blocks" later in this chapter.

PCM Waveform-Audio Data Format

The lpData member of the WAVEHDR structure points to the waveform-audio data samples. For 8-bit
PCM data, each sample is represented by a single unsigned data byte. For 16-bit PCM data, each
sample is represented by a 16-bit signed value. The following table summarizes the maximum,
minimum, and midpoint values for PCM waveform-audio data.

Data format Maximum value Minimum value Midpoint value
8-bit PCM 255 (0xFF) 0 128 (0x80)
16-bit PCM 32,767 (0x7FFF) - 32,768

(0x8000)
0

PCM Data Packing

The order of the data bytes varies between 8-bit and 16-bit formats and between mono and stereo
formats. The following list describes data packing for the different PCM waveform-audio data formats.

PCM
waveform-
audio
format

Description

8-bit mono Each sample is 1 byte that corresponds to a single audio
channel. Sample 1 is followed by samples 2, 3, 4, and so
on.

8-bit stereo Each sample is 2 bytes. Sample 1 is followed by samples 2,
3, 4, and so on. For each sample, the first byte is channel 0
(the left channel) and the second byte is channel 1 (the
right channel).

16-bit mono Each sample is 2 bytes. Sample 1 is followed by samples 2,
3, 4, and so on. For each sample, the first byte is the low-
order byte of channel 0 and the second byte is the high-
order byte of channel 0.

16-bit stereo Each sample is 4 bytes. Sample 1 is followed by samples 2,
3, 4, and so on. For each sample, the first byte is the low-
order byte of channel 0 (left channel); the second byte is
the high-order byte of channel 0; the third byte is the low-
order byte of channel 1 (right channel); and the fourth byte
is the high-order byte of channel 1.

Closing Waveform-Audio Output Devices

After waveform-audio playback is complete, call waveOutClose to close the output device. If
waveOutClose is called while a waveform-audio file is playing, the close operation fails and the
function returns an error code indicating that the device was not closed. If you do not want to wait for
playback to end before closing the device, call the waveOutReset function before closing. This ends
playback and allows the device to be closed. Be sure to use the waveOutUnprepareHeader function
to clean up the preparation on all data blocks before closing the device.

 Playing Waveform-Audio Files

It's easy to play sounds in your application by using the functions, macros, and messages discussed in
this chapter. The techniques and API elements documented here operate only on waveform audio; that
is, digitized representations of a sound's physical shape. If you want to add music to your application,
and you do not care about other kinds of sounds, you might want to use MIDI. For a discussion of a
simple playback MIDI implementation, see Chapter 2, "Getting Started Using MCIWnd." For a
discussion of the low-level MIDI interface, see Chapter 13, "Musical Instrument Digital Interface
(MIDI)."

You can use the following functions to play waveform audio in your application in a single function call:

Function Description
MessageBee
p

Plays the sound that corresponds to a given system-alert
level.

sndPlaySoun
d

Plays the sound that corresponds to the system sound
entered in the registry or the contents of the given
filename.

PlaySound Provides all of the functionality of sndPlaySound and can
directly access resources.

The MessageBeep function is a standard part of the Win32 API; because its capabilities are very
limited and it is documented elsewhere, it is not discussed here.

The functions in this list provide the following methods of playing waveform audio:

· Playing waveform-audio files associated with system-alert levels
· Playing waveform-audio files specified by entries in the registry
· Playing in-memory WAVE resources
· Playing waveform-audio files stored on a hard disk or compact disc - read-only memory (CD-ROM)

The sndPlaySound and PlaySound functions load an entire waveform-audio file into memory and, in
effect, limit the size of file they can play. Use sndPlaySound and PlaySound to play waveform-audio
files that are relatively small ¾ up to about 100K. These two functions also require the sound data to be
in a format that is playable by one of the installed waveform-audio drivers, including the wave mapper.

For larger sound files, use the Media Control Interface (MCI) services or the low-level audio API. For
information on using MCI, see Chapter 3, "MCI Overview."

Using Window Messages to Manage Waveform-Audio Playback

The following messages can be sent to a window procedure function for managing waveform-audio
playback.

Message Description
MM_WOM_CLOSE Sent when the device is closed by using the

waveOutClose function.
MM_WOM_DONE Sent when the device driver is finished with a data

block sent by using the waveOutWrite function.
MM_WOM_OPEN Sent when the device is opened by using the

waveOutOpen function.

A wParam and lParam parameter is associated with each of these messages. The wParam parameter
always specifies a handle of the open waveform-audio device. For the MM_WOM_DONE message,
lParam specifies a pointer to a WAVEHDR structure that identifies the completed data block. The
lParam parameter is unused for the MM_WOM_CLOSE and MM_WOM_OPEN messages.

The most useful message is probably MM_WOM_DONE. When this message signals that playback of
a data block is complete, you can clean up and free the data block. Unless you need to allocate
memory or initialize variables, you probably do not need to process the MM_WOM_OPEN and
MM_WOM_CLOSE messages.

The callback function for waveform-audio output devices is supplied by the application. For information
about this callback function, see the waveOutProc function, later in this chapter.

Retrieving the Current Playback Position

You can monitor the current playback position within the file while waveform audio is playing by using
the waveOutGetPosition function.

For waveform-audio devices, samples are the preferred time format in which to represent the current
position. Thus, the current position of a waveform-audio device is specified as the number of samples
for one channel from the beginning of the waveform-audio file. To query the current position of a
waveform-audio device, set the wType member of the MMTIME structure to TIME_SAMPLES and
pass this structure to waveOutGetPosition.

The MMTIME structure can represent time in one or more different formats, including milliseconds,
samples, SMPTE (Society of Motion Picture and Television Engineers), and MIDI song pointer formats.
The wType member specifies the format used to represent time. Before calling a function that uses the
MMTIME structure, you must set wType to indicate your requested time format. Be sure to check
wType after the call to see whether the requested time format is supported. If the requested time
format is not supported, the device driver specifies the time in an alternate time format and changes
the wType member to the selected time format.

For more information about the MMTIME structure, see Chapter 17, "Timers."

Stopping, Pausing, and Restarting Playback

You can stop or pause playback while waveform audio is playing. After playback has been paused, you
can restart it. Windows provides the following functions for controlling waveform-audio playback.

Function Description
waveOutPause Pauses playback on a waveform-audio output device.
waveOutReset Stops playback on a waveform-audio output device

and marks all pending data blocks as done.
waveOutRestart Resumes playback on a paused waveform-audio

output device.

Pausing a waveform-audio device by using waveOutPause might not be instantaneous; the driver can
finish playing the current block before pausing playback.

Generally, as soon as the first waveform-audio data block is sent by using the waveOutWrite function,
the waveform-audio device begins playing. If you do not want the sound to start playing immediately,
call waveOutPause before calling waveOutWrite. Then, when you want to begin playing the
waveform, call waveOutRestart.

You cannot use waveOutRestart to restart a device that has been stopped with waveOutReset; you
must use waveOutWrite to send the first data block to resume playback on the device.

Looping Playback

Looping a sound is controlled by the dwLoops and dwFlags members in the WAVEHDR structures
passed to the device with the waveOutWrite function. Use the WHDR_BEGINLOOP and
WHDR_ENDLOOP flags in the dwFlags member to specify the beginning and ending data blocks for
looping.

To loop a single data block, specify both flags for the same block. To specify the number of loops, use

the dwLoops member in the WAVEHDR structure for the first block in the loop.

You can call the waveOutBreakLoop function to stop a looping sound.

Changing the Volume of Waveform-Audio Playback

Windows provides the following functions to query and set the volume level of waveform-audio output
devices.

Function Description
waveOutGetVolu
me

Retrieves the current volume level of the specified
waveform-audio output device.

waveOutSetVolu
me

Sets the volume level of the specified waveform-audio
output device.

Not all waveform-audio devices support volume changes. Some devices support individual volume
control on both the left and right channels. For information about how to determine the volume-control
capabilities of waveform-audio devices, see "Devices and Data Types" earlier in this chapter.

Some applications allow the user to control the volume for all audio devices in a system. (Many
applications of this type use the audio mixer services; for more information, see Chapter 14, "Audio
Mixers.") Unless your application is capable of this kind of master volume control, you should open an
audio device before changing its volume. You should also query the volume level before changing it
and restore the volume level to its previous level as soon as possible.

Volume is specified in a doubleword value. When the audio format is stereo, the upper 16 bits specify
the relative volume of the right channel and the lower 16 bits specify the relative volume of the left
channel. For devices that do not support left- and right-channel volume control, the lower 16 bits
specify the volume level, and the upper 16 bits are ignored.

Volume-level values range from 0x0 (silence) to 0xFFFF (maximum volume) and are interpreted
logarithmically. The perceived volume increase is the same when increasing the volume level from
0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

Changing Pitch and Playback Rate

Some waveform-audio output devices can vary the pitch and the playback rate of waveform-audio
data. Not all waveform-audio devices support pitch and playback-rate changes. For information about
how to determine whether a particular waveform-audio device supports pitch and playback rate
changes, see "Devices and Data Types" earlier in this chapter.

The differences between changing pitch and playback rate are as follows:

· Changing the playback rate is performed by the device driver and does not require specialized
hardware. The sample rate is not changed, but the driver interpolates by skipping or synthesizing
samples. For example, if the playback rate is changed by a factor of two, the driver skips every other
sample.

· Changing the pitch requires specialized hardware. The playback rate and sample rate are not
changed.

Windows provides the following functions to query and set waveform-audio pitch and playback rates.

Function Description
waveOutGetPitch Retrieves the pitch for the specified

waveform-audio output device.
waveOutGetPlaybackRate Retrieves the playback rate for the specified

waveform-audio output device.
waveOutSetPitch Sets the pitch for the specified waveform-

audio output device.

waveOutSetPlaybackRate Sets the playback rate for the specified
waveform-audio output device.

The pitch and playback rates are changed by a factor specified with a fixed-point number packed into a
doubleword value. The upper 16 bits specify the integer part of the number; the lower 16 bits specify
the fractional part. For example, the value 1.5 is represented as 0x00018000L. The value 0.75 is
represented as 0x0000C000L. A value of 1.0 (0x00010000) means the pitch or playback rate is
unchanged.

 Recording Waveform Audio

If the MCI waveform-audio recording services do not meet the needs of your application, you can
handle waveform-audio recording using the low-level waveform-audio services. For more information
about MCI, see Chapter 3, "MCI Overview."

Waveform-Audio Input Data Types

The following data types are defined for waveform-audio input functions:

Type Description
HWAVEIN Handle of an open waveform-audio input device.
WAVEFORMATE
X

Structure that specifies the data formats supported by
a particular waveform-audio input device. This
structure is also used for waveform-audio output
devices.

WAVEHDR Structure used as a header for a block of waveform-
audio input data. This structure is also used for
waveform-audio output devices.

WAVEINCAPS Structure used to inquire about the capabilities of a
particular waveform-audio input device.

Querying Waveform-Audio Input Devices

Before recording waveform audio, you should call the waveInGetDevCaps function to determine the
waveform-audio input capabilities of the system. This function fills a WAVEINCAPS structure with
information about the capabilities of a given device. This information includes the manufacturer and
product identifiers, a product name for the device, and the version number of the device driver. In
addition, the WAVEINCAPS structure provides information about the standard waveform-audio formats
that the device supports.

Opening Waveform-Audio Input Devices

Use the waveInOpen function to open a waveform-audio input device for recording. This function
opens the device associated with the given device identifier and returns a handle of the open device by
writing the handle of a specified memory location.

Some multimedia computers have multiple waveform-audio input devices. Unless you know you want
to open a specific waveform-audio input device in a system, you should use the WAVE_MAPPER
constant for the device identifier when you open a device. The waveInOpen function will choose the
device in the system best able to record in the given data format.

Managing Waveform-Audio Recording

After you open a waveform-audio input device, you can begin recording waveform-audio data.
Waveform-audio data is recorded into application-supplied buffers specified by a WAVEHDR structure.
These data blocks must be prepared before they are used; for more information, see "Audio Data
Blocks" later in this chapter.

Windows provides the following functions to manage waveform-audio recording.

Function Description
waveInAddBuf
fer

Sends a buffer to the device driver so it can be filled with
recorded waveform-audio data.

waveInReset Stops waveform-audio recording and marks all pending
buffers as done.

waveInStart Starts waveform-audio recording.

waveInStop Stops waveform-audio recording.

Use the waveInAddBuffer function to send buffers to the device driver. As the buffers are filled with
recorded waveform-audio data, the application is notified with a window message, callback message,
thread message, or event, depending on the flag specified when the device was opened.

Before you begin recording by using waveInStart, you should send at least one buffer to the driver, or
incoming data might be lost.

Before closing the device using waveInClose, call waveInReset to mark any pending data blocks as
being done.

Using Window Messages to Manage Waveform-Audio Recording

The following messages can be sent to a window procedure function for managing waveform-audio
recording.

Message Description
MM_WIM_CLOSE Sent when the device is closed by using the

waveInClose function.
MM_WIM_DATA Sent when the device driver is finished with a

buffer sent by using the waveInAddBuffer
function.

MM_WIM_OPEN Sent when the device is opened by using the
waveInOpen function.

The lParam parameter of MM_WIM_DATA specifies a pointer to a WAVEHDR structure that identifies
the buffer. This buffer might not be completely filled with waveform-audio data; recording can stop
before the buffer is filled. Use the dwBytesRecorded member of the WAVEHDR structure to
determine the amount of valid data present in the buffer.

The most useful message is probably MM_WIM_DATA. When your application finishes using the data
block sent by the device driver, you can clean up and free the data block. Unless you need to allocate
memory or initialize variables, you probably do not need to use the MM_WIM_OPEN and
MM_WIM_CLOSE messages.

The callback function for waveform-audio input devices is supplied by the application. For information
about this callback function, see the waveInProc function, later in this chapter.

 Auxiliary Audio Interface

Auxiliary audio devices are audio devices whose output is mixed with the MIDI and waveform-audio
output devices in a multimedia computer. An example of an auxiliary audio device is the CD audio
output from a CD-ROM drive.

 Querying Auxiliary Audio Devices

Not all multimedia systems have auxiliary audio support. You can use the auxGetNumDevs function to
determine the number of controllable auxiliary devices present in a system.

To get information about a particular auxiliary audio device, use the auxGetDevCaps function. This
function fills an AUXCAPS structure with information about the capabilities of a given device. This
information includes the manufacturer and product identifiers, a product name for the device, and the
device-driver version number.

 Changing the Volume of Auxiliary Audio-Devices

Windows provides the following functions to query and set the volume for auxiliary audio devices.

Function Description
auxGetVolume Retrieves the current volume setting of the specified

auxiliary output device.
auxSetVolume Sets the volume of the specified auxiliary output

device.

Not all auxiliary audio devices support volume changes. Some devices can support individual volume
changes on both the left and the right channels.

Volume is specified in a doubleword value, as with the waveform-audio and MIDI volume-control
functions . When the audio format is stereo, the upper 16 bits specify the relative volume of the right
channel and the lower 16 bits specify the relative volume of the left channel. For devices that do not
support left- and right-channel volume control, the lower 16 bits specify the volume level, and the upper
16 bits are ignored.

Volume-level values range from 0x0 (silence) to 0xFFFF (maximum volume) and are interpreted
logarithmically. The perceived volume increase is the same when increasing the volume level from
0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

 Audio Data Blocks

The waveInAddBuffer and waveOutWrite functions require applications to allocate data blocks to
pass to the device drivers for recording or playback purposes. Each of these functions uses the
WAVEHDR structure to describe its data block.

Before using one of these functions to pass a data block to a device driver, you must allocate memory
for the data block and the header structure that describes the data block. The headers can be prepared
and unprepared by using the following functions.

Function Description
waveInPrepareHeader Prepares a waveform-audio input data

block.
waveInUnprepareHeader Cleans up the preparation on a waveform-

audio input data block.
waveOutPrepareHeader Prepares a waveform-audio output data

block.
waveOutUnprepareHeader Cleans up the preparation on a waveform-

audio output data block.

Before you pass an audio data block to a device driver, you must prepare the data block by passing it
to either waveInPrepareHeader or waveOutPrepareHeader. When the device driver is finished with
the data block and returns it, you must clean up this preparation by passing the data block to either
waveInUnprepareHeader or waveOutUnprepareHeader before any allocated memory can be freed.

Unless the waveform-audio input and output data is small enough to be contained in a single data
block, applications must continually supply the device driver with data blocks until playback or
recording is complete.

Even if a single data block is used, an application must be able to determine when a device driver is
finished with the data block so the application can free the memory associated with the data block and
header structure. There are several ways to determine when a device driver is finished with a data
block:

· By specifying a callback function to receive a message sent by the driver when it is finished with a
data block

· By using an event callback
· By specifying a window or thread to receive a message sent by the driver when it is finished with a

data block
· By polling the WHDR_DONE bit in the dwFlags member of the WAVEHDR structure sent with each

data block

If an application does not get a data block to the device driver when needed, there can be an audible
gap in playback or a loss of incoming recorded information. This requires at least a double-buffering
scheme ¾ staying at least one data block ahead of the device driver.

The following sections describe ways to determine when a device driver is finished with a data block.

 Using a Callback Function to Process Driver Messages

You can write your own callback function to process messages sent by the device driver. To use a
callback function, specify the CALLBACK_FUNCTION flag in the fdwOpen parameter and the address
of the callback in the dwCallback parameter of the waveInOpen or waveOutOpen function.

Messages sent to a callback function are similar to messages sent to a window, except they have two
DWORD parameters instead of a UINT and a DWORD parameter. For details on these messages, see
"Playing Waveform-Audio Files" earlier in this chapter.

To pass instance data from an application to a callback function, use one of the following techniques:

· Pass the instance data using the dwInstance parameter of the function that opens the device driver.
· Pass the instance data using the dwUser member of the WAVEHDR structure that identifies an

audio data block being sent to a device driver.

If you need more than 32 bits of instance data, pass a pointer to a structure containing the additional
information.

 Using an Event Callback to Process Driver Messages

To use an event callback, use the CreateEvent function to retrieve the handle of an event. In the call to
the waveOutOpen function, specify CALLBACK_EVENT for the fdwOpen parameter. After calling the
waveOutPrepareHeader function but before sending waveform-audio data to the device, create a
nonsignalled event by calling the ResetEvent function, specifying the event handle retrieved by
CreateEvent. Then, inside a loop that checks whether the WHDR_DONE bit is set in the dwFlags
member of the WAVEHDR structure, call the WaitForSingleObject function, specifying as parameters
the event handle and a time-out value of INFINITE.

An event callback is set by anything that might cause a function callback.

Because event callbacks do not receive specific close, done, or open notifications, an application might
have to check the status of the process it is waiting for after the event occurs. It is possible that a
number of tasks could have been completed by the time WaitForSingleObject returns.

 Using a Window or Thread to Process Driver Messages

To use a window callback function, specify the CALLBACK_WINDOW flag in the fdwOpen parameter
and a window handle in the low-order word of the dwCallback parameter of the waveInOpen or
waveOutOpen function. Driver messages will be sent to the window procedure for the window
identified by the handle in dwCallback.

Similarly, to use a thread callback, specify CALLBACK_THREAD and a thread handle in the call to
waveInOpen or waveOutOpen. In this case, messages are posted to the specified thread instead of to
a window.

Messages sent to the window or thread callback are specific to the audio device type used. For more
information about these messages, see "Playing Waveform-Audio Files" earlier in this chapter.

 Managing Data Blocks by Polling

In addition to using a callback function, you can poll the dwFlags member of a WAVEHDR structure to
determine when an audio device is finished with a data block. Sometimes it is better to poll dwFlags
than to wait for another mechanism to receive messages from the drivers. For example, after you call
the waveOutReset function to release pending data blocks, you can immediately poll to be sure that
the data blocks are done before calling waveOutUnprepareHeader and freeing the memory for the
data block.

You can use the WHDR_DONE flag to test the dwFlags member. As soon as the WHDR_DONE flag is
set in the dwFlags member of the WAVEHDR structure, the driver is finished with the data block.

 Handling Errors with Audio Functions

The waveform-audio and auxiliary-audio functions return a nonzero value when an error occurs.
Windows provides functions that convert these error values into textual descriptions of the errors. The
application must still examine the error values to determine how to proceed, but textual descriptions of
errors can be used in dialog boxes that describe errors to users.

You can use the following functions to retrieve textual descriptions of audio error values:

Function Description
waveInGetErrorText Retrieves a textual description of a specified

waveform-audio input error.
waveOutGetErrorText Retrieves a textual description of a specified

waveform-audio output error.

The only audio functions that do not return error values are auxGetNumDevs, waveInGetNumDevs,
and waveOutGetNumDevs. These functions return zero if no devices are present in a system or if
they encounter any errors.

 Using Waveform and Auxiliary Audio

This section demonstrates implementing waveform and auxiliary audio in your application. The
following topics are discussed:

· Playing WAVE resources
· Determining support for nonstandard data formats
· Processing the MM_WOM_DONE message

 Playing WAVE Resources

You can use the PlaySound function to play a sound that is stored as a resource. Although this is also
possible using the sndPlaySound function, sndPlaySound requires you to find, load, lock, unlock,
and free the resource; PlaySound achieves all of this with a single line of code.

PlaySound("SoundName", hInst, SND_RESOURCE | SND_ASYNC);

 Determining Nonstandard Format Support

To see whether a device supports a particular format (standard or nonstandard), you can call the
waveOutOpen function with the WAVE_FORMAT_QUERY flag. The following example uses this
technique to determine whether a given waveform-audio device supports a given format.

// Determines whether the given waveform-audio output device supports a
// given waveform-audio format. Returns MMSYSERR_NOERROR if the format
// is supported, WAVEERR_BADFORMAT if the format is not supported, and
// one of the other MMSYSERR_ error codes if there are other errors
// encountered in opening the given waveform-audio device.

MMRESULT IsFormatSupported(LPWAVEFORMATEX pwfx, UINT uDeviceID) {
 return (waveOutOpen(
 NULL, // ptr can be NULL for query
 uDeviceID, // the device identifier
 pwfx, // defines requested format
 NULL, // no callback
 NULL, // no instance data
 WAVE_FORMAT_QUERY)); // query only, do not open device
}

This technique for determining nonstandard format support also applies to waveform-audio input
devices. The only difference is that the waveInOpen function is used in place of waveOutOpen to
query for format support.

To determine whether a particular waveform-audio data format is supported by any of the waveform-
audio devices in a system, use the technique illustrated in the previous example, but specify the
WAVE_MAPPER constant for the uDeviceID parameter.

 Processing the MM_WOM_DONE Message

The following example shows how to process the MM_WOM_DONE message. This example assumes
the application does not play multiple data blocks, so it can close the output device after playing a
single data block.

// WndProc--Main window procedure.
LRESULT FAR PASCAL WndProc(HWND hWnd, UINT msg, WPARAM wParam,
 LPARAM lParam)
{
 switch (msg)
 {
 .
 .
 .

case MM_WOM_DONE:

 // A waveform-audio data block has been played and
 // can now be freed.
 waveOutUnprepareHeader((HWAVEOUT) wParam,
 (LPWAVEHDR) lParam, sizeof(WAVEHDR));
 .
 . // Free hData memory.
 .
 waveOutClose((HWAVEOUT) wParam);
 break;
 }
 return DefWindowProc(hWnd, msg, wParam, lParam);
}

 Waveform Audio Reference

This section describes the functions, messages, and structures associated with waveform audio. These
elements are grouped as follows.

Auxiliary Devices

AUXCAPS
auxGetDevCaps
auxGetNumDevs
auxGetVolume
auxOutMessage
auxSetVolume
Easy Playback

PlaySound
sndPlaySound
Errors

waveInGetErrorText
waveOutGetErrorText
Opening and Closing

PCMWAVEFORMAT
MM_WIM_CLOSE
MM_WIM_OPEN
MM_WOM_CLOSE
MM_WOM_OPEN
WAVEFORMAT
WAVEFORMATEX
waveInClose
waveInProc
waveInOpen
waveOutClose
waveOutProc
waveOutOpen
WIM_CLOSE
WIM_OPEN
WOM_CLOSE
WOM_OPEN
Pitch

waveOutGetPitch
waveOutSetPitch
Playback Rate

waveOutGetPlaybackRate
waveOutSetPlaybackRate
Playback Progress

MM_WOM_DONE
waveOutBreakLoop
waveOutPause
waveOutReset
waveOutRestart
WOM_DONE
Playing

MM_WOM_DONE
WAVEHDR
waveOutPrepareHeader
waveOutUnprepareHeader
waveOutWrite
WOM_DONE
Querying a Device

WAVEINCAPS
waveInGetDevCaps
waveInGetNumDevs
WAVEOUTCAPS
waveOutGetDevCaps
waveOutGetNumDevs
Recording

MM_WIM_DATA
waveInAddBuffer
waveInPrepareHeader
waveInReset
waveInStart
waveInStop
waveInUnprepareHeader
WIM_DATA
Retrieving Device Identifiers

waveInGetID
waveOutGetID
Retrieving the Current Position

waveInGetPosition
waveOutGetPosition
Sending Custom Messages

waveInMessage
waveOutMessage
Volume

waveOutGetVolume
waveOutSetVolume

 auxGetDevCaps

MMRESULT auxGetDevCaps(UINT uDeviceID, LPAUXCAPS lpCaps, UINT cbCaps);

Retrieves the capabilities of a given auxiliary output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVIC
EID

Specified device identifier is out of range.

uDeviceID
Identifier of the auxiliary output device to be queried. Specify a valid device identifier (see the
following comments section), or use the following constant:
AUX_MAPPER

Auxiliary audio mapper. The function returns an error if no auxiliary audio mapper is installed.
lpCaps

Address of an AUXCAPS structure to be filled with information about the capabilities of the device.
cbCaps

Size, in bytes, of the AUXCAPS structure.

The device identifier in uDeviceID varies from zero to one less than the number of devices present.
AUX_MAPPER may also be used. Use the auxGetNumDevs function to determine the number of
auxiliary output devices present in the system.

 auxGetNumDevs

UINT auxGetNumDevs(VOID);

Retrieves the number of auxiliary output devices present in the system.

· Returns the number of devices. A return value of zero means that no devices are present or that an
error occurred.

 auxGetVolume

MMRESULT auxGetVolume(UINT uDeviceID, LPDWORD lpdwVolume);

Retrieves the current volume setting of the specified auxiliary output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVICEID Specified device identifier is out of

range.

uDeviceID
Identifier of the auxiliary output device to be queried.

lpdwVolume
Address of a variable to be filled with the current volume setting. The low-order word of this location
contains the left channel volume setting, and the high-order word contains the right channel setting.
A value of 0xFFFF represents full volume, and a value of 0x0000 is silence.
If a device does not support both left and right volume control, the low-order word of the specified
location contains the volume level.
The full 16-bit setting(s) set with the auxSetVolume function are returned, regardless of whether the
device supports the full 16 bits of volume-level control.

Not all devices support volume control. To determine whether a device supports volume control, use
the AUXCAPS_VOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by the
auxGetDevCaps function).

To determine whether a device supports volume control on both the left and right channels, use the
AUXCAPS_LRVOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by
auxGetDevCaps).

 auxOutMessage

DWORD auxOutMessage(UINT uDeviceID, UINT uMsg, DWORD dwParam1,
 DWORD dwParam2);

Sends a message to the given auxiliary output device. This function also performs error checking on
the device identifier passed as part of the message.

· Returns the message return value.
uDeviceID

Identifier of the auxiliary output device to receive the message.
uMsg

Message to send.
dwParam1 and dwParam2

Message parameters.

 auxSetVolume

MMRESULT auxSetVolume(UINT uDeviceID, DWORD dwVolume);

Sets the volume of the specified auxiliary output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVICEID Specified device identifier is out of

range.

uDeviceID
Identifier of the auxiliary output device to be queried. Device identifiers are determined implicitly from
the number of devices present in the system. Device identifier values range from zero to one less
than the number of devices present. Use the auxGetNumDevs function to determine the number of
auxiliary devices in the system.

dwVolume
Specifies the new volume setting. The low-order word specifies the left-channel volume setting, and
the high-order word specifies the right-channel setting. A value of 0xFFFF represents full volume,
and a value of 0x0000 is silence.
If a device does not support both left and right volume control, the low-order word of dwVolume
specifies the volume level, and the high-order word is ignored.

Not all devices support volume control. To determine whether the device supports volume control, use
the AUXCAPS_VOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by the
auxGetDevCaps function).

To determine whether the device supports volume control on both the left and right channels, use the
AUXCAPS_LRVOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by
auxGetDevCaps).

Most devices do not support the full 16 bits of volume-level control and will use only the high-order bits
of the requested volume setting. For example, for a device that supports 4 bits of volume control,
requested volume level values of 0x4000, 0x4FFF, and 0x43BE will produce the same physical volume
setting, 0x4000. The auxGetVolume function will return the full 16-bit setting set with auxSetVolume.

Volume settings are interpreted logarithmically. This means the perceived volume increase is the same
when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

 PlaySound

BOOL PlaySound(LPCSTR pszSound, HMODULE hmod, DWORD fdwSound);

Plays a sound specified by the given filename, resource, or system event. (A system event may be
associated with a sound in the registry or in the WIN.INI file.)

· Returns TRUE if successful or FALSE otherwise.
pszSound

A string that specifies the sound to play. If this parameter is NULL, any currently playing waveform
sound is stopped. To stop a non-waveform sound, specify SND_PURGE in the fdwSound parameter.
Three flags in fdwSound (SND_ALIAS, SND_FILENAME, and SND_RESOURCE) determine
whether the name is interpreted as an alias for a system event, a filename, or a resource identifier. If
none of these flags are specified, PlaySound searches the registry or the WIN.INI file for an
association with the specified sound name. If an association is found, the sound event is played. If
no association is found in the registry, the name is interpreted as a filename.

hmod
Handle of the executable file that contains the resource to be loaded. This parameter must be NULL
unless SND_RESOURCE is specified in fdwSound.

fdwSound
Flags for playing the sound. The following values are defined:
SND_APPLICATION

The sound is played using an application-specific association.
SND_ALIAS

The pszSound parameter is a system-event alias in the registry or the WIN.INI file. Do not use
with either SND_FILENAME or SND_RESOURCE.

SND_ALIAS_ID
The pszSound parameter is a predefined sound identifier.

SND_ASYNC
The sound is played asynchronously and PlaySound returns immediately after beginning the
sound. To terminate an asynchronously played waveform sound, call PlaySound with pszSound
set to NULL.

SND_FILENAME
The pszSound parameter is a filename.

SND_LOOP
The sound plays repeatedly until PlaySound is called again with the pszSound parameter set to
NULL. You must also specify the SND_ASYNC flag to indicate an asynchronous sound event.

SND_MEMORY
A sound event's file is loaded in RAM. The parameter specified by pszSound must point to an
image of a sound in memory.

SND_NODEFAULT
No default sound event is used. If the sound cannot be found, PlaySound returns silently without
playing the default sound.

SND_NOSTOP
The specified sound event will yield to another sound event that is already playing. If a sound
cannot be played because the resource needed to generate that sound is busy playing another
sound, the function immediately returns FALSE without playing the requested sound.
If this flag is not specified, PlaySound attempts to stop the currently playing sound so that the
device can be used to play the new sound.

SND_NOWAIT
If the driver is busy, return immediately without playing the sound.

SND_PURGE
Sounds are to be stopped for the calling task. If pszSound is not NULL, all instances of the
specified sound are stopped. If pszSound is NULL, all sounds that are playing on behalf of the
calling task are stopped.
You must also specify the instance handle to stop SND_RESOURCE events.

SND_RESOURCE
The pszSound parameter is a resource identifier; hmod must identify the instance that contains
the resource.

SND_SYNC
Synchronous playback of a sound event. PlaySound returns after the sound event completes.

The sound specified by pszSound must fit into available physical memory and be playable by an
installed waveform-audio device driver. PlaySound searches the following directories for sound files:
the current directory; the Windows directory; the Windows system directory; directories listed in the
PATH environment variable; and the list of directories mapped in a network. For more information about
the directory search order, see the documentation for the OpenFile function.

If it cannot find the specified sound, PlaySound uses the default system event sound entry instead. If
the function can find neither the system default entry nor the default sound, it makes no sound and
returns FALSE.

 sndAlias

DWORD sndAlias(ch0, ch1)

Creates an alias identifier from two characters, for use with the PlaySound function.

· Returns an alias identifier corresponding to the two supplied characters.
ch0 and ch1

Characters describing the sound alias.

This macro is defined as follows:

sndAlias(ch0, ch1) (SND_ALIAS_START + (DWORD)(BYTE)(ch0) |
 ((DWORD)(BYTE)(ch1) << 8))

 sndPlaySound

BOOL sndPlaySound(LPCSTR lpszSound, UINT fuSound);

Plays a waveform sound specified either by a filename or by an entry in the registry or the WIN.INI file.
This function offers a subset of the functionality of the PlaySound function; sndPlaySound is being
maintained for backward compatibility.

· Returns TRUE if successful or FALSE otherwise.
lpszSound

A string that specifies the sound to play. This parameter can be either an entry in the registry or in
WIN.INI that identifies a system sound, or it can be the name of a waveform-audio file. (If the
function does not find the entry, the parameter is treated as a filename.) If this parameter is NULL,
any currently playing sound is stopped.

fuSound
Flags for playing the sound. The following values are defined:
SND_ASYNC

The sound is played asynchronously and the function returns immediately after beginning the
sound. To terminate an asynchronously played sound, call sndPlaySound with lpszSoundName
set to NULL.

SND_LOOP
The sound plays repeatedly until sndPlaySound is called again with the lpszSoundName
parameter set to NULL. You must also specify the SND_ASYNC flag to loop sounds.

SND_MEMORY
The parameter specified by lpszSoundName points to an image of a waveform sound in memory.

SND_NODEFAULT
If the sound cannot be found, the function returns silently without playing the default sound.

SND_NOSTOP
If a sound is currently playing, the function immediately returns FALSE, without playing the
requested sound.

SND_SYNC
The sound is played synchronously and the function does not return until the sound ends.

If the specified sound cannot be found, sndPlaySound plays the system default sound. If there is no
system default entry in the registry or WIN.INI file, or if the default sound cannot be found, the function
makes no sound and returns FALSE.

The specified sound must fit in available physical memory and be playable by an installed waveform-
audio device driver. If sndPlaySound does not find the sound in the current directory, the function
searches for it using the standard directory-search order.

 waveInAddBuffer

MMRESULT waveInAddBuffer(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);

Sends an input buffer to the given waveform-audio input device. When the buffer is filled, the
application is notified.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_UNPREPARED The buffer pointed to by the pwh

parameter hasn't been prepared.

hwi
Handle of the waveform-audio input device.

pwh
Address of a WAVEHDR structure that identifies the buffer.

cbwh
Size, in bytes, of the WAVEHDR structure.

When the buffer is filled, the WHDR_DONE bit is set in the dwFlags member of the WAVEHDR
structure.

The buffer must be prepared with the waveInPrepareHeader function before it is passed to this
function.

 waveInClose

MMRESULT waveInClose(HWAVEIN hwi);

Closes the given waveform-audio input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_STILLPLAYING There are still buffers in the queue.

hwi
Handle of the waveform-audio input device. If the function succeeds, the handle is no longer valid
after this call.

If there are input buffers that have been sent with the waveInAddBuffer function and that haven't been
returned to the application, the close operation will fail. Call the waveInReset function to mark all
pending buffers as done.

 waveInGetDevCaps

MMRESULT waveInGetDevCaps(UINT uDeviceID, LPWAVEINCAPS pwic,
 UINT cbwic);

Retrieves the capabilities of a given waveform-audio input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error include the
following:
MMSYSERR_BADDEVICEID Specified device identifier is out of

range.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

uDeviceID
Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an
open waveform-audio input device.

pwic
Address of a WAVEINCAPS structure to be filled with information about the capabilities of the
device.

cbwic
Size, in bytes, of the WAVEINCAPS structure.

Use this function to determine the number of waveform-audio input devices present in the system. If
the value specified by the uDeviceID parameter is a device identifier, it can vary from zero to one less
than the number of devices present. The WAVE_MAPPER constant can also be used as a device
identifier. Only cbwic bytes (or less) of information is copied to the location pointed to by pwic. If cbwic
is zero, nothing is copied and the function returns zero.

 waveInGetErrorText

MMRESULT waveInGetErrorText(MMRESULT mmrError, LPSTR pszText,
 UINT cchText);

Retrieves a textual description of the error identified by the given error number.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADERRNUM Specified error number is out of

range.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

mmrError
Error number.

pszText
Address of the buffer to be filled with the textual error description.

cchText
Size, in characters, of the buffer pointed to by pszText.

If the textual error description is longer than the specified buffer, the description is truncated. The
returned error string is always null-terminated. If cchText is zero, nothing is copied and the function
returns zero. All error descriptions are less than MAXERRORLENGTH characters long.

 waveInGetID

MMRESULT waveInGetID(HWAVEIN hwi, LPUINT puDeviceID);

Gets the device identifier for the given waveform-audio input device.

This function is supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The hwi parameter specifies an invalid
handle.

MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwi
Handle of the waveform-audio input device.

puDeviceID
Address of a variable to be filled with the device identifier.

 waveInGetNumDevs

UINT waveInGetNumDevs(VOID);

Returns the number of waveform-audio input devices present in the system.

· Returns the number of devices. A return value of zero means that no devices are present or that an
error occurred.

 waveInGetPosition

MMRESULT waveInGetPosition(HWAVEIN hwi, LPMMTIME pmmt, UINT cbmmt);

Retrieves the current input position of the given waveform-audio input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwi
Handle of the waveform-audio input device.

pmmt
Address of an MMTIME structure.

cbmmt
Size, in bytes, of the MMTIME structure.

Before calling this function, set the wType member of the MMTIME structure to indicate the time format
you want. After calling this function, check wType to determine whether the desired time format is
supported. If the format is not supported, the member will specify an alternative format.

The position is set to zero when the device is opened or reset.

 waveInMessage

DWORD waveInMessage(HWAVEIN hwi, UINT uMsg, DWORD dwParam1,
 DWORD dwParam2);

Sends messages to the waveform-audio input device drivers.

· Returns the value returned from the driver.
hwi

Handle of the waveform-audio input device.
uMsg

Message to send.
dwParam1 and dwParam2

Message parameters.

 waveInOpen

MMRESULT waveInOpen(LPHWAVEIN phwi, UINT uDeviceID, LPWAVEFORMATEX pwfx,
 DWORD dwCallback, DWORD dwCallbackInstance, DWORD fdwOpen);

Opens the given waveform-audio input device for recording.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_ALLOCATED Specified resource is already

allocated.
MMSYSERR_BADDEVICEID Specified device identifier is out of

range.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_BADFORMAT Attempted to open with an

unsupported waveform-audio
format.

phwi
Address filled with a handle identifying the open waveform-audio input device. Use this handle to
identify the device when calling other waveform-audio input functions. This parameter can be NULL
if WAVE_FORMAT_QUERY is specified for fdwOpen.

uDeviceID
Identifier of the waveform-audio input device to open. It can be either a device identifier or a handle
of an open waveform-audio input device.You can use the following flag instead of a device identifier:
WAVE_MAPPER

The function selects a waveform-audio input device capable of recording in the specified format.
pwfx

Address of a WAVEFORMATEX structure that identifies the desired format for recording waveform-
audio data. You can free this structure immediately after waveInOpen returns.

dwCallback
Address of a fixed callback function, an event handle, or a handle of a window or thread called
during waveform-audio recording to process messages related to the progress of recording. If no
callback function is required, this value can be zero.

dwCallbackInstance
User-instance data passed to the callback mechanism. This parameter is not used with the window
callback mechanism.

fdwOpen
Flags for opening the device. The following values are defined:
CALLBACK_EVENT

The dwCallback parameter is an event handle.
CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.
CALLBACK_NULL

No callback mechanism. This is the default setting.
CALLBACK_THREAD

The dwCallback parameter is a thread handle.
CALLBACK_WINDOW

The dwCallback parameter is a window handle.
WAVE_FORMAT_QUERY

The function queries the device to determine whether it supports the given format, but it does not
open the device.

WAVE_MAPPED
The uDeviceID parameter specifies a waveform-audio device to be mapped to by the wave
mapper.

Use the waveInGetNumDevs function to determine the number of waveform-audio input devices
present on the system. The device identifier specified by uDeviceID varies from zero to one less than
the number of devices present. The WAVE_MAPPER constant can also be used as a device identifier.

If you choose to have a window or thread receive callback information, the following messages are
sent to the window procedure or thread to indicate the progress of waveform-audio input:
MM_WIM_OPEN, MM_WIM_CLOSE, and MM_WIM_DATA.

If you choose to have a function receive callback information, the following messages are sent to the
function to indicate the progress of waveform-audio input: WIM_OPEN, WIM_CLOSE, and WIM_DATA.

 waveInPrepareHeader

MMRESULT waveInPrepareHeader(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);

Prepares a buffer for waveform-audio input.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwi
Handle of the waveform-audio input device.

pwh
Address of a WAVEHDR structure that identifies the buffer to be prepared.

cbwh
Size, in bytes, of the WAVEHDR structure.

The lpData, dwBufferLength, and dwFlags members of the WAVEHDR structure must be set before
calling this function (dwFlags must be zero).

 waveInProc

void CALLBACK waveInProc(HWAVEIN hwi, UINT uMsg, DWORD dwInstance,
 DWORD dwParam1, DWORD dwParam2);

Callback function used with the waveform-audio input device. This function is a placeholder for the
application-defined function name.

hwi
Handle of the waveform-audio device associated with the callback function.

uMsg
Waveform-audio input message. It can be one of the following messages:
WIM_CLOSE

Sent when the device is closed using the waveInClose function.
WIM_DATA

Sent when the device driver is finished with a data block sent using the waveInAddBuffer
function.

WIM_OPEN
Sent when the device is opened using the waveInOpen function.

dwInstance
User instance data specified with waveInOpen.

dwParam1 and dwParam2
Message parameters.

Applications should not call any system-defined functions from inside a callback function, except for
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent,
midiOutShortMsg, midiOutLongMsg, and OutputDebugStr.

 waveInReset

MMRESULT waveInReset(HWAVEIN hwi);

Stops input on the given waveform-audio input device and resets the current position to zero. All
pending buffers are marked as done and returned to the application.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwi
Handle of the waveform-audio input device.

 waveInStart

MMRESULT waveInStart(HWAVEIN hwi);

Starts input on the given waveform-audio input device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwi
Handle of the waveform-audio input device.

Buffers are returned to the application when full or when the waveInReset function is called (the
dwBytesRecorded member in the header will contain the length of data). If there are no buffers in the
queue, the data is thrown away without notifying the application, and input continues.

Calling this function when input is already started has no effect, and the function returns zero.

 waveInStop

MMRESULT waveInStop(HWAVEIN hwi);

Stops waveform-audio input.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwi
Handle of the waveform-audio input device.

If there are any buffers in the queue, the current buffer will be marked as done (the dwBytesRecorded
member in the header will contain the length of data), but any empty buffers in the queue will remain
there.

Calling this function when input is not started has no effect, and the function returns zero.

 waveInUnprepareHeader

MMRESULT waveInUnprepareHeader(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);

Cleans up the preparation performed by the waveInPrepareHeader function. This function must be
called after the device driver fills a buffer and returns it to the application. You must call this function
before freeing the buffer.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_STILLPLAYING The buffer pointed to by the pwh

parameter is still in the queue.

hwi
Handle of the waveform-audio input device.

pwh
Address of a WAVEHDR structure identifying the buffer to be cleaned up.

cbwh
Size, in bytes, of the WAVEHDR structure.

This function complements the waveInPrepareHeader function.

You must call this function before freeing the buffer. After passing a buffer to the device driver with the
waveInAddBuffer function, you must wait until the driver is finished with the buffer before calling
waveInUnprepareHeader. Unpreparing a buffer that has not been prepared has no effect, and the
function returns zero.

 waveOutBreakLoop

MMRESULT waveOutBreakLoop(HWAVEOUT hwo);

Breaks a loop on the given waveform-audio output device and allows playback to continue with the
next block in the driver list.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwo
Handle of the waveform-audio output device.

The blocks making up the loop are played to the end before the loop is terminated.

Calling this function when nothing is playing or looping has no effect, and the function returns zero.

 waveOutClose

MMRESULT waveOutClose(HWAVEOUT hwo);

Closes the given waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_STILLPLAYING There are still buffers in the queue.

hwo
Handle of the waveform-audio output device. If the function succeeds, the handle is no longer valid
after this call.

If the device is still playing a waveform-audio file, the close operation fails. Use the waveOutReset
function to terminate playback before calling waveOutClose.

 waveOutGetDevCaps

MMRESULT waveOutGetDevCaps(UINT uDeviceID, LPWAVEOUTCAPS pwoc,
 UINT cbwoc);

Retrieves the capabilities of a given waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADDEVICEID Specified device identifier is out of

range.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

uDeviceID
Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an
open waveform-audio output device.

pwoc
Address of a WAVEOUTCAPS structure to be filled with information about the capabilities of the
device.

cbwoc
Size, in bytes, of the WAVEOUTCAPS structure.

Use the waveOutGetNumDevs function to determine the number of waveform-audio output devices
present in the system. If the value specified by the uDeviceID parameter is a device identifier, it can
vary from zero to one less than the number of devices present. The WAVE_MAPPER constant can
also be used as a device identifier. Only cbwoc bytes (or less) of information is copied to the location
pointed to by pwoc. If cbwoc is zero, nothing is copied and the function returns zero.

 waveOutGetErrorText

MMRESULT waveOutGetErrorText(MMRESULT mmrError, LPSTR pszText,
 UINT cchText);

Retrieves a textual description of the error identified by the given error number.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_BADERRNUM Specified error number is out of

range.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

mmrError
Error number.

pszText
Address of a buffer to be filled with the textual error description.

cchText
Size, in characters, of the buffer pointed to by pszText.

If the textual error description is longer than the specified buffer, the description is truncated. The
returned error string is always null-terminated. If cchText is zero, nothing is copied and the function
returns zero. All error descriptions are less than MAXERRORLENGTH characters long.

 waveOutGetID

MMRESULT waveOutGetID(HWAVEOUT hwo, LPUINT puDeviceID);

Retrieves the device identifier for the given waveform-audio output device.

This function is supported for backward compatibility. New applications can cast a handle of the device
rather than retrieving the device identifier.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHAND
LE

The hwo parameter specifies an invalid
handle.

MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwo
Handle of the waveform-audio output device.

puDeviceID
Address of a variable to be filled with the device identifier.

 waveOutGetNumDevs

UINT waveOutGetNumDevs(VOID);

Retrieves the number of waveform-audio output devices present in the system.

· Returns the number of devices. A return value of zero means that no devices are present or that an
error occurred.

 waveOutGetPitch

MMRESULT waveOutGetPitch(HWAVEOUT hwo, LPDWORD pdwPitch);

Retrieves the current pitch setting for the specified waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Function isn't supported.

hwo
Handle of the waveform-audio output device.

pdwPitch
Address of a variable to be filled with the current pitch multiplier setting. The pitch multiplier indicates
the current change in pitch from the original authored setting. The pitch multiplier must be a positive
value.
The pitch multiplier is specified as a fixed-point value. The high-order word of the variable contains
the signed integer part of the number, and the low-order word contains the fractional part. A value of
0x8000 in the low-order word represents one-half, and 0x4000 represents one-quarter. For example,
the value 0x00010000 specifies a multiplier of 1.0 (no pitch change), and a value of 0x000F8000
specifies a multiplier of 15.5.

Changing the pitch does not change the playback rate, sample rate, or playback time. Not all devices
support pitch changes. To determine whether the device supports pitch control, use the
WAVECAPS_PITCH flag to test the dwSupport member of the WAVEOUTCAPS structure (filled by
the waveOutGetDevCaps function).

 waveOutGetPlaybackRate

MMRESULT waveOutGetPlaybackRate(HWAVEOUT hwo, LPDWORD pdwRate);

Retrieves the current playback rate for the specified waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Function isn't supported.

hwo
Handle of the waveform-audio output device.

pdwRate
Address of a variable to be filled with the current playback rate. The playback rate setting is a
multiplier indicating the current change in playback rate from the original authored setting. The
playback rate multiplier must be a positive value.
The rate is specified as a fixed-point value. The high-order word of the variable contains the signed
integer part of the number, and the low-order word contains the fractional part. A value of 0x8000 in
the low-order word represents one-half, and 0x4000 represents one-quarter. For example, the value
0x00010000 specifies a multiplier of 1.0 (no playback rate change), and a value of 0x000F8000
specifies a multiplier of 15.5.

Changing the playback rate does not change the sample rate but does change the playback time. Not
all devices support playback rate changes. To determine whether a device supports playback rate
changes, use the WAVECAPS_PLAYBACKRATE flag to test the dwSupport member of the
WAVEOUTCAPS structure (filled by the waveOutGetDevCaps function).

 waveOutGetPosition

MMRESULT waveOutGetPosition(HWAVEOUT hwo, LPMMTIME pmmt, UINT cbmmt);

Retrieves the current playback position of the given waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwo
Handle of the waveform-audio output device.

pmmt
Address of an MMTIME structure.

cbmmt
Size, in bytes, of the MMTIME structure.

Before calling this function, set the wType member of the MMTIME structure to indicate the time format
you want. After calling this function, check wType to determine whether the time format is supported. If
the format is not supported, wType will specify an alternative format.

The position is set to zero when the device is opened or reset.

 waveOutGetVolume

MMRESULT waveOutGetVolume(HWAVEOUT hwo, LPDWORD pdwVolume);

Retrieves the current volume level of the specified waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Function isn't supported.

hwo
Handle of an open waveform-audio output device.

pdwVolume
Address of a variable to be filled with the current volume setting. The low-order word of this location
contains the left-channel volume setting, and the high-order word contains the right-channel setting.
A value of 0xFFFF represents full volume, and a value of 0x0000 is silence.
If a device does not support both left and right volume control, the low-order word of the specified
location contains the mono volume level.
The full 16-bit setting(s) set with the waveOutSetVolume function is returned, regardless of whether
the device supports the full 16 bits of volume-level control.

Not all devices support volume changes. To determine whether the device supports volume control,
use the WAVECAPS_VOLUME flag to test the dwSupport member of the WAVEOUTCAPS structure
(filled by the waveOutGetDevCaps function).

To determine whether the device supports left- and right-channel volume control, use the
WAVECAPS_LRVOLUME flag to test the dwSupport member of the WAVEOUTCAPS structure (filled
by waveOutGetDevCaps).

Volume settings are interpreted logarithmically. This means the perceived increase in volume is the
same when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

 waveOutMessage

DWORD waveOutMessage(HWAVEOUT hwo, UINT uMsg, DWORD dwParam1,
 DWORD dwParam2);

Sends messages to the waveform-audio output device drivers.

· Returns the value returned from the driver.
hwo

Handle of the waveform-audio output device.
uMsg

Message to send.
dwParam1 and dwParam2

Message parameters.

 waveOutOpen

MMRESULT waveOutOpen(LPHWAVEOUT phwo, UINT uDeviceID,
 LPWAVEFORMATEX pwfx, DWORD dwCallback, DWORD dwCallbackInstance,
 DWORD fdwOpen);

Opens the given waveform-audio output device for playback.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_ALLOCATED Specified resource is already

allocated.
MMSYSERR_BADDEVICEID Specified device identifier is out of

range.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_BADFORMAT Attempted to open with an

unsupported waveform-audio
format.

WAVERR_SYNC The device is synchronous but
waveOutOpen was called without
using the WAVE_ALLOWSYNC
flag.

phwo
Address filled with a handle identifying the open waveform-audio output device. Use the handle to
identify the device when calling other waveform-audio output functions. This parameter might be
NULL if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDeviceID
Identifier of the waveform-audio output device to open. It can be either a device identifier or a handle
of an open waveform-audio input device.You can use the following flag instead of a device identifier:
WAVE_MAPPER

The function selects a waveform-audio output device capable of playing the given format.
pwfx

Address of a WAVEFORMATEX structure that identifies the format of the waveform-audio data to be
sent to the device. You can free this structure immediately after passing it to waveOutOpen.

dwCallback
Address of a fixed callback function, an event handle, or a handle of a window or thread called
during waveform-audio playback to process messages related to the progress of the playback. If no
callback function is required, this value can be zero.

dwCallbackInstance
User-instance data passed to the callback mechanism. This parameter is not used with the window
callback mechanism.

fdwOpen
Flags for opening the device. The following values are defined:
CALLBACK_EVENT

The dwCallback parameter is an event handle.
CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address.
CALLBACK_NULL

No callback mechanism. This is the default setting.

CALLBACK_THREAD
The dwCallback parameter is a thread handle.

CALLBACK_WINDOW
The dwCallback parameter is a window handle.

WAVE_ALLOWSYNC
If this flag is specified, a synchronous waveform-audio device can be opened. If this flag is not
specified while opening a synchronous driver, the device will fail to open.

WAVE_FORMAT_QUERY
If this flag is specified, waveOutOpen queries the device to determine if it supports the given
format, but the device is not actually opened.

WAVE_MAPPED
If this flag is specified, the uDeviceID parameter specifies a waveform-audio device to be mapped
to by the wave mapper.

Use the waveOutGetNumDevs function to determine the number of waveform-audio output devices
present in the system. If the value specified by the uDeviceID parameter is a device identifier, it can
vary from zero to one less than the number of devices present. The WAVE_MAPPER constant can
also be used as a device identifier.

The structure pointed to by pwfx can be extended to include type-specific information for certain data
formats. For example, for PCM data, an extra UINT is added to specify the number of bits per sample.
Use the PCMWAVEFORMAT structure in this case. For all other waveform-audio formats, use the
WAVEFORMATEX structure to specify the length of the additional data.

If you choose to have a window or thread receive callback information, the following messages are
sent to the window procedure function to indicate the progress of waveform-audio output:
MM_WOM_OPEN, MM_WOM_CLOSE, and MM_WOM_DONE.

If you choose to have a function receive callback information, the following messages are sent to the
function to indicate the progress of waveform-audio output: WOM_OPEN, WOM_CLOSE, and
WOM_DONE.

 waveOutPause

MMRESULT waveOutPause(HWAVEOUT hwo);

Pauses playback on the given waveform-audio output device. The current position is saved. Use the
waveOutRestart function to resume playback from the current position.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Specified device is synchronous

and does not support pausing.

hwo
Handle of the waveform-audio output device.

Calling this function when the output is already paused has no effect, and the function returns zero.

 waveOutPrepareHeader

MMRESULT waveOutPrepareHeader(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh);

Prepares a waveform-audio data block for playback.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.

hwo
Handle of the waveform-audio output device.

pwh
Address of a WAVEHDR structure that identifies the data block to be prepared.

cbwh
Size, in bytes, of the WAVEHDR structure.

The lpData, dwBufferLength, and dwFlags members of the WAVEHDR structure must be set before
calling this function (dwFlags must be zero).

The dwFlags, dwBufferLength, and dwLoops members of the WAVEHDR structure can change
between calls to this function and the waveOutWrite function. (The only flags that can change in this
interval for the dwFlags member are WHDR_BEGINLOOP and WHDR_ENDLOOP.) If you change the
size specified by dwBufferLength before the call to waveOutWrite, the new value must be less than
the prepared value.

Preparing a header that has already been prepared has no effect, and the function returns zero.

 waveOutProc

void CALLBACK waveOutProc(HWAVEOUT hwo, UINT uMsg, DWORD dwInstance,
 DWORD dwParam1, DWORD dwParam2);

Callback function used with the waveform-audio output device. The waveOutProc function is a
placeholder for the application-defined function name.

hwo
Handle of the waveform-audio device associated with the callback.

uMsg
Waveform-audio output message. It can be one of the following values:
WOM_CLOSE

Sent when the device is closed using the waveOutClose function.
WOM_DONE

Sent when the device driver is finished with a data block sent using the waveOutWrite function.
WOM_OPEN

Sent when the device is opened using the waveOutOpen function.
dwInstance

User-instance data specified with waveOutOpen.
dwParam1 and dwParam2

Message parameters.

Applications should not call any system-defined functions from inside a callback function, except for
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent,
midiOutShortMsg, midiOutLongMsg, and OutputDebugStr.

 waveOutReset

MMRESULT waveOutReset(HWAVEOUT hwo);

Stops playback on the given waveform-audio output device and resets the current position to zero. All
pending playback buffers are marked as done and returned to the application.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Specified device is synchronous

and does not support pausing.

hwo
Handle of the waveform-audio output device.

 waveOutRestart

MMRESULT waveOutRestart(HWAVEOUT hwo);

Resumes playback on a paused waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Specified device is synchronous

and does not support pausing.

hwo
Handle of the waveform-audio output device.

Calling this function when the output is not paused has no effect, and the function returns zero.

 waveOutSetPitch

MMRESULT waveOutSetPitch(HWAVEOUT hwo, DWORD dwPitch);

Sets the pitch for the specified waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Function isn't supported.

hwo
Handle of the waveform-audio output device.

dwPitch
New pitch multiplier setting. This setting indicates the current change in pitch from the original
authored setting. The pitch multiplier must be a positive value.
The pitch multiplier is specified as a fixed-point value. The high-order word contains the signed
integer part of the number, and the low-order word contains the fractional part. A value of 0x8000 in
the low-order word represents one-half, and 0x4000 represents one-quarter. For example, the value
0x00010000 specifies a multiplier of 1.0 (no pitch change), and a value of 0x000F8000 specifies a
multiplier of 15.5.

Changing the pitch does not change the playback rate or the sample rate, nor does it change the
playback time. Not all devices support pitch changes. To determine whether the device supports pitch
control, use the WAVECAPS_PITCH flag to test the dwSupport member of the WAVEOUTCAPS
structure (filled by the waveOutGetDevCaps function).

 waveOutSetPlaybackRate

MMRESULT waveOutSetPlaybackRate(HWAVEOUT hwo, DWORD dwRate);

Sets the playback rate for the specified waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Function isn't supported.

hwo
Handle of the waveform-audio output device.

dwRate
New playback rate setting. This setting is a multiplier indicating the current change in playback rate
from the original authored setting. The playback rate multiplier must be a positive value.
The rate is specified as a fixed-point value. The high-order word contains the signed integer part of
the number, and the low-order word contains the fractional part. A value of 0x8000 in the low-order
word represents one-half, and 0x4000 represents one-quarter. For example, the value 0x00010000
specifies a multiplier of 1.0 (no playback rate change), and a value of 0x000F8000 specifies a
multiplier of 15.5.

Changing the playback rate does not change the sample rate but does change the playback time. Not
all devices support playback rate changes. To determine whether a device supports playback rate
changes, use the WAVECAPS_PLAYBACKRATE flag to test the dwSupport member of the
WAVEOUTCAPS structure (filled by the waveOutGetDevCaps function).

 waveOutSetVolume

MMRESULT waveOutSetVolume(HWAVEOUT hwo, DWORD dwVolume);

Sets the volume level of the specified waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
MMSYSERR_NOTSUPPORTED Function is not supported.

hwo
Handle of an open waveform-audio output device.

dwVolume
New volume setting. The low-order word contains the left-channel volume setting, and the high-order
word contains the right-channel setting. A value of 0xFFFF represents full volume, and a value of
0x0000 is silence.
If a device does not support both left and right volume control, the low-order word of dwVolume
specifies the volume level, and the high-order word is ignored.

Changing the volume on a handle changes it for an instance of the device, rather than changing the
default volume for the device (and affecting all instances of the device).

Not all devices support volume changes. To determine whether the device supports volume control,
use the WAVECAPS_VOLUME flag to test the dwSupport member of the WAVEOUTCAPS structure
(filled by the waveOutGetDevCaps function). To determine whether the device supports volume
control on both the left and right channels, use the WAVECAPS_LRVOLUME flag.

Most devices do not support the full 16 bits of volume-level control and will not use the high-order bits
of the requested volume setting. For example, for a device that supports 4 bits of volume control,
requested volume level values of 0x4000, 0x4FFF, and 0x43BE all produce the same physical volume
setting: 0x4000. The waveOutGetVolume function returns the full 16-bit setting set with
waveOutSetVolume.

Volume settings are interpreted logarithmically. This means the perceived increase in volume is the
same when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

 waveOutUnprepareHeader

MMRESULT waveOutUnprepareHeader(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh);

Cleans up the preparation performed by the waveOutPrepareHeader function. This function must be
called after the device driver is finished with a data block. You must call this function before freeing the
buffer.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_STILLPLAYING The data block pointed to by the

pwh parameter is still in the queue.

hwo
Handle of the waveform-audio output device.

pwh
Address of a WAVEHDR structure identifying the data block to be cleaned up.

cbwh
Size, in bytes, of the WAVEHDR structure.

This function complements waveOutPrepareHeader. You must call this function before freeing the
buffer. After passing a buffer to the device driver with the waveOutWrite function, you must wait until
the driver is finished with the buffer before calling waveOutUnprepareHeader.

Unpreparing a buffer that has not been prepared has no effect, and the function returns zero.

 waveOutWrite

MMRESULT waveOutWrite(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh);

Sends a data block to the given waveform-audio output device.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMSYSERR_INVALHANDLE Specified device handle is invalid.
MMSYSERR_NODRIVER No device driver is present.
MMSYSERR_NOMEM Unable to allocate or lock memory.
WAVERR_UNPREPARED The data block pointed to by the

pwh parameter hasn't been
prepared.

hwo
Handle of the waveform-audio output device.

pwh
Address of a WAVEHDR structure containing information about the data block.

cbwh
Size, in bytes, of the WAVEHDR structure.

When the buffer is finished, the WHDR_DONE bit is set in the dwFlags member of the WAVEHDR
structure.

The buffer must be prepared with the waveOutPrepareHeader function before it is passed to
waveOutWrite. Unless the device is paused by calling the waveOutPause function, playback begins
when the first data block is sent to the device.

 MM_WIM_CLOSE

MM_WIM_CLOSE
wParam = (WPARAM) hInputDev // see below
lParam = reserved // must be zero

Sent to a window when a waveform-audio input device is closed. The device handle is no longer valid
after this message has been sent.

· No return value.
hInputDev

Handle of the waveform-audio input device that was closed.

 MM_WIM_DATA

MM_WIM_DATA
wParam = (WPARAM) hInputDev
lParam = (LONG) lpwvhdr

Sent to a window when waveform-audio data is present in the input buffer and the buffer is being
returned to the application. The message can be sent either when the buffer is full or after the
waveInReset function is called.

· No return value.
hInputDev

Handle of the waveform-audio input device that received the data.
lpwvhdr

Address of a WAVEHDR structure that identifies the buffer containing the data.

The returned buffer might not be full. Use the dwBytesRecorded member of the WAVEHDR structure
specified by lParam to determine the number of bytes recorded into the returned buffer.

 MM_WIM_OPEN

MM_WIM_OPEN
wParam = (WPARAM) hInputDev // see below
lParam = reserved // must be zero

Sent to a window when a waveform-audio input device is opened.

· No return value.
hInputDev

Handle of the device that was opened.

 MM_WOM_CLOSE

MM_WOM_CLOSE
wParam = (WPARAM) hOutputDev // see below
lParam = reserved // must be zero

Sent to a window when a waveform-audio output device is closed. The device handle is no longer valid
after this message has been sent.

· No return value.
hOutputDev

Handle of the device that was closed.

 MM_WOM_DONE

MM_WOM_DONE
wParam = (WPARAM) hOutputDev
lParam = (LONG) lpwvhdr

Sent to a window when the given output buffer is being returned to the application. Buffers are returned
to the application when they have been played, or as the result of a call to the waveOutReset function.

· No return value.
hOutputDev

Handle of the waveform-audio output device that played the buffer.
lpwvhdr

Address of a WAVEHDR structure identifying the buffer.

 MM_WOM_OPEN

MM_WOM_OPEN
wParam = (WPARAM) hOutputDev // see below
lParam = reserved // must be zero

Sent to a window when the given waveform-audio output device is opened.

· No return value.
hOutputDev

Handle of the device that was opened.

 WIM_CLOSE

WIM_CLOSE
dwParam1 = reserved // must be zero
dwParam2 = reserved // must be zero

Sent to the given waveform-audio input callback function when a waveform-audio input device is
closed. The device handle is no longer valid after this message has been sent.

· No return value.

 WIM_DATA

WIM_DATA
dwParam1 = (DWORD) lpwvhdr // see below
dwParam2 = reserved // must be zero

Sent to the given waveform-audio input callback function when waveform-audio data is present in the
input buffer and the buffer is being returned to the application. The message can be sent when the
buffer is full or after the waveInReset function is called.

· No return value.
lpwvhdr

Address of a WAVEHDR structure that identifies the buffer containing the data.

The returned buffer might not be full. Use the dwBytesRecorded member of the WAVEHDR structure
specified by lpwvhdr to determine the number of bytes recorded into the returned buffer.

 WIM_OPEN

WIM_OPEN
dwParam1 = reserved // must be zero
dwParam2 = reserved // must be zero

Sent to a waveform-audio input callback function when a waveform-audio input device is opened.

· No return value.

 WOM_CLOSE

WOM_CLOSE
dwParam1 = reserved // must be zero
dwParam2 = reserved // must be zero

Sent to a waveform-audio output callback function when a waveform-audio output device is closed.
The device handle is no longer valid after this message has been sent.

· No return value.

 WOM_DONE

WOM_DONE
dwParam1 = (DWORD) lpwvhdr // see below
dwParam2 = reserved // must be zero

Sent to a waveform-audio output callback function when the given output buffer is being returned to the
application. Buffers are returned to the application when they have been played, or as the result of a
call to the waveOutReset function.

· No return value.
lpwvhdr

Address of a WAVEHDR structure identifying the buffer.

 WOM_OPEN

WOM_OPEN
dwParam1 = reserved // must be zero
dwParam2 = reserved // must be zero

Sent to a waveform-audio output callback function when a waveform-audio output device is opened.

· No return value.

 AUXCAPS

typedef struct {
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 WORD wTechnology;
 WORD wReserved1; // padding
 DWORD dwSupport;
} AUXCAPS;

Describes the capabilities of an auxiliary output device.

wMid
Manufacturer identifier for the device driver for the auxiliary audio device. The following identifier is
defined:
MM_MICROSOFT

Drivers developed by Microsoft Corporation.
wPid

Product identifier for the auxiliary audio device. Currently, no product identifiers are defined for
auxiliary audio devices.

vDriverVersion
Version number of the device driver for the auxiliary audio device. The high-order byte is the major
version number, and the low-order byte is the minor version number.

szPname
Product name in a null-terminated string.

wTechnology
Type of the auxiliary audio output:
AUXCAPS_AUXIN

Audio output from auxiliary input jacks.
AUXCAPS_CDAUDIO

Audio output from an internal CD-ROM drive.
dwSupport

Describes optional functionality supported by the auxiliary audio device.
AUXCAPS_LRVOLUME

Supports separate left and right volume control.
AUXCAPS_VOLUME

Supports volume control.
If a device supports volume changes, the AUXCAPS_VOLUME flag will be set. If a device supports
separate volume changes on the left and right channels, both AUXCAPS_VOLUME and the
AUXCAPS_LRVOLUME will be set.

 PCMWAVEFORMAT

typedef struct {
 WAVEFORMAT wf; // see below
 WORD wBitsPerSample; // number of bits per sample
} PCMWAVEFORMAT;

Describes the data format for PCM waveform-audio data. This structure has been superseded by the
WAVEFORMATEX structure.

wf
A WAVEFORMAT structure containing general information about the format of the data.

 WAVEFORMAT

typedef struct {
 WORD wFormatTag; // see below
 WORD nChannels; // see below
 DWORD nSamplesPerSec; // sample rate, in samples per second
 DWORD nAvgBytesPerSec; // see below
 WORD nBlockAlign; // see below
} WAVEFORMAT;

Describes the format of waveform-audio data. Only format information common to all waveform-audio
data formats is included in this structure. This structure has been superseded by the
WAVEFORMATEX structure.

wFormatTag
Format type. The following type is defined:
WAVE_FORMAT_PCM

Waveform-audio data is PCM.
nChannels

Number of channels in the waveform-audio data. Mono data uses one channel and stereo data uses
two channels.

nAvgBytesPerSec
Required average data transfer rate, in bytes per second. For example, 16-bit stereo at 44.1 kHz
has an average data rate of 176,400 bytes per second (2 channels ´ 2 bytes per sample per
channel ´ 44,100 samples per second).

nBlockAlign
Block alignment, in bytes. The block alignment is the minimum atomic unit of data. For PCM data,
the block alignment is the number of bytes used by a single sample, including data for both channels
if the data is stereo. For example, the block alignment for 16-bit stereo PCM is 4 bytes (2 channels
´ 2 bytes per sample).

For formats that require additional information, this structure is included as a member in another
structure along with the additional information.

 WAVEFORMATEX

typedef struct {
 WORD wFormatTag;
 WORD nChannels;
 DWORD nSamplesPerSec;
 DWORD nAvgBytesPerSec;
 WORD nBlockAlign;
 WORD wBitsPerSample;
 WORD cbSize;
} WAVEFORMATEX;

Defines the format of waveform-audio data. Only format information common to all waveform-audio
data formats is included in this structure. For formats that require additional information, this structure
is included as the first member in another structure, along with the additional information.

wFormatTag
Waveform-audio format type. Format tags are registered with Microsoft Corporation for many
compression algorithms. A complete list of format tags can be found in the MMREG.H header file.

nChannels
Number of channels in the waveform-audio data. Monaural data uses one channel and stereo data
uses two channels.

nSamplesPerSec
Sample rate, in samples per second (hertz), that each channel should be played or recorded. If
wFormatTag is WAVE_FORMAT_PCM, then common values for nSamplesPerSec are 8.0 kHz,
11.025 kHz, 22.05 kHz, and 44.1 kHz. For non-PCM formats, this member must be computed
according to the manufacturer's specification of the format tag.

nAvgBytesPerSec
Required average data-transfer rate, in bytes per second, for the format tag. If wFormatTag is
WAVE_FORMAT_PCM, nAvgBytesPerSec should be equal to the product of nSamplesPerSec
and nBlockAlign. For non-PCM formats, this member must be computed according to the
manufacturer's specification of the format tag.
Playback and record software can estimate buffer sizes by using the nAvgBytesPerSec member.

nBlockAlign
Block alignment, in bytes. The block alignment is the minimum atomic unit of data for the
wFormatTag format type. If wFormatTag is WAVE_FORMAT_PCM, nBlockAlign should be equal
to the product of nChannels and wBitsPerSample divided by 8 (bits per byte). For non-PCM
formats, this member must be computed according to the manufacturer's specification of the format
tag.
Playback and record software must process a multiple of nBlockAlign bytes of data at a time. Data
written and read from a device must always start at the beginning of a block. For example, it is illegal
to start playback of PCM data in the middle of a sample (that is, on a non-block-aligned boundary).

wBitsPerSample
Bits per sample for the wFormatTag format type. If wFormatTag is WAVE_FORMAT_PCM, then
wBitsPerSample should be equal to 8 or 16. For non-PCM formats, this member must be set
according to the manufacturer's specification of the format tag. Note that some compression
schemes cannot define a value for wBitsPerSample, so this member can be zero.

cbSize
Size, in bytes, of extra format information appended to the end of the WAVEFORMATEX structure.
This information can be used by non-PCM formats to store extra attributes for the wFormatTag. If
no extra information is required by the wFormatTag, this member must be set to zero. Note that for
WAVE_FORMAT_PCM formats (and only WAVE_FORMAT_PCM formats), this member is ignored.

An example of a format that uses extra information is the Microsoft Adaptive Delta Pulse Code
Modulation (MS-ADPCM) format. The wFormatTag for MS-ADPCM is WAVE_FORMAT_ADPCM. The
cbSize member will typically be set to 32. The extra information stored for WAVE_FORMAT_ADPCM is
coefficient pairs required for encoding and decoding the waveform-audio data.

 WAVEHDR

typedef struct {
 LPSTR lpData; // address of the waveform buffer
 DWORD dwBufferLength; // length, in bytes, of the buffer
 DWORD dwBytesRecorded; // see below
 DWORD dwUser; // 32 bits of user data
 DWORD dwFlags; // see below
 DWORD dwLoops; // see below
 struct wavehdr_tag far * lpNext; // reserved; must be zero
 DWORD reserved; // reserved; must be zero
} WAVEHDR;

Defines the header used to identify a waveform-audio buffer.

dwBytesRecorded
When the header is used in input, this member specifies how much data is in the buffer.

dwFlags
Flags supplying information about the buffer. The following values are defined:
WHDR_BEGINLOOP

This buffer is the first buffer in a loop. This flag is used only with output buffers.
WHDR_DONE

Set by the device driver to indicate that it is finished with the buffer and is returning it to the
application.

WHDR_ENDLOOP
This buffer is the last buffer in a loop. This flag is used only with output buffers.

WHDR_INQUEUE
Set by Windows to indicate that the buffer is queued for playback.

WHDR_PREPARED
Set by Windows to indicate that the buffer has been prepared with the waveInPrepareHeader or
waveOutPrepareHeader function.

dwLoops
Number of times to play the loop. This member is used only with output buffers.

Use the WHDR_BEGINLOOP and WHDR_ENDLOOP flags in the dwFlags member to specify the
beginning and ending data blocks for looping. To loop on a single block, specify both flags for the same
block. Use the dwLoops member in the WAVEHDR structure for the first block in the loop to specify
the number of times to play the loop.

The lpData, dwBufferLength, and dwFlags members must be set before calling the
waveInPrepareHeader or waveOutPrepareHeader function. (For either function, the dwFlags
member must be set to zero.)

 WAVEINCAPS

typedef struct {
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 DWORD dwFormats;
 WORD wChannels;
 WORD wReserved1; // padding
} WAVEINCAPS;

Describes the capabilities of a waveform-audio input device.

wMid
Manufacturer identifier for the device driver for the waveform-audio input device. Manufacturer
identifiers are defined in Chapter 0, "Manufacturer and Product Identifiers."

wPid
Product identifier for the waveform-audio input device. Product identifiers are defined in Chapter 0,
"Manufacturer and Product Identifiers."

vDriverVersion
Version number of the device driver for the waveform-audio input device. The high-order byte is the
major version number, and the low-order byte is the minor version number.

szPname
Product name in a null-terminated string.

dwFormats
Standard formats that are supported. Can be a combination of the following:
WAVE_FORMAT_1M08 11.025 kHz, mono, 8-bit
WAVE_FORMAT_1M16 11.025 kHz, mono, 16-bit
WAVE_FORMAT_1S08 11.025 kHz, stereo, 8-bit
WAVE_FORMAT_1S16 11.025 kHz, stereo, 16-bit
WAVE_FORMAT_2M08 22.05 kHz, mono, 8-bit
WAVE_FORMAT_2M16 22.05 kHz, mono, 16-bit
WAVE_FORMAT_2S08 22.05 kHz, stereo, 8-bit
WAVE_FORMAT_2S16 22.05 kHz, stereo, 16-bit
WAVE_FORMAT_4M08 44.1 kHz, mono, 8-bit
WAVE_FORMAT_4M16 44.1 kHz, mono, 16-bit
WAVE_FORMAT_4S08 44.1 kHz, stereo, 8-bit
WAVE_FORMAT_4S16 44.1 kHz, stereo, 16-bit

wChannels
Number specifying whether the device supports mono (1) or stereo (2) input.

 WAVEOUTCAPS

typedef struct {
 WORD wMid;
 WORD wPid;
 MMVERSION vDriverVersion;
 CHAR szPname[MAXPNAMELEN];
 DWORD dwFormats;
 WORD wChannels;
 WORD wReserved1; // packing
 DWORD dwSupport;
} WAVEOUTCAPS;

Describes the capabilities of a waveform-audio output device.

wMid
Manufacturer identifier for the device driver for the device. Manufacturer identifiers are defined in
Chapter 0, "Manufacturer and Product Identifiers."

wPid
Product identifier for the device. Product identifiers are defined in Chapter 0, "Manufacturer and
Product Identifiers."

vDriverVersion
Version number of the device driver for the device. The high-order byte is the major version number,
and the low-order byte is the minor version number.

szPname
Product name in a null-terminated string.

dwFormats
Standard formats that are supported. Can be a combination of the following:
WAVE_FORMAT_1M08 11.025 kHz, mono, 8-bit
WAVE_FORMAT_1M16 11.025 kHz, mono, 16-bit
WAVE_FORMAT_1S08 11.025 kHz, stereo, 8-bit
WAVE_FORMAT_1S16 11.025 kHz, stereo, 16-bit
WAVE_FORMAT_2M08 22.05 kHz, mono, 8-bit
WAVE_FORMAT_2M16 22.05 kHz, mono, 16-bit
WAVE_FORMAT_2S08 22.05 kHz, stereo, 8-bit
WAVE_FORMAT_2S16 22.05 kHz, stereo, 16-bit
WAVE_FORMAT_4M08 44.1 kHz, mono, 8-bit
WAVE_FORMAT_4M16 44.1 kHz, mono, 16-bit
WAVE_FORMAT_4S08 44.1 kHz, stereo, 8-bit
WAVE_FORMAT_4S16 44.1 kHz, stereo, 16-bit

wChannels
Number specifying whether the device supports mono (1) or stereo (2) output.

dwSupport
Optional functionality supported by the device. The following values are defined:
WAVECAPS_LRVOLUME Supports separate left and right volume

control.
WAVECAPS_PITCH Supports pitch control.
WAVECAPS_PLAYBACKRA
TE

Supports playback rate control.

WAVECAPS_SYNC The driver is synchronous and will block
while playing a buffer.

WAVECAPS_VOLUME Supports volume control.
WAVECAPS_SAMPLEACC
URATE

Returns sample-accurate position
information.

If a device supports volume changes, the WAVECAPS_VOLUME flag will be set for the dwSupport
member. If a device supports separate volume changes on the left and right channels, both the
WAVECAPS_VOLUME and the WAVECAPS_LRVOLUME flags will be set for this member.

 Joysticks

The Win32 application programming interface supports ancillary input devices for applications that
provide alternatives to using the keyboard and mouse. The joystick is one such device. The joystick
provides positional information within a coordinate system that has absolute maximum and minimum
values in each axis of movement.

This chapter describes the Win32 functions and messages that support joysticks, as well as other
ancillary input devices that track positions within an absolute coordinate system, such as a touch
screen, digitizing tablet, and light pen. Extended capabilities also provide support for rudder pedals,
flight yokes, and other devices that use up to six axes of movement, a point-of-view hat, and 32
buttons.

Joystick services are loaded when the operating system is started. The joystick services can
simultaneously monitor two joysticks, each with two- or three-axis movement. Each joystick can have
up to four buttons. You can use the joystick functions to determine the capabilities of the joysticks and
joystick driver. Also, you can process a joystick's positional and button information by querying the
joystick directly or by capturing the joystick and processing messages from it. The latter method is
simpler because your application does not have to manually query the joystick or track the time to
generate queries at regular intervals.

 Joystick Capabilities

Joysticks can support two- or three-axis movement and up to four buttons. Joysticks also support
different ranges of motion and polling frequencies. The range of motion is the distance a joystick
handle can move from its resting position to the position farthest from its resting position. The polling
frequency is the time interval between joystick queries.

Joystick drivers can support either one or two joysticks. You can determine the number of joysticks
supported by a joystick driver by using the joyGetNumDevs function. This function returns an
unsigned integer that contains the number of supported joysticks or zero if there is no joystick support.
The return value does not indicate the number of joysticks attached to the system.

You can determine if a joystick is attached to the system by using the joyGetPos function. This
function returns JOYERR_NOERROR if the specified device is attached or JOYERR_UNPLUGGED
otherwise.

Each joystick has several capabilities that are available to your application. You can retrieve the
capabilities of a joystick by using the joyGetDevCaps function. This function fills a JOYCAPS structure
with joystick capabilities such as the minimum and maximum values for its coordinate system, the
number of buttons on the joystick, and the minimum and maximum polling frequencies.

 Joystick Position

You can query a joystick for position and button information by using the joyGetPos function. For
example, an application can query the joystick for baseline position values. The Joystick Control Panel
property sheet uses this technique when calibrating the joystick.

You can also query a joystick or other device that has extended capabilities by using the joyGetPosEx
function.

 Joystick Notifications

You can capture direct joystick messages to be sent to a function by using the joySetCapture function.
Only one application at a time can capture messages from a joystick, but you can query the joystick
from another application by using the joyGetPos or joyGetPosEx function.

Note A joystick message can fail to reach the application that captured the joystick if a second
application uses joyGetPos or joyGetPosEx to query the joystick near the same time that the
message is sent. In this case, the second application might intercept the message.

If you want to capture messages from two joysticks attached to the system, use joySetCapture twice,
once for each joystick. Your window receives separate and distinct messages for each device.

You can release a captured joystick by using the joyReleaseCapture function. If an application does
not release the joystick before ending, the joystick is automatically released shortly after the capture
window is destroyed.

You cannot capture an unplugged joystick. The joySetCapture function returns
JOYERR_UNPLUGGED if the specified device is unplugged.

 Time-Based Notifications

You can notify the Microsoft Windows operating system to send joystick messages to an application at
regular time intervals by setting the fChanged parameter of joySetCapture to FALSE and by specifying
the interval length between successive messages. Assign the uPeriod parameter a value between the
minimum and maximum polling frequencies for the joystick. You can determine this range by using the
joyGetDevCaps function, which fills the wPeriodMin and wPeriodMax members in the JOYCAPS
structure. If the uPeriod value is outside the range of valid polling frequencies for the joystick, the
joystick driver uses the minimum or maximum polling frequency, whichever is closer to the uPeriod
value.

Note Windows sets up a timer event with each call to joySetCapture.

 Event-Based Notifications

You can notify Windows to send joystick messages to an application whenever the position of a joystick
axis changes by a value greater than the movement threshold of the device. The movement threshold
is the distance the joystick must be moved before a WM_JOYMOVE message is sent to a window that
has captured the device. The threshold is initially zero. You can set the movement threshold by using
the joySetThreshold function. You can retrieve the minimum polling frequency of the joystick by using
the joyGetDevCaps function.

 Joystick Notification Messages

Joystick messages notify your application that a joystick has changed position or that one of its buttons
has changed states. Messages beginning with MM_JOY1 are sent to the function if your application
requests input from the joystick using the identifier JOYSTICKID1, and MM_JOY2 messages are sent if
your application requests input from the joystick using the identifier JOYSTICKID2.

The messages in the following table identify the status of the joystick buttons:

Message Description
MM_JOY1BUTTONDOW
N

A button of joystick JOYSTICKID1 has been
pressed.

MM_JOY1BUTTONUP A button of joystick JOYSTICKID1 has been
released.

MM_JOY1MOVE Joystick JOYSTICKID1 changed position in the
x- or y-direction.

MM_JOY1ZMOVE Joystick JOYSTICKID1 changed position in the
z-direction.

MM_JOY2BUTTONDOW
N

A button of joystick JOYSTICKID2 has been
pressed.

MM_JOY2BUTTONUP A button of joystick JOYSTICKID2 has been
released.

MM_JOY2MOVE Joystick JOYSTICKID2 changed position in the
x- or y-direction

MM_JOY2ZMOVE Joystick JOYSTICKID2 changed position in the
z-direction.

All messages report nonexistent buttons as released.

 Using Joysticks

This section contains examples demonstrating how to perform the following tasks:

· Get the driver capabilities.
· Capture joystick input.
· Process joystick messages.

The examples are taken from a simple joystick application that gets position and button-state
information from the joystick services, plays waveform-audio resources, and paints bullet holes on the
screen when a user presses the joystick buttons.

 Getting the Driver Capabilities

The following example determines whether the joystick services are available and if a joystick is
attached to one of the ports.

JOYINFO joyinfo;
UINT wNumDevs, wDeviceID;
BOOL bDev1Attached, bDev2Attached;

 if((wNumDevs = joyGetNumDevs()) == 0)
 return ERR_NODRIVER;
 bDev1Attached = joyGetPos(JOYSTICKID1,&joyinfo) != JOYERR_UNPLUGGED;
 bDev2Attached = wNumDevs == 2 && joyGetPos(JOYSTICKID2,&joyinfo) !=
 JOYERR_UNPLUGGED;
 if(bDev1Attached || bDev2Attached) // decide which joystick to use
 wDeviceID = bDev1Attached ? JOYSTICKID1 : JOYSTICKID2;
 else
 return ERR_NODEVICE;

 Capturing Joystick Input

Most of the code controlling the joystick is in the main window function. In the following portion of the
message handler, the application captures input from the joystick JOYSTICKID1.

case WM_CREATE:
 if(joySetCapture(hWnd, JOYSTICKID1, NULL, FALSE))
 {
 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(hWnd, "Couldn't capture the joystick.", NULL,
 MB_OK | MB_ICONEXCLAMATION);
 PostMessage(hWnd,WM_CLOSE,0,0L);
 }
 break;

 Processing Joystick Messages

The following example illustrates how an application might respond to joystick movements and
changes in the button states. When the joystick changes position, the application moves the cursor
and, if either button is pressed, draws a bullet hole on the desktop. When a joystick button is pressed,
the application draws a hole on the desktop and plays a sound continuously until a button is released.

case MM_JOY1MOVE : // changed position
 if((UINT) wParam & (JOY_BUTTON1 | JOY_BUTTON2))
 DrawFire(hWnd);
 DrawSight(lParam); // calculates new cursor position
 break;
case MM_JOY1BUTTONDOWN : // button is down
 if((UINT) wParam & JOY_BUTTON1)
 {
 PlaySound(lpButton1, SND_LOOP | SND_ASYNC | SND_MEMORY);
 DrawFire(hWnd);
 }
 else if((UINT) wParam & JOY_BUTTON2)
 {
 PlaySound(lpButton2, SND_ASYNC | SND_MEMORY | SND_LOOP);
 DrawFire(hWnd);
 }
 break;
case MM_JOY1BUTTONUP : // button is up
 sndPlaySound(NULL, 0); // stops the sound
 break;

 Joystick Reference

This section describes the functions, structures, and messages associated with joysticks. The elements
are grouped as follows:

Device Capabilities

joyGetDevCaps
joyGetNumDevs
JOYCAPS
Querying a Joystick

joyGetPos
joyGetPosEx
JOYINFO
JOYINFOEX
Capturing a Joystick

joyGetThreshold
joyReleaseCapture
joySetCapture
joySetThreshold
MM_JOY1BUTTONDOWN
MM_JOY1BUTTONUP
MM_JOY1MOVE
MM_JOY1ZMOVE
MM_JOY2BUTTONDOWN
MM_JOY2BUTTONUP
MM_JOY2MOVE
MM_JOY2ZMOVE

 Joystick Functions

An application uses the joystick functions to query a joystick driver and to prepare an application to
receive notification messages from a joystick driver.

 joyGetDevCaps

[New - Windows 95]

MMRESULT joyGetDevCaps(UINT uJoyID, LPJOYCAPS pjc, UINT cbjc);

Queries a joystick to determine its capabilities.

· Returns JOYERR_NOERROR if successful or one of the following error values:
MMSYSERR_NODRIVER The joystick driver is not present.
MMSYSERR_INVALPARA
M

An invalid parameter was passed.

uJoyID
Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

pjc
Address of a JOYCAPS structure to contain the capabilities of the joystick.

cbjc
Size, in bytes, of the JOYCAPS structure.

Use the joyGetNumDevs function to determine the number of joystick devices supported by the driver.

 joyGetNumDevs

[New - Windows 95]

UINT joyGetNumDevs(VOID);

Queries the joystick driver for the number of joysticks it supports.

· Returns the number of joysticks supported by the joystick driver or zero if no driver is present.

Use the joyGetPos function to determine whether a given joystick is physically attached to the system.
If the specified joystick is not connected, joyGetPos returns a JOYERR_UNPLUGGED error value.

 joyGetPos

[New - Windows 95]

MMRESULT joyGetPos(UINT uJoyID, LPJOYINFO pji);

Queries a joystick for its position and button status.

· Returns JOYERR_NOERROR if successful or one of the following error values:
MMSYSERR_NODRIVER The joystick driver is not present.
MMSYSERR_INVALPARA
M

An invalid parameter was passed.

JOYERR_UNPLUGGED The specified joystick is not connected to
the system.

uJoyID
Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

pji
Address of a JOYINFO structure that contains the position and button status of the joystick.

For devices that have four to six axes of movement, a point-of-view control, or more than four buttons,
use the joyGetPosEx function.

 joyGetPosEx

[New - Windows 95]

MMRESULT joyGetPosEx(UINT uJoyID, LPJOYINFOEX pji);

Queries a joystick for its position and button status.

· Returns JOYERR_NOERROR if successful or one of the following error values:
MMSYSERR_NODRIVER The joystick driver is not present.
MMSYSERR_INVALPARA
M

An invalid parameter was passed.

MMSYSERR_BADDEVIC
EID

The specified joystick identifier is invalid.

JOYERR_UNPLUGGED The specified joystick is not connected to
the system.

uJoyID
Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

pji
Address of a JOYINFOEX structure that contains extended position information and button status of
the joystick.

This function provides access to extended devices such as rudder pedals, point-of-view hats, devices
with a large number of buttons, and coordinate systems using up to six axes. For joystick devices that
use three axes or fewer and have fewer than four buttons, use the joyGetPos function.

 joyGetThreshold

[New - Windows 95]

MMRESULT joyGetThreshold(UINT uJoyID, LPUINT puThreshold);

Queries a joystick for its current movement threshold.

· Returns JOYERR_NOERROR if successful or one of the following error values:
MMSYSERR_NODRIVER The joystick driver is not present.
MMSYSERR_INVALPARA
M

An invalid parameter was passed.

uJoyID
Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be queried.

puThreshold
Address of a variable that contains the movement threshold value.

The movement threshold is the distance the joystick must be moved before a WM_JOYMOVE
message is sent to a window that has captured the device. The threshold is initially zero.

 joyReleaseCapture

[New - Windows 95]

MMRESULT joyReleaseCapture(UINT uJoyID);

Releases the specified captured joystick.

· Returns JOYERR_NOERROR if successful or one of the following error values:
MMSYSERR_NODRIV
ER

The joystick driver is not present.

JOYERR_PARMS The specified joystick device identifier uJoyID
is invalid.

uJoyID
Identifier of the joystick (JOYSTICKID1 or JOYSTICK2) to be released.

 joySetCapture

[New - Windows 95]

MMRESULT joySetCapture(HWND hwnd, UINT uJoyID, UINT uPeriod,
 BOOL fChanged);

Captures a joystick by causing its messages to be sent to the specified window.

· Returns JOYERR_NOERROR if successful or one of the following error values:
MMSYSERR_NODRIV
ER

The joystick driver is not present.

JOYERR_NOCANDO Cannot capture joystick input because a
required service (such as a Windows timer) is
unavailable.

JOYERR_UNPLUGGE
D

The specified joystick is not connected to the
system.

hwnd
Handle of the window to receive the joystick messages.

uJoyID
Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2) to be captured.

uPeriod
Polling frequency, in milliseconds.

fChanged
Change position flag. Specify TRUE for this parameter to send messages only when the position
changes by a value greater than the joystick movement threshold. Otherwise, messages are sent at
the polling frequency specified in uPeriod.

This function fails if the specified joystick is currently captured. Call the joyReleaseCapture function to
release the captured joystick, or destroy the window to release the joystick automatically.

 joySetThreshold

[New - Windows 95]

MMRESULT joySetThreshold(UINT uJoyID, UINT uThreshold);

Sets the movement threshold of a joystick.

· Returns JOYERR_NOERROR if successful or one of the following error values:
MMSYSERR_NODRIV
ER

The joystick driver is not present.

JOYERR_PARMS The specified joystick device identifier uJoyID
is invalid.

uJoyID
Identifier of the joystick (JOYSTICKID1 or JOYSTICKID2).

uThreshold
New movement threshold.

The movement threshold is the distance the joystick must be moved before a WM_JOYMOVE
message is sent to a window that has captured the device. The threshold is initially zero.

 Joystick Messages

A joystick device driver sends the following messages to notify an application that a joystick has
changed position or one of its buttons has changed states.

 MM_JOY1BUTTONDOWN

[New - Windows 95]

MM_JOY1BUTTONDOWN
fwButtons = wParam;
xPos = LOWORD(lParam);
yPos = HIWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID1 that a button has been pressed.

fwButtons
Identifies the button that has changed state and the buttons that are pressed. It can be one of the
following:
JOY_BUTTON1C
HG

First joystick button has changed state.

JOY_BUTTON2C
HG

Second joystick button has changed state.

JOY_BUTTON3C
HG

Third joystick button has changed state.

JOY_BUTTON4C
HG

Fourth joystick button has changed state.

and one or more of the following:
JOY_BUTTON1 First joystick button is pressed.
JOY_BUTTON2 Second joystick button is pressed.
JOY_BUTTON3 Third joystick button is pressed.
JOY_BUTTON4 Fourth joystick button is pressed.

xPos and yPos
The x- and y-coordinates of the joystick relative to the upper left corner of the client area.

 MM_JOY1BUTTONUP

[New - Windows 95]

MM_JOY1BUTTONUP
fwButton = wParam;
xPos = LOWORD(lParam);
yPos = HIWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID1 that a button has been released.

fwButtons
Identifies the button that has changed state and the buttons that are pressed. It can be one of the
following:
JOY_BUTTON1C
HG

First joystick button has changed state.

JOY_BUTTON2C
HG

Second joystick button has changed state.

JOY_BUTTON3C
HG

Third joystick button has changed state.

JOY_BUTTON4C
HG

Fourth joystick button has changed state.

and one or more of the following:
JOY_BUTTON1 First joystick button is pressed.
JOY_BUTTON2 Second joystick button is pressed.
JOY_BUTTON3 Third joystick button is pressed.
JOY_BUTTON4 Fourth joystick button is pressed.

xPos and yPos
The x- and y-coordinates of the joystick relative to the upper left corner of the client area.

 MM_JOY1MOVE

[New - Windows 95]

MM_JOY1MOVE
fwButtons = wParam;
xPos = LOWORD(lParam);
yPos = HIWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID1 that the joystick position has changed.

fwButtons
Identifies the buttons that are pressed. It can be one or more of the following values:
JOY_BUTTON
1

First joystick button is pressed.

JOY_BUTTON
2

Second joystick button is pressed.

JOY_BUTTON
3

Third joystick button is pressed.

JOY_BUTTON
4

Fourth joystick button is pressed.

xPos and yPos
The x- and y-coordinates of the joystick relative to the upper left corner of the client area.

 MM_JOY1ZMOVE

[New - Windows 95]

MM_JOY1ZMOVE
fwButtons = wParam;
zPos = LOWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID1 that the joystick position on the z-axis has
changed.

fwButtons
Identifies the buttons that are pressed. It can be one or more of the following values:
JOY_BUTTO
N1

First joystick button is pressed.

JOY_BUTTO
N2

Second joystick button is pressed.

JOY_BUTTO
N3

Third joystick button is pressed.

JOY_BUTTO
N4

Fourth joystick button is pressed.

zPos
The z-coordinate of the joystick.

 MM_JOY2BUTTONDOWN

[New - Windows 95]

MM_JOY2BUTTONDOWN
fwButtons = wParam;
xPos = LOWORD(lParam);
yPos = HIWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID2 that a button has been pressed.

fwButtons
Identifies the button that has changed state and the buttons that are pressed. It can be one of the
following:
JOY_BUTTON1C
HG

First joystick button has changed state.

JOY_BUTTON2C
HG

Second joystick button has changed state.

JOY_BUTTON3C
HG

Third joystick button has changed state.

JOY_BUTTON4C
HG

Fourth joystick button has changed state.

and one or more of the following:
JOY_BUTTON1 First joystick button is pressed.
JOY_BUTTON2 Second joystick button is pressed.
JOY_BUTTON3 Third joystick button is pressed.
JOY_BUTTON4 Fourth joystick button is pressed.

xPos and yPos
The x- and y-coordinates of the joystick relative to the upper left corner of the client area.

 MM_JOY2BUTTONUP

[New - Windows 95]

MM_JOY2BUTTONUP
fwButton = wParam;
xPos = LOWORD(lParam);
yPos = HIWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID2 that a button has been released.

fwButtons
Identifies the button that has changed state and the buttons that are pressed. It can be one of the
following:
JOY_BUTTON1C
HG

First joystick button has changed state.

JOY_BUTTON2C
HG

Second joystick button has changed state.

JOY_BUTTON3C
HG

Third joystick button has changed state.

JOY_BUTTON4C
HG

Fourth joystick button has changed state.

and one or more of the following:
JOY_BUTTON1 First joystick button is pressed.
JOY_BUTTON2 Second joystick button is pressed.
JOY_BUTTON3 Third joystick button is pressed.
JOY_BUTTON4 Fourth joystick button is pressed.

xPos and yPos
The x- and y-coordinates of the joystick relative to the upper left corner of the client area.

 MM_JOY2MOVE

[New - Windows 95]

MM_JOY2MOVE
fwButtons = wParam;
xPos = LOWORD(lParam);
yPos = HIWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID2 that the joystick position has changed.

fwButtons
Identifies the buttons that are pressed. It can be one or more of the following values:
JOY_BUTTON
1

First joystick button is pressed.

JOY_BUTTON
2

Second joystick button is pressed.

JOY_BUTTON
3

Third joystick button is pressed.

JOY_BUTTON
4

Fourth joystick button is pressed.

xPos and yPos
The x- and y-coordinates of the joystick relative to the upper left corner of the client area.

 MM_JOY2ZMOVE

[New - Windows 95]

MM_JOY2ZMOVE
fwButtons = wParam;
zPos = LOWORD(lParam);

Notifies the window that has captured joystick JOYSTICKID2 that the joystick position on the z-axis has
changed.

fwButtons
Identifies the buttons that are pressed. It can be one or more of the following values:
JOY_BUTTO
N1

First joystick button is pressed.

JOY_BUTTO
N2

Second joystick button is pressed.

JOY_BUTTO
N3

Third joystick button is pressed.

JOY_BUTTO
N4

Fourth joystick button is pressed.

zPos
The z-coordinate of the joystick.

 Joystick Structures

The following structures store information about the capabilities of a joystick or its current position and
button states.

 JOYCAPS

[New - Windows 95]

typedef struct {
 WORD wMid; \\ manufacturer identifier
 WORD wPid; \\ product identifier
 CHAR szPname[MAXPNAMELEN]; \\ see below
 UINT wXmin; \\ min. x-coordinate
 UINT wXmax; \\ max. x-coordinate
 UINT wYmin; \\ min. y-coordinate
 UINT wYmax; \\ max. y-coordinate
 UINT wZmin; \\ min. z-coordinate
 UINT wZmax; \\ max. z-coordinate
 UINT wNumButtons; \\ no. of joystick buttons
 UINT wPeriodMin; \\ see below
 UINT wPeriodMax; \\ see below
\\ The following members are not in previous versions of Windows.
 UINT wRmin; \\ see below
 UINT wRmax; \\ see below
 UINT wUmin; \\ see below
 UINT wUmax; \\ see below
 UINT wVmin; \\ see below
 UINT wVmax; \\ see below
 UINT wCaps; \\ see below
 UINT wMaxAxes; \\ see below
 UINT wNumAxes; \\ see below
 UINT wMaxButtons; \\ see below
 CHAR szRegKey[MAXPNAMELEN]; \\ see below
 CHAR szOEMVxD[MAXOEMVXD]; \\ see below
} JOYCAPS;

Contains information about the joystick capabilities.

szPname
Null-terminated string containing the joystick product name.

wPeriodMin
Smallest polling frequency supported when captured by the joySetCapture function.

wPeriodMax
Largest polling frequency supported when captured by joySetCapture.

wRmin and wRmax
Minimum and maximum rudder values. The rudder is a fourth axis of movement.

wUmin and wUmax
Minimum and maximum u-coordinate (fifth axis) values.

wVmin and wVmax
Minimum and maximum v-coordinate (sixth axis) values.

wCaps
Joystick capabilities The following flags define individual capabilities that a joystick might have:
JOYCAPS_HASZ Joystick has z-coordinate

information.
JOYCAPS_HASR Joystick has rudder (fourth axis)

information.
JOYCAPS_HASU Joystick has u-coordinate (fifth axis)

information.
JOYCAPS_HASV Joystick has v-coordinate (sixth

axis) information.
JOYCAPS_HASPOV Joystick has point-of-view

information.
JOYCAPS_POV4DIR Joystick point-of-view supports

discrete values (centered, forward,
backward, left, and right).

JOYCAPS_POVCTS Joystick point-of-view supports
continuous degree bearings.

wMaxAxes
Maximum number of axes supported by the joystick.

wNumAxes
Number of axes currently in use by the joystick.

wMaxButtons
Maximum number of buttons supported by the joystick.

szRegKey
Null-terminated string containing the registry key for the joystick.

szOEMVxD
Null-terminated string identifying the joystick driver OEM.

 JOYINFO

[New - Windows 95]

typedef struct {
 UINT wXpos; \\ current x-coordinate
 UINT wYpos; \\ current y-coordinate
 UINT wZpos; \\ current z-coordinate
 UINT wButtons; \\ see below
} JOYINFO;

Contains information about the joystick position and button state.

wButtons
Current state of joystick buttons described by one or more of the following values:
JOY_BUTTON
1

First joystick button is pressed.

JOY_BUTTON
2

Second joystick button is pressed.

JOY_BUTTON
3

Third joystick button is pressed.

JOY_BUTTON
4

Fourth joystick button is pressed.

 JOYINFOEX

[New - Windows 95]

typedef struct joyinfoex_tag {
 DWORD dwSize; \\ size, in bytes, of this structure
 DWORD dwFlags; \\ see below
 DWORD dwXpos; \\ current x-coordinate
 DWORD dwYpos; \\ current y-coordinate
 DWORD dwZpos; \\ current z-coordinate
 DWORD dwRpos; \\ see below
 DWORD dwUpos; \\ current 5th axis position
 DWORD dwVpos; \\ current 6th axis position
 DWORD dwButtons; \\ see below
 DWORD dwButtonNumber; \\ see below
 DWORD dwPOV; \\ see below
 DWORD dwReserved1; \\ reserved; do not use
 DWORD dwReserved2; \\ reserved; do not use
} JOYINFOEX;

Contains extended information about the joystick position, point-of-view position, and button state.

dwFlags
Flags indicating the valid information returned in this structure. Members that do not contain valid
information are set to zero. The following flags are defined:
JOY_RETURNALL Equivalent to setting all of the

JOY_RETURN bits except
JOY_RETURNRAWDATA.

JOY_RETURNBUTTONS The dwButtons member contains
valid information about the state of
each joystick button.

JOY_RETURNCENTERED Centers the joystick neutral position
to the middle value of each axis of
movement.

JOY_RETURNPOV The dwPOV member contains valid
information about the point-of-view
control, expressed in discrete units.

JOY_RETURNPOVCTS The dwPOV member contains valid
information about the point-of-view
control expressed in continuous,
one-hundredth degree units.

JOY_RETURNR The dwRpos member contains
valid rudder pedal data. This
information represents another
(fourth) axis.

JOY_RETURNRAWDATA Data stored in this structure is
uncalibrated joystick readings.

JOY_RETURNU The dwUpos member contains
valid data for a fifth axis of the
joystick, if such an axis is available,
or returns zero otherwise.

JOY_RETURNV The dwVpos member contains valid
data for a sixth axis of the joystick, if

such an axis is available, or returns
zero otherwise.

JOY_RETURNX The dwXpos member contains valid
data for the x-coordinate of the
joystick.

JOY_RETURNY The dwYpos member contains valid
data for the y-coordinate of the
joystick.

JOY_RETURNZ The dwZpos member contains valid
data for the z-coordinate of the
joystick.

JOY_USEDEADZONE Expands the range for the neutral
position of the joystick and calls this
range the dead zone. The joystick
driver returns a constant value for
all positions in the dead zone.

The following flags provide data to calibrate a joystick and are intended for custom calibration
applications.
JOY_CAL_READ3 Read the x-, y-, and z-coordinates

and store the raw values in
dwXpos, dwYpos, and dwZpos.

JOY_CAL_READ4 Read the rudder information and the
x-, y-, and z-coordinates and store
the raw values in dwXpos,
dwYpos, dwZpos, and dwRpos.

JOY_CAL_READ5 Read the rudder information and the
x-, y-, z-, and u-coordinates and
store the raw values in dwXpos,
dwYpos, dwZpos, dwRpos, and
dwUpos.

JOY_CAL_READ6 Read the raw v-axis data if a
joystick mini driver is present that
will provide the data. Returns zero
otherwise.

JOY_CAL_READALWAYS Read the joystick port even if the
driver does not detect a device.

JOY_CAL_READRONLY Read the rudder information if a
joystick mini-driver is present that
will provide the data and store the
raw value in dwRpos. Return zero
otherwise.

JOY_CAL_READXONLY Read the x-coordinate and store the
raw (uncalibrated) value in dwXpos.

JOY_CAL_READXYONLY Reads the x- and y-coordinates and
place the raw values in dwXpos
and dwYpos.

JOY_CAL_READYONLY Reads the y-coordinate and store
the raw value in dwYpos.

JOY_CAL_READZONLY Read the z-coordinate and store the
raw value in dwZpos.

JOY_CAL_READUONLY Read the u-coordinate if a joystick
mini-driver is present that will
provide the data and store the raw
value in dwUpos. Return zero
otherwise.

JOY_CAL_READVONLY Read the v-coordinate if a joystick
mini-driver is present that will
provide the data and store the raw
value in dwVpos. Return zero
otherwise.

dwRpos
Current position of the rudder or fourth joystick axis.

dwButtons
Current state of the 32 joystick buttons. The value of this member can be set to any combination of
JOY_BUTTONn flags, where n is a value in the range of 1 through 32 corresponding to the button
that is pressed.

dwButtonNumber
Current button number that is pressed.

dwPOV
Current position of the point-of-view control. Values for this member are in the range 0 through
35,900. These values represent the angle, in degrees, of each view multiplied by 100.

The value of the dwSize member is also used to identify the version number for the structure when it's
passed to the joyGetPosEx function.

Most devices with a point-of-view control have only five positions. When the JOY_RETURNPOV flag is
set, these positions are reported by using the following constants:

Point-of-view flags Description
JOY_POVBACKWARD Point-of-view hat is pressed

backward. The value 18,000
represents an orientation of 180.00
degrees (to the rear).

JOY_POVCENTERED Point-of-view hat is in the neutral
position. The value -1 means the
point-of-view hat has no angle to
report.

JOY_POVFORWARD Point-of-view hat is pressed forward.
The value 0 represents an orientation
of 0.00 degrees (straight ahead).

JOY_POVLEFT Point-of-view hat is being pressed to
the left. The value 27,000 represents
an orientation of 270.00 degrees
(90.00 degrees to the left).

JOY_POVRIGHT Point-of-view hat is pressed to the
right. The value 9,000 represents an
orientation of 90.00 degrees (to the
right).

The default Windows 95 joystick driver currently supports these five discrete directions. If an
application can accept only the defined point-of-view values, it must use the JOY_RETURNPOV flag. If
an application can accept other degree readings, it should use the JOY_RETURNPOVCTS flag to
obtain continuous data if it is available. The JOY_RETURNPOVCTS flag also supports the JOY_POV

constants used with the JOY_RETURNPOV flag.

 File Input and Output

Most multimedia applications require file input and output (I/O) ¾ that is, the ability to create, read, and
write disk files. Multimedia file I/O services provide buffered and unbuffered file I/O and support for
standard Resource Interchange File Format (RIFF) files. The services are extensible with custom I/O
procedures that can be shared among applications.

Most applications need only the basic file I/O services and the RIFF file I/O services. Applications
sensitive to file I/O performance, such as applications that stream data from compact disc - read-only
memory (CD-ROM) in real time, can optimize performance by using services to directly access the file
I/O buffer. Applications that access custom storage systems, such as file archives and databases, can
provide their own I/O procedure that reads and writes elements of the storage system.

The multimedia file I/O services provide more functionality than the standard Microsoft Windows

operating system services, including support for buffered I/O, RIFF files, memory files, and custom
storage systems. In addition, the multimedia file I/O services are optimized for applications sensitive to
performance.

 File Input and Output Services

This section describes procedures for using the following multimedia file I/O services:

· Basic
· Buffered
· RIFF
· Custom

 Basic Services

Using the basic I/O services is similar to using the run-time file I/O services of the C development
system. Files must be opened before they can be read or written. After reading or writing, the file must
be closed. You can also change the current read or write location within an open file.

Before you begin any I/O operations to a file, you must open the file by using the mmioOpen function.
This function returns a file handle of type HMMIO. You can use this file handle to identify the open file
when calling other file I/O functions.

Note An HMMIO file handle is not a standard file handle. Do not use HMMIO file handles with MS-
DOS, standard Windows, or C run-time file I/O functions.

When you use mmioOpen to open a file, you use a flag to specify whether you are opening it for
reading, writing, or both. You can also specify flags that enable you to create or delete a file. Use the
mmioClose function to close a file when you are finished reading or writing to it.

You can read and write files by using the mmioRead and mmioWrite functions respectively. The next
read or write operation occurs at the current file position or file pointer in a file. The current file position
is advanced each time a file is read or written.

You can also change the current file position by using the mmioSeek function. You should ensure that
you seek to a valid location in a file; if you seek to an invalid location, such as past the end of the file,
mmioSeek might not return an error, but subsequent I/O operations might fail.

There are flags you can use with the mmioOpen function for operations beyond basic file I/O. By
specifying an MMIOINFO structure, for example, you can open memory files, specify a custom I/O
procedure, or supply a buffer for buffered I/O.

 Buffered Services

Most of the overhead in file I/O occurs when accessing the media device. If you are reading or writing
many small blocks of information, the device can spend a lot of time seeking to the physical location on
the media for each read or write operation. In this case, you can achieve better performance by using
buffered file I/O services. With buffered I/O, the file I/O manager maintains an intermediate buffer larger
than the blocks of information you are reading or writing. It accesses the device only when the buffer
must be filled from or written to the disk.

Before you set up and use buffered file I/O, you must decide whether you want the file I/O manager or
the application to allocate the buffer. It is simpler to let the file I/O manager allocate the buffer; however,
you can let the application allocate the buffer if you want to directly access the buffer or open a memory
file. For more information about using memory files, see "Performing Memory File Input and Output"
later in this chapter. For an example of directly accessing an I/O buffer, see "Accessing a File I/O
Buffer" later in this chapter.

A buffer allocated by the file I/O manager is called an internal I/O buffer. To open a file for buffered I/O
using an internal buffer, specify the MMIO_ALLOCBUF flag with the mmioOpen function when you
open the file. After a file is opened for buffered I/O, the buffer is essentially transparent to the
application; you can read, write, and seek the same way as with unbuffered I/O.

The default size of the internal I/O buffer is 8K. If this size is not adequate, you can use the
mmioSetBuffer function to change it. You can also use this function to enable buffering on a file
opened for unbuffered I/O, or to supply your own buffer for use as a memory file.

You can force the contents of an I/O buffer to be written to disk by using the mmioFlush function.
When you close a file by using the mmioClose function, however, you don't have to call mmioFlush to
flush an I/O buffer; the mmioClose function automatically flushes it. If you run out of disk space,
mmioFlush might fail, even if the preceding calls of the mmioWrite function were successful. Similarly,
mmioClose might fail when it is flushing its I/O buffer.

Applications that are performance-sensitive ¾ such as those that stream data in real time from a CD-
ROM ¾ can optimize file I/O performance by directly accessing the I/O buffer. You should be careful if
you choose to do this because you bypass some of the safeguards and error checking provided by the
file I/O manager.

The multimedia file I/O manager uses the MMIOINFO structure to maintain state information about an
open file. You use three members in this structure to read and write the I/O buffer: pchNext,
pchEndRead, and pchEndWrite. The pchNext member points to the next location in the buffer to
read or write. You must increment this member as you read and write the buffer. The pchEndRead
member identifies the last valid character you can read from the buffer. Likewise, this member identifies
the last location in the buffer you can write. More precisely, both pchEndRead and pchEndWrite point
to the memory location that follows the last valid data in the buffer. Use the mmioGetInfo and
mmioSetInfo functions to retrieve and set state information about the file I/O buffer.

When you reach the end of the I/O buffer, you must advance the buffer to fill it from the disk (if you are
reading) or flush it to the disk (if you are writing). Use the mmioAdvance function to advance an I/O
buffer. To fill an I/O buffer from disk, use mmioAdvance with the MMIO_READ flag. If there is not
enough data remaining in the file to fill the buffer, the pchEndRead member of the MMIOINFO
structure points to the location following the last valid byte in the buffer. To flush a buffer to disk, set the
MMIO_DIRTY flag in the dwFlags member of the MMIOINFO structure, and then call mmioAdvance
with the MMIO_WRITE flag.

 Resource Interchange File Format Services

The preferred format for multimedia files is RIFF. The RIFF file I/O functions work with the basic
buffered and unbuffered file I/O services. You can open, read, and write RIFF files in the same way as
other file types. For detailed information about RIFF, see Chapter 6, "AVIFile Functions and Macros ."

RIFF files use four-character codes to identify file elements. These codes are 32-bit quantities
representing a sequence of one to four ASCII alphanumeric characters, padded on the right with space
characters. The data type for four-character codes is FOURCC. Use the mmioFOURCC macro to
convert four characters into a four-character code. To convert a null-terminated string into a four-
character code, use the mmioStringToFOURCC function.

The basic building block of a RIFF file is a chunk. A chunk is a logical unit of multimedia data, such as a
single frame in a video clip. Each chunk contains the following fields:

· A four-character code specifying the chunk identifier
· A doubleword value specifying the size of the data member in the chunk
· A data field

A chunk contained in another chunk is a subchunk. The only chunks allowed to contain subchunks are
those with a chunk identifier of "RIFF" or "LIST". A chunk that contains another chunk is called a parent
chunk. The first chunk in a RIFF file must be a "RIFF" chunk. All other chunks in the file are subchunks
of the "RIFF" chunk.

"RIFF" chunks include an additional field in the first four bytes of the data field. This additional field
provides the form type of the field. The form type is a four-character code identifying the format of the
data stored in the file. For example, Microsoft waveform-audio files have a form type of "WAVE".

"LIST" chunks also include an additional field in the first four bytes of the data field. This additional field
contains the list type of the field. The list type is a four-character code identifying the contents of the
list. For example, a "LIST" chunk with a list type of "INFO" can contain "ICOP" and "ICRD" chunks
providing copyright and creation date information.

Multimedia file I/O services include two functions you can use to navigate among chunks in a RIFF file:
mmioAscend and mmioDescend. You can use these functions as high-level seek functions. When
you descend into a chunk, the file position is set to the data field of the chunk (8 bytes from the
beginning of the chunk). For "RIFF" and "LIST" chunks, the file position is set to the location following
the form type or list type (12 bytes from the beginning of the chunk). When you ascend out of a chunk,
the file position is set to the location following the end of the chunk. To create a new chunk, use the
mmioCreateChunk function to write a chunk header at the current position in an open file. The
mmioAscend, mmioDescend, and mmioCreateChunk functions use the MMCKINFO structure to
specify and retrieve information about "RIFF" chunks.

 Custom Services

Multimedia file I/O services use I/O procedures to handle the physical input and output associated with
reading and writing to different types of storage systems, such as file-archival systems and database-
storage systems. Predefined I/O procedures exist for the standard file systems and for memory files,
but you can supply a custom I/O procedure for accessing a unique storage system by using the
mmioInstallIOProc function.

To open a file by using a custom I/O procedure, use the mmioOpen function. Include a plus sign (+) or
the CFSEPCHAR constant in the filename to separate the name of the physical file from the name of
the element of the file you want to open. The following example opens a file element named "element"
from a file named FILENAME.ARC:

mmioOpen("filename.arc+element", NULL, MMIO_READ);

When the file I/O manager encounters a plus sign in a filename, it examines the filename extension to
determine which I/O procedure to associate with the file. In the previous example, the file I/O manager
would attempt to use the I/O procedure associated with the .ARC filename extension; this I/O
procedure would have been installed by using mmioInstallIOProc. If no I/O procedure is installed,
mmioOpen returns an error.

I/O procedures must respond to the MMIOM_CLOSE, MMIOM_OPEN, MMIOM_READ,
MMIOM_WRITE, MMIOM_SEEK, MMIOM_RENAME, and MMIOM_WRITEFLUSH messages. You
can also create custom messages and send them to your I/O procedure by using the
mmioSendMessage function. If you define your own messages, make sure they are defined at or
above the value defined by the MMIOM_USER constant.

In addition to processing messages, an I/O procedure must maintain the lDiskOffset member of the
MMIOINFO structure (pointed to by the lpmmioinfo parameter of the mmioOpen function). The
lDiskOffset member must always contain the file offset to the location that the next MMIOM_READ or
MMIOM_WRITE message will access. The offset is specified in bytes and is relative to the beginning of
the file. The I/O procedure can use the adwInfo member to maintain any required state information.
The I/O procedure should not modify any other members in the MMIOINFO structure.

 Using File Input and Output

This section contains examples demonstrating how to perform the following tasks:

· Open a file.
· Create and delete a file.
· Seek to a new position in a file.
· Change the I/O buffer size.
· Access a file I/O buffer.
· Generate four-character codes.
· Create a "RIFF" chunk.
· Search for a "RIFF" chunk.
· Search for a subchunk.
· Perform file I/O on RIFF files.
· Perform memory file input and output.
· Install custom I/O procedures.
· Share I/O procedures with other applications.

 Using mioOpen to Open a File

To open a file for basic I/O operations, set the lpmmioinfo parameter of the mmioOpen function to
NULL. The following example opens a file named "C:\SAMPLES\SAMPLE1.TXT" for reading, and
checks the return value for error.

HMMIO hFile;
.
.
.
if ((hFile = mmioOpen("C:\\SAMPLES\\SAMPLE1.TXT", NULL,
 MMIO_READ)) != NULL)
 // File opened successfully.
else
 // File cannot be opened.

Use the dwFlags parameter of mmioOpen to specify flags for opening a file.

 Creating and Deleting a File

To create a file, set the dwOpenFlags parameter of the mmioOpen function to MMIO_CREATE. The
following example creates a file and opens it for reading and writing.

HMMIO hFile;
.
.
.
hFile = mmioOpen("NEWFILE.TXT", NULL, MMIO_CREATE | MMIO_READWRITE);
if (hFile != NULL)
 // File created successfully.
else
 // File cannot be created.

If the file you are creating already exists, it will be truncated to zero length.

To delete a file, set the dwOpenFlags parameter of the mmioOpen function to MMIO_DELETE. After
you delete a file, it cannot be recovered by any standard means. If your application is deleting a file at
the request of a user, query the user before deleting the file to make sure the user wants to delete it.

 Seeking to a New Position in a File

The following example seeks to the beginning of an open file.

mmioSeek(hFile, 0L, SEEK_SET);

The following example seeks to the end of an open file.

mmioSeek(hFile, 0L, SEEK_END);

The following example seeks to a position 10 bytes from the end of an open file.

mmioSeek(hFile, -10L, SEEK_END);

 Changing the I/O Buffer Size

The following example opens a file named "SAMPLE.TXT" for unbuffered I/O, and then enables
buffered I/O with an internal 16K buffer.

HMMIO hFile;
.
.
.
if ((hFile = mmioOpen("SAMPLE.TXT", NULL, MMIO_READ)) != NULL)
{
 // File opened successfully; request an I/O buffer.
 if (mmioSetBuffer(hFile, NULL, 16384L, 0))
 // Buffer cannot be allocated.
 else
 // Buffer allocated successfully.
}
else
 // File cannot be opened.

 Accessing a File I/O Buffer

The following example accesses an I/O buffer directly to read data from a waveform-audio file.

HMMIO hmmio;
MMIOINFO mmioinfo;
DWORD dwDataSize;
DWORD dwCount;
HPSTR hptr;
.
.
.
// Get information about the file I/O buffer.
if (mmioGetInfo(hmmio, &mmioinfo, 0)) {
 Error("Failed to get I/O buffer info.");
 .
 .
 .
 mmioClose(hmmio, 0);
 return;
}

// Read the entire file by directly reading the file I/O buffer.
// When the end of the I/O buffer is reached, advance the buffer.
for (dwCount = dwDataSize, hptr = lpData; dwCount 0; dwCount--)
{
 // Check to see if the I/O buffer must be advanced.
 if (mmioinfo.pchNext == mmioinfo.pchEndRead)
 {
 if(mmioAdvance(hmmio, &mmioinfo, MMIO_READ))
 {
 Error("Failed to advance buffer.");
 .
 .
 .
 mmioClose(hmmio, 0);
 return;
 }
 }

 // Get a character from the buffer.
 *hptr++ = *mmioinfo.pchNext++;
}

// End direct buffer access and close the file.
mmioSetInfo(hmmio, &mmioinfo, 0);
mmioClose(hmmio, 0);

When you finish accessing a file I/O buffer, call the mmioSetInfo function, passing an address of the
MMIOINFO structure filled by the mmioGetInfo function. If you wrote to the buffer, set the
MMIO_DIRTY flag in the dwFlags member of the MMIOINFO structure before calling mmioSetInfo.
Otherwise, the buffer will not be flushed to disk.

 Generating Four-Character Codes

You can use the mmioFOURCC macro or the mmioStringToFOURCC function to generate four-
character codes. The following example uses mmioFOURCC to generate a four-character code for
"WAVE".

FOURCC fourccID;
.
.
.
fourccID = mmioFOURCC('W', 'A', 'V', 'E');

The following example uses mmioStringToFOURCC to generate a four-character code for "WAVE".

FOURCC fourccID;
.
.
.
fourccID = mmioStringToFOURCC("WAVE", 0);

The second parameter in mmioStringToFOURCC specifies flags for converting the string to a four-
character code. If you specify the MMIO_TOUPPER flag, mmioStringToFOURCC converts all
alphabetic characters in the string to uppercase. This is useful when you need to specify a four-
character code to identify a custom I/O procedure because four-character codes identifying file-
extension names must be all uppercase.

 Creating a "RIFF" Chunk

The following example creates a chunk with a chunk identifier of "RIFF" and a form type of "RDIB".

HMMIO hmmio;
MMCKINFO mmckinfo;
.
.
.
mmckinfo.fccType = mmioFOURCC('R', 'D', 'I', 'B');
mmioCreateChunk(hmmio, &mmckinfo, MMIO_CREATERIFF);

If you're creating a "RIFF" or "LIST" chunk, you must specify the form type or list type in the fccType
member of the MMCKINFO structure. In the previous example, the form type is "RDIB".

If you know the size of the data field in a new chunk, you can set the cksize member of the
MMCKINFO structure when you create the chunk. This value will be written to the data size field in the
new chunk. If this value is not correct when you call mmioAscend to mark the end of the chunk, it will
be automatically rewritten to reflect the correct size of the data field.

After you create a chunk by using the mmioCreateChunk function, the file position is set to the data
field of the chunk (8 bytes from the beginning of the chunk). If the chunk is a "RIFF" or "LIST" chunk,
the file position is set to the location following the form type or list type (12 bytes from the beginning of
the chunk).

 Searching for a "RIFF" Chunk

The following example searches for a "RIFF" chunk with a form type of "WAVE" to verify that the file
that has just been opened is a waveform-audio file.

HMMIO hmmio;
MMCKINFO mmckinfoParent;
MMCKINFO mmckinfoSubchunk;
.
.
.
// Locate a "RIFF" chunk with a "WAVE" form type to make
// sure the file is a waveform-audio file.
mmckinfoParent.fccType = mmioFOURCC('W', 'A', 'V', 'E');
if (mmioDescend(hmmio, (LPMMCKINFO) &mmckinfoParent, NULL,
 MMIO_FINDRIFF))
 // The file is not a waveform-audio file.
else
 // The file is a waveform-audio file

 Searching for a Subchunk

The following example searches for the "FMT" chunk in the "RIFF" chunk of the previous example.

// Find the format chunk (form type "FMT"); it should be
// a subchunk of the "RIFF" parent chunk.
mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' ');
if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent,
 MMIO_FINDCHUNK))
 // Error, cannot find the "FMT" chunk.
else
 // "FMT" chunk found.

To search for a subchunk (that is, any chunk other than a "RIFF" or "LIST" chunk), identify its parent
chunk in the lpckParent parameter of the mmioDescend function.

If you do not specify a parent chunk, the current file position should be at the beginning of a chunk
before you call the mmioDescend function. If you do specify a parent chunk, the current file position
can be anywhere in that chunk.

If the search for a subchunk fails, the current file position is undefined. You can use the mmioSeek
function and the dwDataOffset member of the MMCKINFO structure describing the parent chunk to
seek back to the beginning of the parent chunk, as in the following example:

mmioSeek(hmmio, mmckinfoParent.dwDataOffset + 4, SEEK_SET);

Because dwDataOffset specifies the offset to the beginning of the data portion of the chunk, you must
seek 4 bytes past dwDataOffset to set the file position after the form type.

 Performing File Input and Output on RIFF Files

The following example shows how to open a RIFF file for buffered I/O, as well as how to descend,
ascend, and read "RIFF" chunks.

// ReversePlay--Plays a waveform-audio file backward.
void ReversePlay()
{
 char szFileName[128]; // filename of file to open
 HMMIO hmmio; // file handle for open file
 MMCKINFO mmckinfoParent; // parent chunk information
 MMCKINFO mmckinfoSubchunk; // subchunk information structure
 DWORD dwFmtSize; // size of "FMT" chunk
 DWORD dwDataSize; // size of "DATA" chunk
 WAVEFORMAT *pFormat; // address of "FMT" chunk
 HPSTR lpData; // address of "DATA" chunk

 // Get the filename from the edit control.
 .
 .
 .
 // Open the file for reading with buffered I/O
 // by using the default internal buffer
 if(!(hmmio = mmioOpen(szFileName, NULL,
 MMIO_READ | MMIO_ALLOCBUF)))
 {
 Error("Failed to open file.");
 return;
 }

 // Locate a "RIFF" chunk with a "WAVE" form type to make
 // sure the file is a waveform-audio file.
 mmckinfoParent.fccType = mmioFOURCC('W', 'A', 'V', 'E');
 if (mmioDescend(hmmio, (LPMMCKINFO) &mmckinfoParent, NULL,
 MMIO_FINDRIFF))
 {
 Error("This is not a waveform-audio file.");
 mmioClose(hmmio, 0);
 return;
 }
 // Find the "FMT" chunk (form type "FMT"); it must be
 // a subchunk of the "RIFF" chunk.
 mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' ');
 if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent,
 MMIO_FINDCHUNK))
 {
 Error("Waveform-audio file has no "FMT" chunk.");
 mmioClose(hmmio, 0);
 return;
 }

 // Get the size of the "FMT" chunk. Allocate
 // and lock memory for it.
 dwFmtSize = mmckinfoSubchunk.cksize;
 .

 .
 .
 // Read the "FMT" chunk.
 if (mmioRead(hmmio, (HPSTR) pFormat, dwFmtSize) != dwFmtSize){
 Error("Failed to read format chunk.");
 .
 .
 .
 mmioClose(hmmio, 0);
 return;
 }

 // Ascend out of the "FMT" subchunk.
 mmioAscend(hmmio, &mmckinfoSubchunk 0);

 // Find the data subchunk. The current file position should be at
 // the beginning of the data chunk; however, you should not make
 // this assumption. Use mmioDescend to locate the data chunk.
 mmckinfoSubchunk.ckid = mmioFOURCC('d', 'a', 't', 'a');
 if (mmioDescend(hmmio, &mmckinfoSubchunk, &mmckinfoParent,
 MMIO_FINDCHUNK))
 {
 Error("Waveform-audio file has no data chunk.");
 .
 .
 .
 mmioClose(hmmio, 0);
 return;
 }

 // Get the size of the data subchunk.
 dwDataSize = mmckinfoSubchunk.cksize;
 if (dwDataSize == 0L){
 Error("The data chunk contains no data.");
 .
 .
 .
 mmioClose(hmmio, 0);
 return;
 }

 // Open a waveform-audio output device.
 .
 .
 .

 // Allocate and lock memory for the waveform-audio data.
 .
 .
 .

 // Read the waveform-audio data subchunk.
 if(mmioRead(hmmio, (HPSTR) lpData, dwDataSize) != dwDataSize){
 Error("Failed to read data chunk.");
 .

 .
 .
 mmioClose(hmmio, 0);
 return;
 }

 // Close the file.
 mmioClose(hmmio, 0);

 // Reverse the sound and play it.
 .
 .
 .
}

 Performing Memory File Input and Output

The multimedia file I/O services let you to treat a block of memory as a file. This can be useful if you
already have a file image in memory. Memory files let you reduce the number of special-case
conditions in your code because, for I/O purposes, you can treat memory files as if they were disk-
based files. You can also use memory files with the clipboard.

As with I/O buffers, memory files can use memory allocated by the application or by the file I/O
manager. In addition, memory files can be either expandable or nonexpandable. When the file I/O
manager reaches the end of an expandable memory file, it expands the memory file by a predefined
increment.

To open a memory file, use the mmioOpen function with the szFilename parameter set to NULL and
the MMIO_READWRITE flag set in the dwOpenFlags parameter. Set the lpmmioinfo parameter to point
to an MMIOINFO structure that has been set up as follows:

1. Set the pIOProc member to NULL.
2. Set the fccIOProc member to FOURCC_MEM.
3. Set the pchBuffer member to point to the memory block. To request that the file I/O manager

allocate the memory block, set pchBuffer to NULL.
4. Set the cchBuffer member to the initial size of the memory block.
5. Set the adwInfo member to the minimum expansion size of the memory block. For a nonexpandable

memory file, set adwInfo to NULL.
6. Set all other members to zero.

There are no restrictions on allocating memory for use as a nonexpandable memory file.

 Installing Custom I/O Procedures

To install an I/O procedure associated with the .ARC filename extension, use the mmioInstallIOProc
function as follows:

mmioInstallIOProc (mmioFOURCC('A', 'R', 'C', ' '),
 (LPMMIOPROC)lpmmioproc, MMIO_INSTALLPROC);

When you install an I/O procedure using mmioInstallIOProc, the procedure remains installed until you
remove it. The I/O procedure is used for any file you open as long as the file has the appropriate
filename extension.

You can also temporarily install an I/O procedure by using the mmioOpen function. In this case, the I/O
procedure is used only with a file opened by using mmioOpen and is removed when the file is closed
by using the mmioClose function. To specify an I/O procedure when you open a file by using
mmioOpen, use the lpmmioinfo parameter to reference an MMIOINFO structure as follows:

1. Set the fccIOProc member to NULL.
2. Set the pIOProc member to the procedure-instance address of the I/O procedure.
3. Set all other members to zero (unless you are opening a memory file, or directly reading or writing to

the file I/O buffer).

Be sure to remove any I/O procedures you have installed before you exit your application.

 Sharing an I/O Procedure with Other Applications

If you want to share an I/O procedure with other applications, you need to write a dynamic-link library
(DLL) for your application. You can share the I/O procedure by doing one of the following:

· Include the code for the I/O procedure in the DLL.
· Create a function in the DLL that calls the mmioInstallIOProc function to install the I/O procedure.
· Export this function in the module-definitions file of the DLL.

To use the shared I/O procedure, an application must first call the function in the DLL to install the I/O
procedure.

 File Input and Output Reference

This section describes the functions, macros, messages, and structures associated with multimedia file
input and output. These elements are grouped as follows.

Basic I/O

mmioClose
mmioOpen
mmioRead
mmioRename
mmioSeek
mmioWrite
Buffered I/O

mmioAdvance
mmioFlush
mmioGetInfo
MMIOINFO
mmioSetBuffer
mmioSetInfo
RIFF I/O

mmioAscend
MMCKINFO
mmioCreateChunk
mmioDescend
mmioFOURCC
mmioStringToFOURCC
Custom I/O Procedures

IOProc
mmioInstallIOProc
MMIOM_CLOSE
MMIOM_OPEN
MMIOM_READ
MMIOM_RENAME
MMIOM_SEEK
MMIOM_WRITE
MMIOM_WRITEFLUSH
mmioSendMessage

 IOProc

LRESULT FAR PASCAL IOProc(LPSTR lpmmioinfo, UINT wMsg, LPARAM lParam1,
 LPARAM lParam2);

Accesses a unique storage system, such as a database or file archive. You can install or remove this
callback function by using the mmioInstallIOProc function.

IOProc is a placeholder for the application-defined function name. The actual name must be exported
by including it in a EXPORTS statement in the application's module-definition file.

· Returns a value that corresponds to the message specified by wMsg. If the I/O procedure does not
recognize a message, it should return zero.

lpmmioinfo
Address of an MMIOINFO structure containing information about the open file. The I/O procedure
must maintain the lDiskOffset member in this structure to indicate the file offset to the next read or
write location. The I/O procedure can use the adwInfo member to store state information. The I/O
procedure should not modify any other members of the MMIOINFO structure.

wMsg
Message indicating the requested I/O operation. Messages that can be received include
MMIOM_OPEN, MMIOM_CLOSE, MMIOM_READ, MMIOM_WRITE, and MMIOM_SEEK.

lParam1 and lParam2
Parameters for the message.

The four-character code specified by the fccIOProc member of the MMIOINFO structure associated
with a file identifies a filename extension for a custom storage system. When an application calls the
mmioOpen function with a filename such as EXAMPLE.XYZ!ABC, the I/O procedure associated with
the four-character code "XYZ" is called to open the ABC element of the file EXAMPLE.XYZ.

The mmioInstallIOProc function maintains a separate list of installed I/O procedures for each
Windows application. Therefore, different applications can use the same I/O procedure identifier for
different I/O procedures without conflict.

If an application calls mmioInstallIOProc more than once to register the same I/O procedure, it must
call this function to remove the procedure once for each time it installed the procedure.

The mmioInstallIOProc function does not prevent an application from installing two different I/O
procedures with the same identifier, or installing an I/O procedure with one of the predefined identifiers
(DOS or MEM). The most recently installed procedure takes precedence, and the most recently
installed procedure is the first one to be removed.

When searching for a specified I/O procedure, local procedures are searched first, then global
procedures.

 mmioAdvance

MMRESULT mmioAdvance(HMMIO hmmio, LPMMIOINFO lpmmioinfo, UINT wFlags);

Advances the I/O buffer of a file set up for direct I/O buffer access with the mmioGetInfo function.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMIOERR_CANNOTEXPAND The specified memory file cannot be

expanded, probably because the
adwInfo member of the MMIOINFO
structure was set to zero in the initial
call to the mmioOpen function.

MMIOERR_CANNOTREAD An error occurred while refilling the
buffer.

MMIOERR_CANNOTWRITE The contents of the buffer could not be
written to disk.

MMIOERR_OUTOFMEMORY There was not enough memory to
expand a memory file for further
writing.

MMIOERR_UNBUFFERED The specified file is not opened for
buffered I/O.

hmmio
File handle of a file opened by using the mmioOpen function.

lpmmioinfo
Address of the MMIOINFO structure obtained by using the mmioGetInfo function. This structure is
used to set the current file information, and then it is updated after the buffer is advanced. This
parameter is optional.

wFlags
Flags for the operation. It can be one of the following:
MMIO_READ

Buffer is filled from the file.
MMIO_WRITE

Buffer is written to the file.

If the file is opened for reading, the I/O buffer is filled from the disk. If the file is opened for writing and
the MMIO_DIRTY flag is set in the dwFlags member of the MMIOINFO structure, the buffer is written
to disk. The pchNext, pchEndRead, and pchEndWrite members of the MMIOINFO structure are
updated to reflect the new state of the I/O buffer.

If the specified file is opened for writing or for both reading and writing, the I/O buffer is flushed to disk
before the next buffer is read. If the I/O buffer cannot be written to disk because the disk is full,
mmioAdvance returns MMIOERR_CANNOTWRITE.

If the specified file is open only for writing, the MMIO_WRITE flag must be specified.

If you have written to the I/O buffer, you must set the MMIO_DIRTY flag in the dwFlags member of the
MMIOINFO structure before calling mmioAdvance. Otherwise, the buffer will not be written to disk.

If the end of file is reached, mmioAdvance still returns successfully even though no more data can be
read. To check for the end of the file, check if the pchNext and pchEndRead members of the
MMIOINFO structure are equal after calling mmioAdvance.

 mmioAscend

MMRESULT mmioAscend(HMMIO hmmio, LPMMCKINFO lpck, UINT wFlags);

Ascends out of a chunk in a RIFF file descended into with the mmioDescend function or created with
the mmioCreateChunk function.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMIOERR_CANNOTSEE
K

There was an error while seeking to the
end of the chunk.

MMIOERR_CANNOTWRI
TE

The contents of the buffer could not be
written to disk.

hmmio
File handle of an open RIFF file.

lpck
Address of an application-defined MMCKINFO structure previously filled by the mmioDescend or
mmioCreateChunk function.

wFlags
Reserved; must be zero.

If the chunk was descended into by using mmioDescend, mmioAscend seeks to the location
following the end of the chunk (past the extra pad byte, if any).

If the chunk was created and descended into by using mmioCreateChunk, or if the MMIO_DIRTY flag
is set in the dwFlags member of the MMCKINFO structure referenced by lpck, the current file position
is assumed to be the end of the data portion of the chunk. If the chunk size is not the same as the
value stored in the cksize member of the MMCKINFO structure when mmioCreateChunk was called,
mmioAscend corrects the chunk size in the file before ascending from the chunk. If the chunk size is
odd, mmioAscend writes a null pad byte at the end of the chunk. After ascending from the chunk, the
current file position is the location following the end of the chunk (past the extra pad byte, if any).

 mmioClose

MMRESULT mmioClose(HMMIO hmmio, UINT wFlags);

Closes a file that was opened by using the mmioOpen function.

· Returns zero if successful or an error otherwise. The error value can originate from the mmioFlush
function or from the I/O procedure. Possible error values include the following:
MMIOERR_CANNOTWRIT
E

The contents of the buffer could not be
written to disk.

hmmio
File handle of the file to close.

wFlags
Flags for the close operation. The following value is defined:
MMIO_FHOPEN

If the file was opened by passing a file handle whose type is not HMMIO, using this flag tells the
mmioClose function to close the multimedia file handle, but not the standard file handle.

 mmioCreateChunk

MMRESULT mmioCreateChunk(HMMIO hmmio, LPMMCKINFO lpck, UINT wFlags);

Creates a chunk in a RIFF file that was opened by using the mmioOpen function. The new chunk is
created at the current file position. After the new chunk is created, the current file position is the
beginning of the data portion of the new chunk.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMIOERR_CANNOTSEEK Unable to determine offset of the data

portion of the chunk.
MMIOERR_CANNOTWRITE Unable to write the chunk header.

hmmio
File handle of an open RIFF file.

lpck
Address an application-defined MMCKINFO structure containing information about the chunk to be
created.

wFlags
Flags identifying what type of chunk to create. The following values are defined:
MMIO_CREATELIST

"LIST" chunk.
MMIO_CREATERIFF

"RIFF" chunk.

This function cannot insert a chunk into the middle of a file. If an application attempts to create a chunk
somewhere other than at the end of a file, mmioCreateChunk overwrites existing information in the
file.

The MMCKINFO structure pointed to by the lpck parameter should be set up as follows:

· The ckid member specifies the chunk identifier. If wFlags includes MMIO_CREATERIFF or
MMIO_CREATELIST, this member will be filled by mmioCreateChunk.

· The cksize member specifies the size of the data portion of the chunk, including the form type or list
type (if any). If this value is not correct when the mmioAscend function is called to mark the end of
the chunk, mmioAscend corrects the chunk size.

· The fccType member specifies the form type or list type if the chunk is a "RIFF" or "LIST" chunk. If
the chunk is not a "RIFF" or "LIST" chunk, this member does not need to be filled in.

· The dwDataOffset member does not need to be filled in. The mmioCreateChunk function fills this
member with the file offset of the data portion of the chunk.

· The dwFlags member does not need to be filled in. The mmioCreateChunk function sets the
MMIO_DIRTY flag in dwFlags.

 mmioDescend

MMRESULT mmioDescend(HMMIO hmmio, LPMMCKINFO lpck,
 LPMMCKINFO lpckParent, UINT wFlags);

Descends into a chunk of a RIFF file that was opened by using the mmioOpen function. It can also
search for a given chunk.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMIOERR_CHUNKNOTFOU
ND

The end of the file (or the end of the
parent chunk, if given) was reached
before the desired chunk was found.

hmmio
File handle of an open RIFF file.

lpck
Address an application-defined MMCKINFO structure.

lpckParent
Address of an optional application-defined MMCKINFO structure identifying the parent of the chunk
being searched for. If this parameter is not NULL, mmioDescend assumes the MMCKINFO
structure it refers to was filled when mmioDescend was called to descend into the parent chunk,
and mmioDescend searches for a chunk within the parent chunk. Set this parameter to NULL if no
parent chunk is being specified.

wFlags
Search flags. If no flags are specified, mmioDescend descends into the chunk beginning at the
current file position. The following values are defined:
MMIO_FINDCHUNK

Searches for a chunk with the specified chunk identifier.
MMIO_FINDLIST

Searches for a chunk with the chunk identifier "LIST" and with the specified form type.
MMIO_FINDRIFF

Searches for a chunk with the chunk identifier "RIFF" and with the specified form type.

A "RIFF" chunk consists of a four-byte chunk identifier (type FOURCC), followed by a four-byte chunk
size (type DWORD), followed by the data portion of the chunk, followed by a null pad byte if the size of
the data portion is odd. If the chunk identifier is "RIFF" or "LIST", the first four bytes of the data portion
of the chunk are a form type or list type (type FOURCC).

If you use mmioDescend to search for a chunk, make sure the file position is at the beginning of a
chunk before calling the function. The search begins at the current file position and continues to the
end of the file. If a parent chunk is specified, the file position should be somewhere within the parent
chunk before calling mmioDescend. In this case, the search begins at the current file position and
continues to the end of the parent chunk.

If mmioDescend is unsuccessful in searching for a chunk, the current file position is undefined. If
mmioDescend is successful, the current file position is changed. If the chunk is a "RIFF" or "LIST"
chunk, the new file position will be just after the form type or list type (12 bytes from the beginning of
the chunk). For other chunks, the new file position will be the start of the data portion of the chunk (8
bytes from the beginning of the chunk).

The mmioDescend function fills the MMCKINFO structure pointed to by the lpck parameter with the
following information:

· The ckid member is the chunk. If the MMIO_FINDCHUNK, MMIO_FINDRIFF, or MMIO_FINDLIST
flag is specified for wFlags, the MMCKINFO structure is also used to pass parameters to

mmioDescend. In this case, the ckid member specifies the four-character code of the chunk
identifier, form type, or list type to search for.

· The cksize member is the size, in bytes, of the data portion of the chunk. The size includes the form
type or list type (if any), but does not include the 8-byte chunk header or the pad byte at the end of
the data (if any).

· The fccType member is the form type if ckid is "RIFF", or the list type if ckid is "LIST". Otherwise, it
is NULL.

· The dwDataOffset member is the file offset of the beginning of the data portion of the chunk. If the
chunk is a "RIFF" chunk or a "LIST" chunk, this member is the offset of the form type or list type.

· The dwFlags member contains other information about the chunk. Currently, this information is not
used and is set to zero.

 mmioFlush

MMRESULT mmioFlush(HMMIO hmmio, UINT fuFlush);

Writes the I/O buffer of a file to disk if the buffer has been written to.

· Returns zero if successful or an error otherwise. The following value is defined:
MMIOERR_CANNOTWRITE The contents of the buffer could not be

written to disk.

hmmio
File handle of a file opened by using the mmioOpen function.

fuFlush
Flag determining how the flush is carried out. It can be zero or the following:
MMIO_EMPTYBUF Empties the buffer after writing it to the disk.

Closing a file with the mmioClose function automatically flushes its buffer.

If there is insufficient disk space to write the buffer, mmioFlush fails, even if the preceding calls of the
mmioWrite function were successful.

 mmioFOURCC

FOURCC mmioFOURCC(CHAR ch0, CHAR ch1, CHAR ch2, CHAR ch3)

Converts four characters into a four-character code.

· Returns the four-character code created from the given characters.
ch0, ch1, ch2, and ch3

First, second, third, and fourth characters of the four-character code.

This macro does not check whether the four-character code it returns is valid.

The mmioFOURCC macro is defined as follows:

#define mmioFOURCC(ch0, ch1, ch2, ch3) MAKEFOURCC(ch0, ch1, ch2, ch3);

The MAKEFOURCC macro, in turn, is defined as follows:

#define MAKEFOURCC(ch0, ch1, ch2, ch3) \
 ((DWORD)(BYTE)(ch0) | ((DWORD)(BYTE)(ch1) << 8) | \
 ((DWORD)(BYTE)(ch2) << 16) | ((DWORD)(BYTE)(ch3) << 24));

 mmioGetInfo

MMRESULT mmioGetInfo(HMMIO hmmio, LPMMIOINFO lpmmioinfo, UINT wFlags);

Retrieves information about a file opened by using the mmioOpen function. This information allows the
application to directly access the I/O buffer, if the file is opened for buffered I/O.

· Returns zero if successful or an error otherwise.
hmmio

File handle of the file.
lpmmioinfo

Address an MMIOINFO structure that mmioGetInfo fills with information about the file.
wFlags

Reserved; must be zero.

To directly access the I/O buffer of a file opened for buffered I/O, use the following members of the
MMIOINFO structure filled by mmioGetInfo:

· The pchNext member points to the next byte in the buffer that can be read or written. When you
read or write, increment pchNext by the number of bytes read or written.

· The pchEndRead member points to 1 byte past the last valid byte in the buffer that can be read.
· The pchEndWrite member points to 1 byte past the last location in the buffer that can be written.

After you read or write to the buffer and modify pchNext, do not call any multimedia file I/O functions
except mmioAdvance until you call the mmioSetInfo function. Call mmioSetInfo when you are
finished directly accessing the buffer.

When you reach the end of the buffer specified by the pchEndRead or pchEndWrite member, call
mmioAdvance to fill the buffer from the disk or write the buffer to the disk. The mmioAdvance
function updates the pchNext, pchEndRead, and pchEndWrite members in the MMIOINFO structure
for the file.

Before calling mmioAdvance or mmioSetInfo to flush a buffer to disk, set the MMIO_DIRTY flag in
the dwFlags member of the MMIOINFO structure for the file. Otherwise, the buffer will not be written to
disk.

Do not decrement pchNext or modify any members in the MMIOINFO structure other than pchNext
and dwFlags. Do not set any flags in dwFlags except MMIO_DIRTY.

 mmioInstallIOProc

LPMMIOPROC mmioInstallIOProc(FOURCC fccIOProc, LPMMIOPROC pIOProc,
 DWORD dwFlags);

Installs or removes a custom I/O procedure. This function also locates an installed I/O procedure, using
its corresponding four-character code.

· Returns the address of the I/O procedure installed, removed, or located. Returns NULL if there is an
error.

fccIOProc
Four-character code identifying the I/O procedure to install, remove, or locate. All characters in this
code should be uppercase.

pIOProc
Address of the I/O procedure to install. To remove or locate an I/O procedure, set this parameter to
NULL.

dwFlags
Flag indicating whether the I/O procedure is being installed, removed, or located. The following
values are defined:
MMIO_FINDPROC

Searches for the specified I/O procedure.
MMIO_GLOBALPROC

This flag is a modifier to the MMIO_INSTALLPROC flag and indicates the I/O procedure should
be installed for global use. This flag is ignored if MMIO_FINDPROC or MMIO_REMOVEPROC is
specified.

MMIO_INSTALLPROC
Installs the specified I/O procedure.

MMIO_REMOVEPROC
Removes the specified I/O procedure.

 mmioOpen

HMMIO mmioOpen(LPSTR szFilename, LPMMIOINFO lpmmioinfo,
 DWORD dwOpenFlags);

Opens a file for unbuffered or buffered I/O. The file can be a standard file, a memory file, or an element
of a custom storage system. The handle returned by mmioOpen is not a standard file handle; do not
use it with any file I/O functions other than multimedia file I/O functions.

· Returns a handle of the opened file. If the file cannot be opened, the return value is NULL. If
lpmmioinfo is not NULL, the wErrorRet member of the MMIOINFO structure will contain one of the
following error values:
MMIOERR_ACCESSDENIED The file is protected and cannot be

opened.
MMIOERR_INVALIDFILE Another failure condition occurred.

This is the default error for an open-
file failure.

MMIOERR_NETWORKERROR The network is not responding to
the request to open a remote file.

MMIOERR_PATHNOTFOUND The directory specification is
incorrect.

MMIOERR_SHARINGVIOLATIO
N

The file is being used by another
application and is unavailable.

MMIOERR_TOOMANYOPENFIL
ES

The number of files simultaneously
open is at a maximum level. The
system has run out of available file
handles.

szFilename
Address of a string containing the filename of the file to open. If no I/O procedure is specified to
open the file, the filename determines how the file is opened, as follows:
· If the filename does not contain a plus sign (+), it is assumed to be the name of a standard file

(that is, a file whose type is not HMMIO).
· If the filename is of the form EXAMPLE.EXT+ABC, the extension EXT is assumed to identify an

installed I/O procedure which is called to perform I/O on the file. For more information, see
mmioInstallIOProc.

· If the filename is NULL and no I/O procedure is given, the adwInfo member of the MMIOINFO
structure is assumed to be the standard (non-HMMIO) file handle of a currently open file.

The filename should not be longer than 128 bytes, including the terminating NULL character.
When opening a memory file, set szFilename to NULL.

lpmmioinfo
Address of an MMIOINFO structure containing extra parameters used by mmioOpen. Unless you
are opening a memory file, specifying the size of a buffer for buffered I/O, or specifying an
uninstalled I/O procedure to open a file, this parameter should be NULL. If this parameter is not
NULL, all unused members of the MMIOINFO structure it references must be set to zero, including
the reserved members.

dwOpenFlags
Flags for the open operation. The MMIO_READ, MMIO_WRITE, and MMIO_READWRITE flags are
mutually exclusive ¾ only one should be specified. The MMIO_COMPAT, MMIO_EXCLUSIVE,
MMIO_DENYWRITE, MMIO_DENYREAD, and MMIO_DENYNONE flags are file-sharing flags. The
following values are defined:
MMIO_ALLOCBUF

Opens a file for buffered I/O. To allocate a buffer larger or smaller than the default buffer size (8K,
defined as MMIO_DEFAULTBUFFER), set the cchBuffer member of the MMIOINFO structure to
the desired buffer size. If cchBuffer is zero, the default buffer size is used. If you are providing
your own I/O buffer, this flag should not be used.

MMIO_COMPAT
Opens the file with compatibility mode, allowing any process on a given machine to open the file
any number of times. If the file has been opened with any of the other sharing modes,
mmioOpen fails.

MMIO_CREATE
Creates a new file. If the file already exists, it is truncated to zero length. For memory files, this
flag indicates the end of the file is initially at the start of the buffer.

MMIO_DELETE
Deletes a file. If this flag is specified, szFilename should not be NULL. The return value is TRUE
(cast to HMMIO) if the file was deleted successfully or FALSE otherwise. Do not call the
mmioClose function for a file that has been deleted. If this flag is specified, all other flags that
open files are ignored.

MMIO_DENYNONE
Opens the file without denying other processes read or write access to the file. If the file has been
opened in compatibility mode by any other process, mmioOpen fails.

MMIO_DENYREAD
Opens the file and denies other processes read access to the file. If the file has been opened in
compatibility mode or for read access by any other process, mmioOpen fails.

MMIO_DENYWRITE
Opens the file and denies other processes write access to the file. If the file has been opened in
compatibility mode or for write access by any other process, mmioOpen fails.

MMIO_EXCLUSIVE
Opens the file and denies other processes read and write access to the file. If the file has been
opened in any other mode for read or write access, even by the current process, mmioOpen
fails.

MMIO_EXIST
Determines whether the specified file exists and creates a fully qualified filename from the path
specified in szFilename. The filename is placed back into szFilename. The return value is TRUE
(cast to HMMIO) if the qualification was successful and the file exists or FALSE otherwise. The
file is not opened, and the function does not return a valid multimedia file I/O file handle, so do not
attempt to close the file.

MMIO_GETTEMP
Creates a temporary filename, optionally using the parameters passed in szFilename. For
example, you can specify "C:F" to create a temporary file residing on drive C, starting with letter
"F". The resulting filename is placed in the buffer pointed to by szFilename. The return value is
MMSYSERR_NOERROR (cast to HMMIO) if the temporary filename was created successfully or
MMIOERR_FILENOTFOUND otherwise. The file is not opened, and the function does not return
a valid multimedia file I/O file handle, so do not attempt to close the file. This flag overrides all
other flags.

MMIO_PARSE
Creates a fully qualified filename from the path specified in szFilename. The filename is placed
back into szFilename. The return value is TRUE (cast to HMMIO) if the qualification was
successful or FALSE otherwise. The file is not opened, and the function does not return a valid
multimedia file I/O file handle, so do not attempt to close the file. If this flag is specified, all flags
that open files are ignored.

MMIO_READ
Opens the file for reading only. This is the default if MMIO_WRITE and MMIO_READWRITE are
not specified.

MMIO_READWRITE
Opens the file for reading and writing.

MMIO_WRITE
Opens the file for writing only.

If lpmmioinfo references an MMIOINFO structure, set up the members of that structure as described
below. All unused members must be set to zero, including reserved members.

· To request that a file be opened with an installed I/O procedure, set fccIOProc to the four-character
code of the I/O procedure, and set pIOProc to NULL.

· To request that a file be opened with an uninstalled I/O procedure, set IOProc to point to the I/O
procedure, and set fccIOProc to NULL.

· To request that mmioOpen determine which I/O procedure to use to open the file based on the
filename contained in szFilename, set fccIOProc and pIOProc to NULL. This is the default behavior
if no MMIOINFO structure is specified.

· To open a memory file using an internally allocated and managed buffer, set pchBuffer to NULL,
fccIOProc to FOURCC_MEM, cchBuffer to the initial size of the buffer, and adwInfo to the
incremental expansion size of the buffer. This memory file will automatically be expanded in
increments of the number of bytes specified in adwInfo when necessary. Specify the
MMIO_CREATE flag for the dwOpenFlags parameter to initially set the end of the file to be the
beginning of the buffer.

· To open a memory file using an application-supplied buffer, set pchBuffer to point to the memory
buffer, fccIOProc to FOURCC_MEM, cchBuffer to the size of the buffer, and adwInfo to the
incremental expansion size of the buffer. The expansion size in adwInfo should be nonzero only if
pchBuffer is a pointer obtained by calling the GlobalAlloc and GlobalLock functions; in this case,
the GlobalReAlloc function will be called to expand the buffer. In other words, if pchBuffer points to
a local or global array, a block of memory in the local heap, or a block of memory allocated by the
GlobalDosAlloc function, adwInfo must be zero. Specify the MMIO_CREATE flag for the
dwOpenFlags parameter to initially set the end of the file to be the beginning of the buffer.
Otherwise, the entire block of memory is considered readable.

· To use a currently open standard file handle (that is, a file handle that does not have the HMMIO
type) with multimedia file I/O services, set fccIOProc to FOURCC_DOS, pchBuffer to NULL, and
adwInfo to the standard file handle. Offsets within the file will be relative to the beginning of the file
and are not related to the position in the standard file at the time mmioOpen is called; the initial
multimedia file I/O offset will be the same as the offset in the standard file when mmioOpen is
called. To close the multimedia file I/O file handle without closing the standard file handle, pass the
MMIO_FHOPEN flag to mmioClose.

You must call mmioClose to close a file opened by using mmioOpen. Open files are not automatically
closed when an application exits.

 mmioRead

LONG mmioRead(HMMIO hmmio, HPSTR pch, LONG cch);

Reads a specified number of bytes from a file opened by using the mmioOpen function.

· Returns the number of bytes actually read. If the end of the file has been reached and no more bytes
can be read, the return value is 0. If there is an error reading from the file, the return value is - 1.

hmmio
File handle of the file to be read.

pch
Address of a buffer to contain the data read from the file.

cch
Number of bytes to read from the file.

 mmioRename

MMRESULT mmioRename(LPCSTR szFilename, LPCSTR szNewFilename,
 const LPMMIOINFO lpmmioinfo, DWORD dwRenameFlags);

Renames the specified file.

· Returns zero if the file was renamed. Otherwise, returns an error code returned from mmioRename
or from the I/O procedure.

szFilename
Address of a string containing the filename of the file to rename.

szNewFileName
Address of a string containing the new filename.

lpmmioinfo
Address of an MMIOINFO structure containing extra parameters used by mmioRename. If this
parameter is not NULL, all unused members of the MMIOINFO structure it references must be set to
zero, including the reserved members.

dwRenameFlags
Flags for the rename operation. This parameter should be set to zero.

 mmioSeek

LONG mmioSeek(HMMIO hmmio, LONG lOffset, int iOrigin);

Changes the current file position in a file opened by using the mmioOpen function.

· Returns the new file position, in bytes, relative to the beginning of the file. If there is an error, the
return value is - 1.

hmmio
File handle of the file to seek in.

lOffset
Offset to change the file position.

iOrigin
Flags indicating how the offset specified by lOffset is interpreted. The following values are defined:
SEEK_CUR

Seeks to lOffset bytes from the current file position.
SEEK_END

Seeks to lOffset bytes from the end of the file.
SEEK_SET

Seeks to lOffset bytes from the beginning of the file.

Seeking to an invalid location in the file, such as past the end of the file, might not cause mmioSeek to
return an error, but it might cause subsequent I/O operations on the file to fail.

To locate the end of a file, call mmioSeek with lOffset set to zero and iOrigin set to SEEK_END.

 mmioSendMessage

LRESULT mmioSendMessage(HMMIO hmmio, UINT wMsg, LPARAM lParam1,
 LPARAM lParam2);

Sends a message to the I/O procedure associated with the specified file.

· Returns a value that corresponds to the message. If the I/O procedure does not recognize the
message, the return value should be zero.

hmmio
File handle for a file opened by using the mmioOpen function.

wMsg
Message to send to the I/O procedure.

lParam1 and lParam2
Parameters for the message.

Use this function to send custom user-defined messages. Do not use it to send the MMIOM_OPEN,
MMIOM_CLOSE, MMIOM_READ, MMIOM_WRITE, MMIOM_WRITEFLUSH, or MMIOM_SEEK
messages. Define custom messages to be greater than or equal to the MMIOM_USER constant.

 mmioSetBuffer

MMRESULT mmioSetBuffer(HMMIO hmmio, LPSTR pchBuffer, LONG cchBuffer,
 UINT wFlags);

Enables or disables buffered I/O, or changes the buffer or buffer size for a file opened by using the
mmioOpen function.

· Returns zero if successful or an error otherwise. If an error occurs, the file handle remains valid. The
following values are defined:
MMIOERR_CANNOTWRITE The contents of the old buffer could not

be written to disk, so the operation was
aborted.

MMIOERR_OUTOFMEMOR
Y

The new buffer could not be allocated,
probably due to a lack of available
memory.

hmmio
File handle of the file.

pchBuffer
Address of an application-defined buffer to use for buffered I/O. If this parameter is NULL,
mmioSetBuffer allocates an internal buffer for buffered I/O.

cchBuffer
Size, in characters, of the application-defined buffer, or the size of the buffer for mmioSetBuffer to
allocate.

wFlags
Reserved; must be zero.

To enable buffering using an internal buffer, set pchBuffer to NULL and cchBuffer to the desired buffer
size.

To supply your own buffer, set pchBuffer to point to the buffer, and set cchBuffer to the size of the
buffer.

To disable buffered I/O, set pchBuffer to NULL and cchBuffer to zero.

If buffered I/O is already enabled using an internal buffer, you can reallocate the buffer to a different
size by setting pchBuffer to NULL and cchBuffer to the new buffer size. The contents of the buffer can
be changed after resizing.

 mmioSetInfo

MMRESULT mmioSetInfo(HMMIO hmmio, LPMMIOINFO lpmmioinfo, UINT wFlags);

Updates the information retrieved by the mmioGetInfo function about a file opened by using the
mmioOpen function. Use this function to terminate direct buffer access of a file opened for buffered
I/O.

· Returns zero if successful or an error otherwise.
hmmio

File handle of the file.
lpmmioinfo

Address of an MMIOINFO structure filled with information by the mmioGetInfo function.
wFlags

Reserved; must be zero.

If you have written to the file I/O buffer, set the MMIO_DIRTY flag in the dwFlags member of the
MMIOINFO structure before calling mmioSetInfo to terminate direct buffer access. Otherwise, the
buffer will not get flushed to disk.

 mmioStringToFOURCC

FOURCC mmioStringToFOURCC(LPCSTR sz, UINT wFlags);

Converts a null-terminated string to a four-character code.

· Returns the four-character code created from the given string.
sz

Address of a null-terminated string to convert to a four-character code.
wFlags

Flags for the conversion. The following value is defined:
MMIO_TOUPPER

Converts all characters to uppercase.

This function copies the string to a four-character code and pads it with space characters or truncates it
if necessary. It does not check whether the code it returns is valid.

 mmioWrite

LONG mmioWrite(HMMIO hmmio, char _huge* pch, LONG cch);

Writes a specified number of bytes to a file opened by using the mmioOpen function.

· Returns the number of bytes actually written. If there is an error writing to the file, the return value is
- 1.

hmmio
File handle of the file.

pch
Address of the buffer to be written to the file.

cch
Number of bytes to write to the file.

The current file position is incremented by the number of bytes written.

 MMCKINFO

typedef struct {
 FOURCC ckid; // chunk identifier
 DWORD cksize; // see below
 FOURCC fccType; // see below
 DWORD dwDataOffset; // see below
 DWORD dwFlags; // see below
} MMCKINFO;

Contains information about a chunk in a RIFF file.

cksize
Size, in bytes, of the data member of the chunk. The size of the data member does not include the
4-byte chunk identifier, the 4-byte chunk size, or the optional pad byte at the end of the data
member.

fccType
Form type for "RIFF" chunks or the list type for "LIST" chunks.

dwDataOffset
File offset of the beginning of the chunk's data member, relative to the beginning of the file.

dwFlags
Flags specifying additional information about the chunk. It can be zero or the following flag:
MMIO_DIRTY

The length of the chunk might have changed and should be updated by the mmioAscend
function. This flag is set when a chunk is created by using the mmioCreateChunk function.

 MMIOINFO

typedef struct {
 DWORD dwFlags; // see below
 FOURCC fccIOProc; // see below
 LPMMIOPROC pIOProc; // address of file's I/O procedure
 UINT wErrorRet; // see below
 HTASK hTask; // see below
 LONG cchBuffer; // see below
 HPSTR pchBuffer; // see below
 HPSTR pchNext; // see below
 HPSTR pchEndRead; // see below
 HPSTR pchEndWrite; // see below
 LONG lBufOffset; // reserved
 LONG lDiskOffset; // see below
 DWORD adwInfo[4]; // see below
 DWORD dwReserved1; // reserved
 DWORD dwReserved2; // reserved
 HMMIO hmmio; // see below
} MMIOINFO;

Contains the current state of a file opened by using the mmioOpen function.

dwFlags
Flags specifying how a file was opened. The following values are defined:
MMIO_ALLOCBUF

File's I/O buffer was allocated by the mmioOpen or mmioSetBuffer function.
MMIO_CREATE

The mmioOpen function was directed to create the file (or truncate it to zero length if it already
existed).

MMIO_DIRTY
The I/O buffer has been modified.

MMIO_EXIST
Checks for the existence of the file.

MMIO_GETTEMP
A temporary name was retrieved by the mmioOpen function.

MMIO_PARSE
The new file's path is returned.

The following values may be set when the file is opened in share mode (identified by using the
MMIO_SHAREMODE bit mask):
MMIO_COMPAT

File was opened with compatibility mode, allowing any process on a given machine to open the
file any number of times.

MMIO_DENYNONE
Other processes are not denied read or write access to the file.

MMIO_DENYREAD
Other processes are denied read access to the file.

MMIO_DENYWRITE
Other processes are denied write access to the file.

MMIO_EXCLUSIVE
Other processes are denied read and write access to the file.

The following values may be set when the file is opened in read/write mode (identified by using the

MMIO_RWMODE bit mask):
MMIO_READ

File was opened only for reading.
MMIO_READWRITE

File was opened for reading and writing.
MMIO_WRITE

File was opened only for writing.
fccIOProc

Four-character code identifying the file's I/O procedure. If the I/O procedure is not an installed I/O
procedure, this member is NULL.

wErrorRet
Extended error value from the mmioOpen function if it returns NULL. This member is not used to
return extended error information from any other functions.

hTask
Handle of a local I/O procedure. Media Control Interface (MCI) devices that perform file I/O in the
background and need an I/O procedure can locate a local I/O procedure with this handle.

cchBuffer
Size, in bytes, of the file's I/O buffer. If the file does not have an I/O buffer, this member is zero.

pchBuffer
Address of the file's I/O buffer. If the file is unbuffered, this member is NULL.

pchNext
Address of the next location in the I/O buffer to be read or written. If no more bytes can be read
without calling the mmioAdvance or mmioRead function, this member points to the pchEndRead
member. If no more bytes can be written without calling the mmioAdvance or mmioWrite function,
this member points to the pchEndWrite member.

pchEndRead
Address of the location that is 1 byte past the last location in the buffer that can be read.

pchEndWrite
Address of the location that is 1 byte past the last location in the buffer that can be written.

lDiskOffset
Current file position, which is an offset, in bytes, from the beginning of the file. I/O procedures are
responsible for maintaining this member.

adwInfo
State information maintained by the I/O procedure. I/O procedures can also use these members to
transfer information from the application to the I/O procedure when the application opens a file.

hmmio
Handle of the open file, as returned by the mmioOpen function. I/O procedures can use this handle
when calling other multimedia file I/O functions.

 MMIOM_CLOSE

MMIOM_CLOSE
lParam1 = (LPARAM) lCloseFlags
lParam2 = reserved

Sent to an I/O procedure by the mmioClose function to request that a file be closed.

· Returns zero if the file is successfully closed or an error otherwise.
lCloseFlags

Flags contained in the wFlags parameter of mmioClose.

 MMIOM_OPEN

MMIOM_OPEN
lParam1 = (LPARAM) lpszFileName
lParam2 = reserved

Sent to an I/O procedure by the mmioOpen function to request that a file be opened or deleted.

· Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include
the following:
MMIOM_CANNOTOPEN The file could not be opened.
MMIOM_OUTOFMEMORY Not enough memory to perform the

operation.

lpszFileName
Null-terminated string containing the name of the file to open.

The dwFlags member of the MMIOINFO structure contains flags passed to the mmioOpen function.

The lDiskOffset member of the MMIOINFO structure is initialized to zero. If this value is incorrect, the
I/O procedure must correct it.

If the application passed an MMIOINFO structure to mmioOpen, the return value is returned in the
wErrorRet member.

 MMIOM_READ

MMIOM_READ
lParam1 = (LPARAM) lBuffer // see below
lParam2 = (LPARAM) cbRead // number of bytes to read from file

Sent to an I/O procedure by the mmioRead function to request that a specified number of bytes be
read from an open file.

· Returns the number of bytes actually read from the file. If no more bytes can be read, the return
value is 0. If there is an error, the return value is - 1.

lBuffer
Address of the buffer to be filled with data read from the file.

The I/O procedure is responsible for updating the lDiskOffset member of the MMIOINFO structure to
reflect the new file position after the read operation.

 MMIOM_RENAME

MMIOM_RENAME
lParam1 = (LPARAM) lpszOldFilename
lParam2 = (LPARAM) lpszNewFilename

Sent to an I/O procedure by the mmioRename function to request that the specified file be renamed.

· If the file is renamed successfully, the return value is zero. If the specified file was not found, the
return value is MMIOERR_FILENOTFOUND.

lpszOldFilename
Address of a string containing the filename of the file to rename.

lpszNewFilename
Address of a string containing the new filename.

 MMIOM_SEEK

MMIOM_SEEK
lParam1 = (LPARAM) lNewFilePos
lParam2 = (LPARAM) lChangeFlag

Sent to an I/O procedure by the mmioSeek function to request that the current file position be moved.

· Returns the new file position. If there is an error, the return value is - 1.
lNewFilePos

New file position. The meaning of this value is dependent on the flag specified in lChangeFlag.
lChangeFlag

Flag specifying how the file position is changed. The following values are defined:
SEEK_CUR

Move the file position to be lNewFilePos bytes from the current position. NewFilePos can be
positive or negative.

SEEK_END
Move the file position to be lNewFilePos bytes from the end of the file.

SEEK_SET
Move the file position to be lNewFilePos bytes from the beginning of the file.

The I/O procedure is responsible for maintaining the current file position in the lDiskOffset member of
the MMIOINFO structure.

 MMIOM_WRITE

MMIOM_WRITE
lParam1 = (LPARAM) lpBuffer // see below
lParam2 = (LPARAM) cbWrite // number of bytes to write to file

Sent to an I/O procedure by the mmioWrite function to request that data be written to an open file.

· Returns the number of bytes actually written to the file. If there is an error, the return value is - 1.
lpBuffer

Address of a buffer containing the data to write to the file.

The I/O procedure is responsible for updating the lDiskOffset member of the MMIOINFO structure to
reflect the new file position after the write operation.

 MMIOM_WRITEFLUSH

MMIOM_WRITEFLUSH
lParam1 = (LPARAM) lpBuffer // see below
lParam2 = (LPARAM) cbWrite // number of bytes to write to file

Sent to an I/O procedure by the mmioWrite function to request that data be written to an open file and
that any internal buffers used by the I/O procedure be flushed to disk.

· Returns the number of bytes actually written to the file. If there is an error, the return value is - 1.
lpBuffer

Address of a buffer containing the data to write to the file.

The I/O procedure is responsible for updating the lDiskOffset member of the MMIOINFO structure to
reflect the new file position after the write operation.

This message is equivalent to the MMIOM_WRITE message except that it requests that the I/O
procedure flush its internal buffers, if any. Unless an I/O procedure performs internal buffering, this
message can be handled exactly like the MMIOM_WRITE message.

 Multimedia Timers

Multimedia timer services allow applications to schedule timer events with the greatest resolution (or
accuracy) possible for the hardware platform. These multimedia timer services allow you to schedule
timer events at a higher resolution than through other timer services.

The multimedia timer services are useful for applications that demand high-resolution timing. For
example, a MIDI sequencer requires a high-resolution timer because it must maintain the pace of MIDI
events within a resolution of 1 millisecond.

Applications that do not use high-resolution timing should use the SetTimer function instead of
multimedia timer services. The timer services provided by SetTimer post WM_TIMER messages to a
message queue; the multimedia timer services call a callback function.

The multimedia timer services allow an application to schedule periodic timer events ¾ that is, the
application can request and receive timer messages at application-specified intervals.

 Obtaining the System Time

Typically, before an application begins using the multimedia timer services, it retrieves the current
system time. The system time is the time, in milliseconds, since the Microsoft Windows operating
system was started. You can use the timeGetTime or timeGetSystemTime function to retrieve the
system time. These two functions are very similar: timeGetTime returns the system time, and
timeGetSystemTime fills an MMTIME structure with the system time.

 Timer Resolution

You can use the timeGetDevCaps function to determine the minimum and maximum timer resolutions
supported by the timer services. This function fills the wPeriodMin and wPeriodMax members of the
TIMECAPS structure with the minimum and maximum resolutions. This range can vary across
computers and Windows platforms.

After you determine the minimum and maximum available timer resolutions, you must establish the
minimum resolution you want your application to use. Use the timeBeginPeriod and timeEndPeriod
functions to set and clear this resolution. You must match each call to timeBeginPeriod with a call to
timeEndPeriod, specifying the same minimum resolution in both calls. An application can make
multiple timeBeginPeriod calls, as long as each call is matched with a call to timeEndPeriod.

In both functions, the uPeriod parameter indicates the minimum timer resolution, in milliseconds. You
can specify any timer resolution value within the range supported by the timer.

 Timer Event Operations

After you have established your application's timer resolution, you can start timer events by using the
timeSetEvent function. This function returns a timer identifier that can be used to stop or identify timer
events. One of the function's parameters is the address of a TimeProc callback function that is called
when the timer event takes place.

There are two types of timer events: single and periodic. A single timer event occurs once, after a
specified number of milliseconds. A periodic timer event occurs every time a specified number of
milliseconds elapses. The interval between periodic events is called an event delay. Periodic timer
events with an event delay of 10 milliseconds or less consume a significant portion of CPU resources.

The relationship between the resolution of a timer event and the length of the event delay is important
in timer events. For example, if you specify a resolution of 5 and an event delay of 100, the timer
services notify the callback function after an interval ranging from 95 to 105 milliseconds.

You can cancel an active timer event at any time by using the timeKillEvent function. Be sure to
cancel any outstanding timers before freeing the memory containing the callback function.

Using Multimedia Timers
This section contains examples demonstrating how to perform the following tasks:

· Obtain and set the timer resolution.
· Start a single timer event.
· Write a timer callback function.
· Cancel a timer event.

 Obtaining and Setting Timer Resolution

The following example calls the timeGetDevCaps function to determine the minimum and maximum
timer resolutions supported by the timer services. Before it sets up any timer events, the example
establishes the minimum timer resolution by using the timeBeginPeriod function.

#define TARGET_RESOLUTION 1 // 1-millisecond target resolution

TIMECAPS tc;
UINT wTimerRes;

if (timeGetDevCaps(&tc, sizeof(TIMECAPS)) != TIMERR_NOERROR) {
 // Error; application can't continue.
}

wTimerRes = min(max(tc.wPeriodMin, TARGET_RESOLUTION), tc.wPeriodMax);
timeBeginPeriod(wTimerRes);

 Starting a Single Timer Event

To start a single timer event, an application must specify the amount of time before the callback occurs,
the resolution, the address of the callback function, and the user data to supply with the callback
function. An application can use a function like the following to start a single timer event.

UINT SetTimerCallback(NPSEQ npSeq, // sequencer data
 UINT msInterval) // event interval
{
 npSeq->wTimerID = timeSetEvent(
 msInterval, // delay
 wTimerRes, // resolution (global variable)
 OneShotCallback, // callback function
 (DWORD)npSeq, // user data
 TIME_ONESHOT); // single timer event
 if(! npSeq->wTimerID)
 return ERR_TIMER;
 else
 return ERR_NOERROR;
}

 Writing a Timer Callback Function

The following callback function invalidates the identifier for the single timer event and calls a timer
routine to handle the application-specific tasks.

void FAR PASCAL OneShotTimer(UINT wTimerID, UINT msg,
 DWORD dwUser, DWORD dw1, DWORD dw2)
{
 NPSEQ npSeq; // pointer to sequencer data
 npSeq = (NPSEQ)dwUser;
 npSeq->wTimerID = 0; // invalidate timer ID (no longer in use)
 TimerRoutine(npSeq); // handle tasks
}

 Canceling a Timer Event

The application must cancel any outstanding timers before it frees the memory that contains the
callback function. To cancel a timer event, it might call the following function.

void DestroyTimer(NPSEQ npSeq)
{
 if(npSeq->wTimerID) { // is timer event pending?
 timeKillEvent(npSeq->wTimerID); // cancel the event
 npSeq->wTimerID = 0;
 }
}

 Timer Reference

This section describes the functions and structures associated with multimedia timer services. These
elements are grouped as follows.

Retrieving the System Time

MMTIME
timeGetSystemTime
timeGetTime
Retrieving Timer Information

TIMECAPS
timeGetDevCaps
Time Events

timeKillEvent
TimeProc
timeSetEvent
Time Periods

timeBeginPeriod
timeEndPeriod

 timeBeginPeriod

MMRESULT timeBeginPeriod(UINT uPeriod);

Sets the minimum timer resolution for an application or device driver.

· Returns TIMERR_NOERROR if successful or TIMERR_NOCANDO if the resolution specified in
uPeriod is out of range.

uPeriod
Minimum timer resolution, in milliseconds, for the application or device driver.

Call this function immediately before using timer services, and call the timeEndPeriod function
immediately after you are finished using the timer services.

You must match each call to timeBeginPeriod with a call to timeEndPeriod, specifying the same
minimum resolution in both calls. An application can make multiple timeBeginPeriod calls as long as
each call is matched with a call to timeEndPeriod.

 timeEndPeriod

MMRESULT timeEndPeriod(UINT uPeriod);

Clears a previously set minimum timer resolution.

· Returns TIMERR_NOERROR if successful or TIMERR_NOCANDO if the resolution specified in
uPeriod is out of range.

uPeriod
Minimum timer resolution specified in the previous call to the timeBeginPeriod function.

Call this function immediately after you are finished using timer services.

You must match each call to timeBeginPeriod with a call to timeEndPeriod, specifying the same
minimum resolution in both calls. An application can make multiple timeBeginPeriod calls as long as
each call is matched with a call to timeEndPeriod.

 timeGetDevCaps

MMRESULT timeGetDevCaps(LPTIMECAPS ptc, UINT cbtc);

Queries the timer device to determine its resolution.

· Returns TIMERR_NOERROR if successful or TIMERR_STRUCT if it fails to return the timer device
capabilities.

ptc
Address of a TIMECAPS structure. This structure is filled with information about the resolution of the
timer device.

cbtc
Size, in bytes, of the TIMECAPS structure.

 timeGetSystemTime

MMRESULT timeGetSystemTime(LPMMTIME pmmt, UINT cbmmt);

Retrieves the system time, in milliseconds. The system time is the time elapsed since Windows was
started. This function works very much like the timeGetTime function. See timeGetTime for details of
these functions' operation.

· Returns TIMERR_NOERROR. The system time is returned in the ms member of the MMTIME
structure.

pmmt
Address of an MMTIME structure.

cbmmt
Size, in bytes, of the MMTIME structure.

 timeGetTime

DWORD timeGetTime(VOID);

Retrieves the system time, in milliseconds. The system time is the time elapsed since Windows was
started.

· Returns the system time, in milliseconds.

The only difference between this function and the timeGetSystemTime function is that
timeGetSystemTime uses the MMTIME structure to return the system time. The timeGetTime
function has less overhead than timeGetSystemTime.

Note that the value returned by the timeGetTime function is a DWORD value. The return value wraps
around to 0 every 2^32 milliseconds, which is about 49.71 days.This can cause problems in code that
directly uses the timeGetTime return value in computations, particularly where the value is used to
control code execution. You should always use the difference between two timeGetTime return values
in computations.

Windows NT: The default precision of the timeGetTime function can be five milliseconds or more,
depending on the machine. You can use the timeBeginPeriod and timeEndPeriod functions to
increase the precision of timeGetTime. If you do so, the minimum difference between successive
values returned by timeGetTime can be as large as the minimum period value set using
timeBeginPeriod and timeEndPeriod. Use the QueryPerformanceCounter and
QueryPerformanceFrequency functions to measure short time intervals at a high resolution,

Windows 95: The default precision of the timeGetTime function is 1 millisecond. In other words, the
timeGetTime function can return successive values that differ by just 1 millisecond. This is true no
matter what calls have been made to the timeBeginPeriod and timeEndPeriod functions.

 timeKillEvent

MMRESULT timeKillEvent(UINT uTimerID);

Cancels a specified timer event.

· Returns TIMERR_NOERROR if successful or MMSYSERR_INVALPARAM if the specified timer
event does not exist.

uTimerID
Identifier of the timer event to cancel. This identifier was returned by the timeSetEvent function
when the timer event was set up.

 TimeProc

void CALLBACK TimeProc(UINT uID, UINT uMsg, DWORD dwUser, DWORD dw1,
 DWORD dw2);

Callback function that is called once upon the expiration of a single event or periodically upon the
expiration of periodic events.

TimeProc is a placeholder for the application-defined function name.

uID
Identifier of the timer event. This identifier was returned by the timeSetEvent function when the
timer event was set up.

uMsg
Reserved; do not use.

dwUser
User instance data supplied to the dwUser parameter of timeSetEvent.

dw1 and dw2
Reserved; do not use.

Applications should not call any system-defined functions from inside a callback function, except for
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent,
midiOutShortMsg, midiOutLongMsg, and OutputDebugString.

 timeSetEvent

MMRESULT timeSetEvent(UINT uDelay, UINT uResolution,
 LPTIMECALLBACK lpTimeProc, DWORD dwUser, UINT fuEvent);

Starts a specified timer event. After the event is activated, it calls the specified callback function.

· Returns an identifier for the timer event if successful or an error otherwise. This function returns
NULL if it fails and the timer event was not created. (This identifier is also passed to the callback
function.)

uDelay
Event delay, in milliseconds. If this value is not in the range of the minimum and maximum event
delays supported by the timer, the function returns an error.

uResolution
Resolution of the timer event, in milliseconds. The resolution increases with smaller values; a
resolution of 0 indicates periodic events should occur with the greatest possible accuracy. To reduce
system overhead, however, you should use the maximum value appropriate for your application.

lpTimeProc
Address of a callback function that is called once upon expiration of a single event or periodically
upon expiration of periodic events.

dwUser
User-supplied callback data.

fuEvent
Timer event type. The following values are defined:
TIME_ONESHOT

Event occurs once, after uDelay milliseconds.
TIME_PERIODIC

Event occurs every uDelay milliseconds.

Each call to timeSetEvent for periodic timer events must be matched with a call to the timeKillEvent
function.

 MMTIME

typedef struct mmtime_tag {
 UINT wType;
 union { // start u union
 DWORD ms; // see below
 DWORD sample; // see below
 DWORD cb; // see below
 DWORD ticks; // see below
 struct {
 BYTE hour; // hours
 BYTE min; // minutes
 BYTE sec; // seconds
 BYTE frame; // frames
 BYTE fps; // frames/sec. (24, 25, 29 (30 drop), or 30)
 BYTE dummy; // dummy byte for alignment
 BYTE pad[2] // more padding
 } smpte;
 struct {
 DWORD songptrpos; // song pointer position
 } midi;
 } u;
} MMTIME;

Contains timing information for different types of multimedia data.

wType
Time format. It can be one of the following values:
TIME_BYTES Current byte offset from beginning of the file.
TIME_MIDI MIDI time.
TIME_MS Time in milliseconds.
TIME_SAMPLE
S

Number of waveform-audio samples.

TIME_SMPTE SMPTE (Society of Motion Picture and Television
Engineers) time.

TIME_TICKS Ticks within a MIDI stream.

ms
Number of milliseconds. Used when wType is TIME_MS.

sample
Number of samples. Used when wType is TIME_SAMPLES.

cb
Byte count. Used when wType is TIME_BYTES.

ticks
Ticks in MIDI stream. Used when wType is TIME_TICKS.

smpte
SMPTE time structure. Used when wType is TIME_SMPTE.

midi
MIDI time structure. Used when wType is TIME_MIDI.

 TIMECAPS

typedef struct {
 UINT wPeriodMin; \\ minimum supported resolution
 UINT wPeriodMax; \\ maximum supported resolution
} TIMECAPS;

Contains information about the resolution of the timer.

 Installable Drivers

An installable driver is a Microsoft Windows dynamic-link library (DLL) that provides a standard
interface through which Windows-based applications and DLLs communicate with and manage the
driver. Installable drivers are used most commonly for as multimedia device drivers, but installable
drivers can also be used for other purposes and are particularly useful in situations that require a
standard interface and control of multiple instances.

This chapter describes the general format of installable drivers and defines the installable driver
functions that applications and DLLs use to open and manage installable drivers.

 Installable Driver Format

Every installable driver exports a DriverProc function. This common entry-point function receives
driver messages from the system that direct the driver to carry out actions or provide information. The
system sends driver messages to the DriverProc function when an application or DLL opens or closes
the driver or requests that a message be sent to the driver. The DriverProc function either processes
the message or passes the message to the default message handler, the DefDriverProc function. In
either case, DriverProc must return a value indicating whether the requested action was successful.

 Driver Messages

Each driver message consists of a message identifier and two 32-bit parameters. The message
identifier is a unique value that the DriverProc function checks to determine which action to carry out.
The meaning of the message parameters depends on the message. The parameters may represent
values or addresses. In many cases, the parameters are not used and are set to zero.

Driver messages can be standard or custom. Window sends standard driver messages, such as
DRV_OPEN, DRV_CLOSE, and DRV_CONFIGURE, to an installable driver in response to a request to
open, close, or configure the driver. The standard messages direct the installable driver to load or
unload its resources, enable or disable its operation, open or close a driver instance, and display a
configuration dialog box. Some standard messages, such as DRV_POWER and DRV_EXITSESSION,
notify the driver of system-wide events that affect the operation of the driver or any related hardware.

Applications and DLLs send custom driver messages to direct an installable driver to carry out driver-
specific actions. Installable drivers that support custom messages must include appropriate processing
in the DriverProc function. To prevent conflict between custom and standard driver messages, custom
message identifiers must have values ranging from DRV_RESERVED to DRV_USER. Custom
messages passed to the DefDriverProc function are ignored.

 Driver Instances

Windows allows for multiples instances of an installable driver. The system creates an instance of the
driver each time the driver is opened and destroys the instance when the driver is closed. Driver
instances are especially useful for installable drivers that support multiple devices or that are opened
by multiple applications or by the same application multiple times.

To help the driver keep track of the instances, the system sends a driver instance handle with each
driver message after the instance has been created. Because this handle uniquely identifies the
instance, installable drivers often associate the handle with memory and other resources that they have
specifically allocated for the instance.

When the first instance is opened, the system sends the DRV_LOAD, DRV_ENABLE, and DRV_OPEN
messages to the driver in that order. The DRV_LOAD and DRV_ENABLE messages notify the driver
that it is now in memory and is enabled for operation. The DRV_OPEN message identifies the instance
handle and may include configuration information for the instance. On each subsequent opening of an
instance of the same driver, the system sends only a DRV_OPEN message.

When processing a DRV_LOAD message, a driver typically reads configuration settings from the
registry, configures the driver and any associated hardware, and allocates memory for use by all
instances of the driver. If a driver cannot complete the configuration or allocate memory, it returns zero
to direct the system to immediately remove the driver from memory and prevent any subsequent
messages from being sent. When processing the DRV_ENABLE message, the driver prepares the
hardware to receive and process input and output (I/O) requests. The preparation may include
installing interrupt handlers.

When processing the DRV_OPEN message, the driver allocates memory or resources required by the
given instance of the driver and then returns a nonzero value. The system uses this nonzero value as
the driver identifier in subsequent driver messages for the instance. The driver can use this identifier for
any purpose. For example, some drivers use a memory handle for the identifier to gain quick access to
memory containing information about the given instance.

Many installable drivers process the second parameter of the DRV_OPEN message, giving the system
and applications the means to send additional information to the driver when opening an instance. The
parameter can be a single value or an address of a structure containing a set of values. When
processing DRV_OPEN, the driver checks the parameter to determine whether it is a value and uses
the given values, if any, to complete the creation of the instance.

The system sends a DRV_CLOSE message each time an instance is closed. The instance handle sent
with the message identifies which instance to close. When the last remaining instance is closed, the
system sends the DRV_CLOSE, DRV_DISABLE, and DRV_FREE messages in that order. The
DRV_CLOSE message directs the driver to close the instance, and the DRV_DISABLE and
DRV_FREE messages notify the driver that it is now disabled and will be immediately freed from
memory.

When processing the DRV_CLOSE message, the driver typically frees any memory or resources
allocated for the instance. When processing the DRV_DISABLE message, the driver places any
hardware in an inactive state, which may include the removal of interrupt handlers. When processing
the DRV_FREE message, the driver frees any memory or resources that are still allocated.

Installable drivers are not required to support multiple instances. A driver can prevent any instance from
being created by returning zero for the DRV_OPEN message.

 Configuration

An installable driver can let users choose configuration settings for the driver and associated hardware
by displaying a configuration dialog box when processing the DRV_CONFIGURE message. The driver
is responsible for creating and managing the dialog box, processing any user input from the dialog box,
and changing the configuration of the driver or hardware as requested by the user. The driver must
provide a separate dialog box procedure to process window messages for the dialog box and a dialog
box template to define the appearance and content of the dialog box.

Before receiving the DRV_CONFIGURE message, a driver receives the DRV_QUERYCONFIGURE
message. The driver must return a nonzero value to the query to ensure receipt of the subsequent
DRV_CONFIGURE message.

When initializing the configuration dialog box, the driver typically retrieves configuration information
from the registry. To help locate this information, the DRV_CONFIGURE message usually includes the
address of a DRVCONFIGINFO structure that contains the names of the registry key and value
associated with the driver. If the user requests changes to the configuration, the driver should update
the configuration information in the registry.

 Installation

An installable driver can carry out driver-specific installation tasks when processing the DRV_INSTALL
and DRV_REMOVE messages. An installation application, such as a Control Panel application, sends
the messages to the driver when installing or removing the driver, respectively.

When processing the DRV_INSTALL message, the driver typically verifies that the required hardware is
present and then displays the configuration dialog box to let the user choose the initial configuration
settings for the driver and associated hardware. The message includes the address of a
DRVCONFIGINFO structure that contains the names of the registry key and value associated with the
driver; the driver checks the registry value for default configuration information. Finally, the driver also
creates any additional registry keys and values needed for successful operation.

When processing the DRV_REMOVE message, the driver removes any registry keys and values it
may have created.

 Callback Functions

Installable drivers can notify the application, window, or task that opened the given instance about
events by using the DriverCallback function. This function gives the driver the means to return
information to an application or DLL while continuing to process a request.

If a driver supports callback functions, the application or DLL that opens the instance must supply a
value this is either the address of a callback function, a window handle, or a task handle. This value
and a flag identifying the type of the value are typically passed in a structure pointed to by the second
parameter of the DRV_OPEN message.

 Installable Drive Module-Definition File

The module-definition (.DEF) file of an installable driver names the driver, exports the DriverProc
function, and defines a driver description. The following example shows a typical module-definition file
for an installable driver:

LIBRARY OSCI
DESCRIPTION 'FREQ,AMPL:Oscilloscope frequency and amplitude drivers.'
EXPORTS
 DriverProc

Some installation applications may open the driver and retrieve the description line to use when
installing the driver. To remain compatible with these installation applications, the description line
should have this form:

DESCRIPTION alias[,alias]...:text

The alias specifies a unique name for the driver that applications can use to open the driver. The alias
also serves as the value name associated with the driver in the registry. Multiple aliases are separated
by commas. The text describes the purpose of the driver.

 Installable Driver Functions and Messages

You can open an installable driver from an application by using the OpenDriver function. This function
creates an instance of the driver, loading the driver into memory if no other instance exists, and returns
the handle of the new instance. When opening an installable driver, you must supply either the full path
of the driver or the names of the registry key and value associated with the driver.

Once a driver is open, you can direct it to carry out tasks by using the SendDriverMessage function to
send driver messages to the driver. For example, you can direct the driver to display its configuration
dialog box by sending the DRV_CONFIGURE message. Before sending this message, you must
determine whether the driver has a configuration dialog box by sending the DRV_QUERYCONFIGURE
message and checking for a nonzero return value. Many drivers provide a set of custom messages that
you can send to direct the operations of the driver.

If you need special access to an installable driver, such as access to its resources, you can retrieve the
module handle of the driver by using the GetDriverModuleHandle function.

When you no longer need the installable driver, you can close it by using the CloseDriver function.

You can use the installable driver functions and messages to open and manage any installable driver.
However, the recommended course of action for opening and managing multimedia devices is to first
use standard services (such as waveOutOpen, waveOutMessage, and waveOutClose for waveform
output devices), if they exist. If standard services do not exist for a multimedia driver, then open and
manage the driver using the installable driver functions and messages.

Note The SendDriverMessage and GetDriverModuleHandle functions are the preferred functions
to use to send messages to a driver and to obtain a handle to a module instance. The older
DrvSendMessage and DrvGetModuleHandle functions, however, have been included to maintain
compatibility with previous versions of the Windows operating system.

 Using Installable Drivers

You use installable drivers to give applications or DLLs a standard way to access a device or a set of
useful routines. The following sections show how to create an installable driver by using a DriverProc
function and how to open an installable driver and direct it to carry out useful tasks.

 Creating a DriverProc Function

You create a DriverProc function in much the same way as you create a window procedure. The
function consists of a switch statement, and each case processes a given driver message, returning a
value indicating success or failure. The DriverProc function has the following form:

LONG DriverProc(DWORD dwDriverId, HDRVR hdrvr, UINT msg,
 LONG lParam1, LONG lParam2)
{
 DWORD dwRes = 0L;

 switch (msg) {
 case DRV_LOAD:
 // Sent when the driver is loaded. This is always
 // the first message received by a driver.
 dwRes = 1L; // returns 0L to fail
 break;

 case DRV_FREE:
 // Sent when the driver is about to be discarded.
 // This is the last message a driver receives
 // before it is freed.
 dwRes = 1L; // return value ignored
 break;

 case DRV_OPEN:
 // Sent when the driver is opened.
 dwRes = 1L; // returns 0L to fail
 break; // value subsequently used
 // for dwDriverId.

 case DRV_CLOSE:
 // Sent when the driver is closed. Drivers are
 // unloaded when the open count reaches zero.
 dwRes = 1L; // returns 0L to fail
 break;

 case DRV_ENABLE:
 // Sent when the driver is loaded or reloaded and
 // when Windows is enabled. Install interrupt
 // handlers and initialize hardware. Expect the
 // driver to be in memory only between the enable
 // and disable messages.
 dwRes = 1L; // return value ignored
 break;

 case DRV_DISABLE:
 // Sent before the driver is freed or when Windows
 // is disabled. Remove interrupt handlers and place
 // hardware in an inactive state.
 dwRes = 1L; // return value ignored
 break;

 case DRV_INSTALL:
 // Sent when the driver is installed.
 dwRes = DRVCNF_OK; // Can also return
 break; // DRVCNF_CANCEL
 // and DRV_RESTART

 case DRV_REMOVE:
 // Sent when the driver is removed.

 dwRes = 1L; // return value ignored
 break;

 case DRV_QUERYCONFIGURE:
 // Sent to determine if the driver can be
 // configured.
 dwRes = 0L; // Zero indicates configuration
 break; // NOT supported

 case DRV_CONFIGURE:
 // Sent to display the configuration
 // dialog box for the driver.
 dwRes = DRVCNF_OK; // Can also return
 break; // DRVCNF_CANCEL
 // and DRVCNF_RESTART

 default:
 // Process any other messages.
 return DefDriverProc (dwDriverId, hdrvr,
 msg, lParam1, lParam2);

 }
 return dwRes;
}

 Configuring an Installable Driver

To direct an installable driver to carry out useful tasks, you must open the driver by using the
OpenDriver function and send it messages by using the SendDriverMessage function. The following
example shows how to direct the driver to display its configuration dialog box.

LONG MyConfigureDriver()
{
 HDRVR hdrvr;
 DRVCONFIGINFO dci;
 LONG lRes;

 // Open the driver (no additional parameters needed this time).
 if ((hdrvr = OpenDriver(L"\\samples\\sample.drv", 0, 0)) == 0) {
 // Can't open the driver
 return DRVCNF_CANCEL;
 }

 // Make sure driver has a configuration dialog box.
 if (SendDriverMessage(hdrvr, DRV_QUERYCONFIGURE, 0, 0) != 0) {
 // Set the DRVCONFIGINFO structure and send the message
 dci.dwDCISize = sizeof (dci);
 dci.lpszDCISectionName = (LPWSTR)0;
 dci.lpszDCIAliasName = (LPWSTR)0;
 lRes = SendDriverMessage(hdrvr, DRV_CONFIGURE, 0, (LONG)&dci);
 }

 // Close the driver (no additional parameters needed this time).
 CloseDriver(hdrvr, 0, 0);

 return lRes;
}

 Installable Driver Reference

Thie functions and messages associated with installable drivers are grouped as follows.

Loading and Unloading Drivers

OpenDriver
SendDriverMessage
GetDriverModuleHandle
CloseDriver

DRV_LOAD
DRV_ENABLE
DRV_OPEN
DRV_CLOSE
DRV_DISABLE
DRV_FREE
Configuring a Driver

DRV_CONFIGURE
DRV_QUERYCONFIGURE
DRVCONFIGINFO
Installing a Driver

DRV_INSTALL
DRV_REMOVE
Driver Functions

DefDriverProc
DriverProc
DriverCallback

 Installable Driver Functions

The functions in this sectioncan be used in an application to open, close, and communicate with an
installable driver.

 CloseDriver

LRESULT CloseDriver(HDRVR hdrvr, LONG lParam1, LONG lParam2);

Closes an installable driver.

· Returns nonzero if successful or zero otherwise.
hdrvr

Handle of an installable driver instance. The handle must have been previously created by using the
OpenDriver function.

lParam1 and lParam2
32-bit driver-specific data.

The function passes the lParam1 and lParam2 parameters to the DriverProc function of the installable
driver.

 DrvGetModuleHandle

WINMMAPI HMODULE WINAPI DrvGetModuleHandle(HDRVR hDriver);

Retrieves the instance handle of the module that contains the installable driver.

· Returns an instance handle of the driver module if successful or NULL otherwise.
hDriver

Handle of the installable driver instance. The handle must have been previously created by using the
OpenDriver function.

This function is provided for compatibility with previous versions of Windows.

 DrvSendMessage

WINMMAPI LRESULT WINAPI DrvSendMessage(HDRVR hdrvr, UINT uMsg,
 LPARAM lParam1, LPARAM lParam2);

Sends the specified message to the insntallable driver.

· Returns nonzero if successful or zero otherwise.
hdrvr

Handle of the installable driver instance. The handle must have been previously created by using the
OpenDriver function.

uMsg
Driver message value. It can be a custom message value or one of these standard message values:
DRV_QUERYCONFIG
URE

Queries an installable driver about whether it
supports the DRV_CONFIGURE message
and can display a configuration dialog box.

DRV_CONFIGURE Notifies an installable driver that it should
display a configuration dialog box. (This
message should be sent only if the driver
returns a nonzero value when the
DRV_QUERYCONFIGURE message is
processed.)

DRV_INSTALL Notifies an installable driver that it has been
successfully installed.

DRV_REMOVE Notifies an installable driver that it is about to
be removed from the system.

lParam1 and lParam2
Message parameters containing 32-bit information specific to the message value.

This function is provided for compatibility with previous versions of Windows.

 GetDriverModuleHandle

HMODULE GetDriverModuleHandle(HDRVR hdrvr);

Retrieves the instance handle of the module that contains the installable driver.

· Returns an instance handle of the driver module if successful or NULL otherwise.
hdrvr

Handle of the installable driver instance. The handle must have been previously created by using the
OpenDriver function.

This function is specific to Windows 95.

 OpenDriver

HDRVR OpenDriver(LPCWSTR lpDriverName, LPCWSTR lpSectionName,
 LONG lParam);

Opens an instance of an installable driver and initializes the instance using either the driver's default
settings or a driver-specific value.

· Returns the handle of the installable driver instance if successful or NULL otherwise.
lpDriverName

Address of a null-terminated, wide-character string that specifies the filename of an installable driver
or the name of a registry value associated with the installable driver. (This value must have been
previously set when the driver was installed.)

lpSectionName
Address of a null-terminated, wide-character string that specifies the name of the registry key
containing the registry value given by the lpDriverName parameter. If lpSectionName is NULL, the
registry key is assumed to be Drivers32.

lParam
32-bit driver-specific value. This value is passed as the lParam2 parameter to the DriverProc
function of the installable driver.

 SendDriverMessage

LRESULT SendDriverMessage(HDRVR hdrvr, UINT msg, LONG lParam1,
 LONG lParam2);

Sends the specified message to the installable driver.

· Returns nonzero if successful or zero otherwise.
hdrvr

Handle of the installable driver instance. The handle must been previously created by using the
OpenDriver function.

msg
Driver message value. It can be a custom message value or one of these standard message values:
DRV_QUERYCONFIG
URE

Queries an installable driver about whether it
supports the DRV_CONFIGURE message
and can display a configuration dialog box.

DRV_CONFIGURE Notifies an installable driver that it should
display a configuration dialog box. (This
message should only be sent if the driver
returns a nonzero value when the
DRV_QUERYCONFIGURE message is
processed.)

DRV_INSTALL Notifies an installable driver that it has been
successfully installed.

DRV_REMOVE Notifies an installable driver that it is about to
be removed from the system.

lParam1 and lParam2
32-bit message-dependent information.

This function is specific to Windows 95.

 Driver Functions

The functions is this sectiondescribe the entry point, default processing, and callback functions to use
in an installable driver.

 DefDriverProc

LONG DefDriverProc(DWORD dwDriverId, HDRVR hdrvr, UINT msg,
 LONG lParam1, LONG lParam2);

Provides default processing for any messages not processed by an installable driver. This function is
intended to be used only within the DriverProc function of an installable driver.

· Returns nonzero if successful or zero otherwise.
dwDriverId

Identifier of the installable driver.
hdrvr

Handle of the installable driver instance.
msg

Driver message value.
lParam1 and lParam2

32-bit message-dependent information.

 DriverProc

LONG DriverProc(DWORD dwDriverId, HDRVR hdrvr, UINT msg,
 LONG lParam1, LONG lParam2);

Processes driver messages for the installable driver. DriverProc is a driver-supplied function.

· Returns nonzero if successful or zero otherwise.
dwDriverId

Identifier of the installable driver.
hdrvr

Handle of the installable driver instance. Each instance of the installable driver has a unique handle.
msg

Driver message value. It can be a custom value or one of these standard values:
DRV_CLOSE Notifies the driver that it should decrement its

usage count and unload the driver if the count
is zero.

DRV_CONFIGURE Notifies the driver that it should display a
configuration dialog box. This message is
sent only if the driver returns a nonzero value
when processing the
DRV_QUERYCONFIGURE message.

DRV_DISABLE Notifies the driver that its allocated memory is
about to be freed.

DRV_ENABLE Notifies the driver that it has been loaded or
reloaded or that Windows has been enabled.

DRV_FREE Notifies the driver that it will be discarded.
DRV_INSTALL Notifies the driver that it has been

successfully installed.
DRV_LOAD Notifies the driver that it has been

successfully loaded.
DRV_OPEN Notifies the driver that it is about to be

opened.
DRV_POWER Notifies the driver that the device's power

source is about to be turned on or off.
DRV_QUERYCONFIGU
RE

Directs the driver to specify whether it
supports the DRV_CONFIGURE message.

DRV_REMOVE Notifies the driver that it is about to be
removed from the system.

lParam1 and lParam2
32-bit message-specific value.

When msg is DRV_OPEN, lParam1 is the string following the driver filename from the SYSTEM.INI file
and lParam2 is the value given as the lParam parameter in a call to the OpenDriver function.

When msg is DRV_CLOSE, lParam1 and lParam2 are the same values as the lParam1 and lParam2
parameters in a call to the CloseDriver function.

 DriverCallback

BOOLEAN DriverCallback(DWORD dwCallBack, DWORD dwFlags, HDRVR hdrvr,
 DWORD msg, DWORD dwUser, DWORD dwParam1, DWORD dwParam2);

Calls a callback function, sends a message to a window, or unblocks a thread. The action depends on
the value of the notification flag. This function is intended to be used only within the DriverProc
function of an installable driver.

· Returns TRUE if successful or FALSE if a parameter is invalid or the task's message queue is full.
dwCallBack

Address of the callback function, a window handle, or a task handle, depending on the flag specified
in the dwFlags parameter.

dwFlags
Notification flags. It can be one of these values:
DCB_NOSWITC
H

The system is prevented from switching stacks. This
value is only used if enough stack space for the
callback function is known to exist.

DCB_FUNCTIO
N

The dwCallback parameter is the address of an
application-defined callback function. The system
sends the callback message to the callback function.

DCB_WINDOW The dwCallback parameter is the handle of an
application-defined window. The system sends
subsequent notifications to the window.

DCB_TASK The dwCallback parameter is the handle of an
application or task. The system sends subsequent
notifications to the application or task.

hdrvr
Handle of the installable driver instance.

msg
Message value.

dwUser
32-bit user-instance data supplied by the application when the device was opened.

dwParam1 and dwParam2
32-bit message-dependent parameter.

The client specifies how to notify it when the device is opened. The DCB_FUNCTION and
DCB_WINDOW flags are equivalent to the high-order word of the corresponding flags
CALLBACK_FUNCTION and CALLBACK_WINDOW specified in the lParam2 parameter of the
DRV_OPEN message when the device was opened.

If notification is accomplished with a callback function, hdrvr, msg, dwUser, dwParam1, and dwParam2
are passed to the callback function. If notification is accomplished by means of a window, only msg,
hdrvr, and dwParam1 are passed to the window.

 DRV_CLOSE

Directs the driver to close the given instance. If no other instances are open, the driver should prepare
for subsequent release from memory.

· Returns nonzero if successful or zero otherwise.
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the
DRV_OPEN message.

hdrvr
Handle of the installable driver instance.

lParam1
32-bit value specified as the lParam1 parameter in a call to the DriverClose function.

lParam2
32-bit value specified as the lParam2 parameter in a call to the DriverClose function.

 DRV_CONFIGURE

Directs the installable driver to display its configuration dialog box and let the user specify new settings
for the given installable driver instance.

· Returns one of these values:
DRVCNF_OK The configuration is successful; no further action is

required.
DRVCNF_CANC
EL

The user canceled the dialog box; no further action is
required.

DRVCNF_RESTA
RT

The configuration is successful, but the changes do
not take effect until the system is restarted.

dwDriverId
Identifier of the installable driver. This is the same value previously returned by the driver from the
DRV_OPEN message.

hdrvr
Handle of the installable driver instance.

lParam1
Handle of the parent window. This window is used as the parent window for the configuration dialog
box.

lParam2
Address of a DRVCONFIGINFO structure or NULL. If the structure is given, it contains the names of
the registry key and value associated with the driver.

Some installable drivers append configuration information to the value assigned to the registry value
associated with the driver.

The DRV_CANCEL, DRV_OK, and DRV_RESTART return values are obsolete; they have been
replaced by DRVCNF_CANCEL, DRVCNF_OK, and DRVCNF_RESTART, respectively.

 DRV_DISABLE

Disables the driver. The driver should place the corresponding device, if any, in an inactive state and
terminate any callback functions or threads.

· No return value.
hdrvr

Handle of the installable driver instance.

The dwDriverId, lParam1, and lParam2 parameters are not used.

After disabling the driver, the system typically sends the driver a DRV_FREE message before removing
the driver from memory.

 DRV_ENABLE

Enables the driver. The driver should initialize any variables and locate devices with the input and
output (I/O) interface.

· No return value.
hdrvr

Handle of the installable driver instance.

The dwDriverId, lParam1, and lParam2 parameters are not used.

Drivers are considered enabled from the time they receive this message until they are disabled by
using the DRV_DISABLE message.

 DRV_EXITSESSION

Notifies the driver that Windows is preparing to exit. The driver should prepare for termination.

· No return value.
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the
DRV_OPEN message.

hdrvr
Handle of the installable driver instance.

The lParam1 and lParam2 parameters are not used.

 DRV_FREE

Notifies the driver that it is being removed from memory. The driver should free any memory and other
system resources that it has allocated.

· No return value.
hdrvr

Handle of the installable driver instance.

The dwDriverId, lParam1, and lParam2 parameters are not used.

The DRV_FREE message is always the last message that a device driver receives.

 DRV_INSTALL

Notifies the driver that is it being installed. The driver should create and initialize any needed registry
keys and values and verify that the supporting drivers and hardware are installed and properly
configured.

· Returns one of these values:
DRVCNF_OK The installation is successful; no further action is

required.
DRVCNF_CANCE
L

The installation failed..

DRVCNF_RESTA
RT

The installation is successful, but it does not take
effect until the system is restarted.

dwDriverId
Identifier of the installable driver. This is the same value previously returned by the driver from the
DRV_OPEN message.

hdrvr
Handle of the installable driver instance.

lParam2
Address of a DRVCONFIGINFO structure or NULL. If a structure is given, it contains the names of
the registry key and value associated with the driver.

The lParam1 parameter is not used.

Some installable drivers append configuration information to the value assigned to the registry value
associated with the driver.

 DRV_LOAD

Notifies the driver that it has been loaded. The driver should make sure that any hardware and
supporting drivers it needs to function properly are present.

· Returns nonzero if successful or zero otherwise.

The hdrvr parameter is always zero. The dwDriverId, lParam1, and lParam2 parameters are not used.

The DRV_LOAD message is always the first message that a device driver receives.

 DRV_OPEN

Directs the driver to open an new instance.

· Returns a nonzero value if successful or zero otherwise.
dwDriverId

Identifier of the installable driver.
hdrvr

Handle of the installable driver instance.
lParam1

Address of a null-terminated, wide-character string that specifies configuration information used to
open the instance. If no configuration information is available, either this string is empty or the
parameter is NULL.

lParam2
32-bit driver-specific data.

If the driver returns a nonzero value, the system uses that value as the driver identifier (the dwDriverId
parameter) in messages it subsequently sends to the driver instance. The driver can return any type of
value as the identifier. For example, some drivers return memory addresses that point to instance-
specific information. Using this method of specifying identifiers for a driver instance gives the drivers
ready access to the information while they are processing messages.

 DRV_POWER

Notifies the driver that power to the device is being turned on or off.

· Returns nonzero if successful or zero otherwise.
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the
DRV_OPEN message.

hdrvr
Handle of the installable driver instance.

The lParam1 and lParam2 parameters are not used.

 DRV_QUERYCONFIGURE

Directs the driver to specify whether it supports custom configuration.

· Returns a nonzero value if the driver can display a configuration dialog box or zero otherwise.
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the
DRV_OPEN message.

hdrvr
Handle of the installable driver instance.

The lParam1 and lParam2 parameters are not used.

 DRV_REMOVE

Notifies the driver that it is about to be removed from the system. When a driver receives this message,
it should remove any sections it created in the registry.

· No return value.
dwDriverId

Identifier of the installable driver. This is the same value previously returned by the driver from the
DRV_OPEN message.

hdrvr
Handle of the installable driver instance.

The lParam1 and lParam2 parameters are not used.

 DRVCONFIGINFO

typedef struct tagDRVCONFIGINFO {
 DWORD dwDCISize; // see below
 LPCWSTR lpszDCISectionName; // see below
 LPCWSTR lpszDCIAliasName; // see below
} DRVCONFIGINFO;

Contains the registry key and value names associated with the installable driver.

dwDCISize
Size of the structure, in bytes.

lpszDCISectionName
Address of a null-terminated, wide-character string specifying the name of the registry key
associated with the driver.

lpszDCIAliasName
Address of a null-terminated, wide-character string specifying the name of the registry value
associated with the driver.

 Multimedia PC Specifications

The Multimedia PC (MPC) Marketing Council has developed two specifications to encourage the
adoption of multimedia capabilities. The Level 1 specification, developed in 1990, provides a baseline
definition of multimedia computing in functionality, hardware components, and software components.
The Level 2 specification, issued in 1993, builds on the first specification and focuses on enhanced
multimedia capabilities since the first specification was issued.

This appendix summarizes the specifications. For more information or complete specifications, contact
the MPC Marketing Council at the following address:

Multimedia PC Marketing Council
1730 M Street NW, Suite 707
Washington, DC 20036

 Level 1 Specification

The Level 1 specification was developed to encourage the adoption of basic multimedia capabilities at
a minimum performance level. The most common multimedia components available to the marketplace
when the Level 1 specification was issued included several compact disc - read-only memory (CD-
ROM) drives that provided data at sustained transfer rates varying from 90 to 150 kilobytes per second,
8-bit sound cards, and 16-color and 256-color (SVGA) video adapters.

 Level 1 System Resources

The minimum configuration for a PC to satisfy the Level 1 specification includes the following items:

· A 386SX microprocessor with 2 megabytes (MB) of random-access memory (RAM)
· A 3.5-inch high-density floppy disk drive
· A hard disk drive with at least 30 MB of disk space
· A color monitor with a display resolution of 640 by 480 pixels with 16 colors
· System software that offers binary compatibility with the Microsoft Windows operating system

version 3.0

 Level 1 Optical Storage

The minimum performance optical storage device is a CD-ROM drive that meets the following criteria:

· A sustained data transfer rate of 150 kilobytes per second
· A CPU bandwidth usage of 40 percent or less when maintaining a sustained data transfer rate of

150 kilobytes per second
· An average seek time of 1 second or less

 Level 1 Audio Requirements

The audio subsystem of a PC satisfying the Level 1 specification includes the following items:

· An 8-bit digital-to-analog converter (DAC) capable of processing waveform-audio files recorded at
22.05 and 11.025 kHz sampling rates

· An 8-bit analog-to-digital converter (ADC) capable of recording waveform-audio files at the sample
rate of 11.025 kHz through an external source, such as a microphone

· Internal synthesizer capabilities with four or nine multivoice, multitimbral capacity, and two
simultaneous percussive notes

 Level 2 Specification

The Level 2 specification was developed to encourage the adoption of enhanced multimedia
capabilities. This specification builds on the requirements set in the Level 1 specification and is a
superset of it. The Level 2 specification defines the minimum system functionality for enhanced
multimedia capabilities. It is not a recommendation for a system configuration.

 Level 2 System Resources

The minimum configuration for a PC to satisfy the Level 2 specification includes the following items:

· A 25 Mhz 486SX microprocessor with 4 MB of RAM
· A 3.5-inch high-density floppy disk drive
· A hard disk drive with at least 160 MB of disk space
· A 101-key keyboard with a standard DIN connector or one that provides identical functionality by

using key combinations
· A two-button mouse with a serial or bus connector
· A MIDI (Musical Instrument Digital Interface) port that includes MIDI Out, MIDI In, and MIDI Thru,

and that has interrupt support for input and FIFO transfer
· An IBM-style analog or digital joystick (game) port
· A color monitor with a display resolution of 640 by 480 pixels with 65,536 colors
· System software that offers binary compatibility with Windows 3.0 or Windows 3.1

In addition, the recommended performance goal for the video adapter (VGA+) is 1.2 million pixels per
second using 40 percent or less of the CPU bandwidth. The device-independent bitmaps (DIBs) used
to measure this performance goal have color depths of 1, 4, and 8 bits, and can use run-length
encoding or be unencoded. A second method of measuring the video performance is to deliver 256-
color, 320 by 240 pixel digital-video images at 15 frames per second.

 Level 2 Optical Storage

The minimum performance optical storage device is a double-speed CD-ROM drive that meets the
following criteria:

· A sustained data transfer rate of 300 kilobytes per second
· A CPU bandwidth usage of 40 percent or less when maintaining a sustained data transfer rate of

150 kilobytes per second, or a CPU bandwidth of 60 percent or less when maintaining a sustained
data transfer rate of 300 kilobytes per second

· An average seek time of 400 milliseconds or less
· A 10,000 hour mean-time-between-failures rating
· CD-ROM XA ready (mode 1 capable, mode 2 form 1 capable, mode form 2 capable)
· Multisession capable
· MSCDEX-2.2 driver or equivalent that implements the extended audio functions

The recommended CPU bandwidth should be reached by using a read-block size of at least 16K and a
lead time of no more than the time needed to load one read-block of data into the CD-ROM buffer.

 Level 2 Audio Requirements

The audio subsystem of a PC satisfying the Level 2 specification includes the following items:

· A CD-ROM driver with CD-DA (Red Book audio) outputs and volume control
· A 16-bit DAC with the following characteristics:

· Linear PCM (Pulse Code Modulation) sampling
· DMA or FIFO buffered transfer capability with interrupt on buffer empty
· Mandatory sample rates of 44.1, 22.05, and 11.025 kHz
· Stereo channels
· CPU bandwidth usage of 10 percent or less when outputting audio of 22.05 or 11.025 kHz sample

rate, or a CPU bandwidth of 15 percent or less when outputting audio of 44.1 kHz sample rate

· A 16-bit ADC with the following characteristics:
· Linear PCM sampling
· DMA or FIFO buffered transfer capability with interrupt on buffer empty
· Mandatory sample rates of 44.1, 22.05, and 11.025 kHz
· Microphone input

· Internal synthesizer capabilities with multivoice, multitimbral, six simultaneous melody notes plus
two simultaneous percussive notes

· Internal mixing with the following capabilities:
· Can combine three audio sources and present the output as a stereo, line-level audio signal at

the back panel
· Mixing sources are CD Red Book audio, synthesizer, and DAC
· Each mixing source has 3-bit volume control with a logarithmic taper

 Manufacturer and Product Identifiers

This appendix documents the manufacturer and product identifiers defined for multimedia applications.
These identifiers are used when an application issues a query about the installed devices on a
computer.

 Manufacturer Identifiers

Company name Identifier
Advanced Gravis Computer
Technology, Ltd.

MM_GRAVIS

Antex Electronics Corporation MM_ANTEX
APPS Software MM_APPS
Artisoft, Inc. MM_ARTISOFT
AST Research, Inc. MM_AST
ATI Technologies, Inc. MM_ATI
Audio, Inc. MM_AUDIOFILE
Audio Processing Technology MM_APT
Audio Processing Technology MM_AUDIOPT
Auravision Corporation MM_AURAVISION
Aztech Labs, Inc. MM_AZTECH
Canopus, Co., Ltd. MM_CANOPUS
Compusic MM_COMPUSIC
Computer Aided Technology, Inc. MM_CAT
Computer Friends, Inc. MM_COMPUTER_FRIENDS
Control Resources Corporation MM_CONTROLRES
Creative Labs, Inc. MM_CREATIVE
Dialogic Corporation MM_DIALOGIC
Dolby Laboratories, Inc. MM_DOLBY
DSP Group, Inc. MM_DSP_GROUP
DSP Solutions, Inc. MM_DSP_SOLUTIONS
Echo Speech Corporation MM_ECHO
ESS Technology, Inc. MM_ESS
Everex Systems, Inc. MM_EVEREX
EXAN, Ltd. MM_EXAN
Fujitsu, Ltd. MM_FUJITSU
I/O Magic Corporation MM_IOMAGIC
ICL Personal Systems MM_ICL_PS
Ing. C. Olivetti & C., S.p.A. MM_OLIVETTI
Integrated Circuit Systems, Inc. MM_ICS
Intel Corporation MM_INTEL
InterActive, Inc. MM_INTERACTIVE
International Business Machines MM_IBM
Iterated Systems, Inc. MM_ITERATEDSYS
Logitech, Inc. MM_LOGITECH
Lyrrus, Inc. MM_LYRRUS
Matsushita Electric Corporation of
America

MM_MATSUSHITA

Media Vision, Inc. MM_MEDIAVISION
Metheus Corporation MM_METHEUS

microEngineering Labs MM_MELABS
Microsoft Corporation MM_MICROSOFT
MOSCOM Corporation MM_MOSCOM
Motorola, Inc. MM_MOTOROLA
Natural MicroSystems Corporation MM_NMS
NCR Corporation MM_NCR
NEC Corporation MM_NEC
New Media Corporation MM_NEWMEDIA
OKI MM_OKI
OPTi, Inc. MM_OPTI
Roland Corporation MM_ROLAND
SCALACS MM_SCALACS
Seiko Epson Corporation, Inc. MM_EPSON
Sierra Semiconductor Corporation MM_SIERRA
Silicon Software, Inc. MM_SILICONSOFT
Sonic Foundry MM_SONICFOUNDRY
Speech Compression MM_SPEECHCOMP
Supermac Technology, Inc. MM_SUPERMAC
Tandy Corporation MM_TANDY
Toshihiko Okuhura, Korg, Inc. MM_KORG
Truevision, Inc. MM_TRUEVISION
Turtle Beach Systems MM_TURTLE_BEACH
Video Associates Labs, Inc. MM_VAL
VideoLogic, Inc. MM_VIDEOLOGIC
Visual Information Technologies, Inc. MM_VITEC
VocalTec, Inc. MM_VOCALTEC
Voyetra Technologies MM_VOYETRA
Wang Laboratories MM_WANGLABS
Willow Pond Corporation MM_WILLOWPOND
Winnov, LP MM_WINNOV
Xebec Multimedia Solutions Limited MM_XEBEC
Yamaha Corporation of America MM_YAMAHA

 Microsoft Corporation Product Identifiers

Product
name

Identifier

Adlib-
compatible
synthesizer

MM_ADLIB

G.711 codec MM_MSFT_ACM_G711
GSM 610
codec

MM_MSFT_ACM_GSM610

IMA ADPCM
codec

MM_MSFT_ACM_IMAADPCM

Joystick
adapter

MM_PC_JOYSTICK

MIDI
mapper

MM_MIDI_MAPPER

MPU 401-
compatible
MIDI input
port

MM_MPU401_MIDIIN

MPU 401-
compatible
MIDI output
port

MM_MPU401_MIDIOUT

MS ADPCM
codec

MM_MSFT_ACM_MSADPCM

MS audio
board stereo
FM
synthesizer

MM_MSFT_WSS_FMSYNTH_STEREO

MS audio
board aux
port

MM_MSFT_WSS_AUX

MS audio
board mixer
driver

MM_MSFT_WSS_MIXER

MS audio
board
waveform
input

MM_MSFT_WSS_WAVEIN

MS audio
board
waveform
output

MM_MSFT_WSS_WAVEOUT

MS audio
compressio
n manager

MM_MSFT_MSACM

MS filter MM_MSFT_ACM_MSFILTER
MS OEM
audio aux

MM_MSFT_WSS_OEM_AUX

port
MS OEM
audio board
mixer driver

MM_MSFT_WSS_OEM_MIXER

MS OEM
audio board
stereo FM
synthesizer

MM_MSFT_WSS_OEM_FMSYNTH_STEREO

MS OEM
audio board
waveform
input

MM_MSFT_WSS_OEM_WAVEIN

MS OEM
audio board
waveform
output

MM_MSFT_WSS_OEM_WAVEOUT

MS vanilla
driver aux
(CD)

MM_MSFT_GENERIC_AUX_CD

MS vanilla
driver aux
(line in)

MM_MSFT_GENERIC_AUX_LINE

MS vanilla
driver aux
(mic)

MM_MSFT_GENERIC_AUX_MIC

MS vanilla
driver MIDI
external out

MM_MSFT_GENERIC_MIDIOUT

MS vanilla
driver MIDI
in

MM_MSFT_GENERIC_MIDIIN

MS vanilla
driver MIDI
synthesizer

MM_MSFT_GENERIC_MIDISYNTH

MS vanilla
driver
waveform
input

MM_MSFT_GENERIC_WAVEIN

MS vanilla
driver
wavefrom
output

MM_MSFT_GENERIC_WAVEOUT

PC speaker
waveform
output

MM_PCSPEAKER_WAVEOUT

PCM
converter

MM_MSFT_ACM_PCM

Sound
Blaster
internal
synthesizer

MM_SNDBLST_SYNTH

Sound
Blaster MIDI
input port

MM_SNDBLST_MIDIIN

Sound
Blaster MIDI
output port

MM_SNDBLST_MIDIOUT

Sound
Blaster
waveform
input

MM_SNDBLST_WAVEIN

Sound
Blaster
waveform
output

MM_SNDBLST_WAVEOUT

Wave
mapper

MM_WAVE_MAPPER

 Microsoft Windows Sound System Drivers

Driver Identifier
Sound Blaster 16 waveform
output

MM_MSFT_SB16_WAVEOUT

Sound Blaster 16 aux (CD) MM_WSS_SB16_AUX_CD
Sound Blaster 16 aux (CD) MM_MSFT_SB16_AUX_CD
Sound Blaster 16 aux (line
in)

MM_WSS_SB16_AUX_LINE

Sound Blaster 16 aux (line
in)

MM_MSFT_SB16_AUX_LINE

Sound Blaster 16 FM
synthesizer

MM_WSS_SB16_SYNTH

Sound Blaster 16 FM
synthesizer

MM_MSFT_SB16_SYNTH

Sound Blaster 16 MIDI out MM_WSS_SB16_MIDIOUT
Sound Blaster 16 MIDI out MM_MSFT_SB16_MIDIOUT
Sound Blaster 16 MIDI in MM_WSS_SB16_MIDIIN
Sound Blaster 16 MIDI in MM_MSFT_SB16_MIDIIN
Sound Blaster 16 mixer
device

MM_WSS_SB16_MIXER

Sound Blaster 16 mixer
device

MM_MSFT_SB16_MIXER

Sound Blaster 16 waveform
input

MM_WSS_SB16_WAVEIN

Sound Blaster 16 waveform
input

MM_MSFT_SB16_WAVEIN

Sound Blaster 16 waveform
output

MM_WSS_SB16_WAVEOUT

Sound Blaster Pro aux (CD) MM_WSS_SBPRO_AUX_CD
Sound Blaster Pro aux (CD) MM_MSFT_SBPRO_AUX_CD
Sound Blaster Pro aux (line
in)

MM_WSS_SBPRO_AUX_LINE

Sound Blaster Pro aux (line
in)

MM_MSFT_SBPRO_AUX_LINE

Sound Blaster Pro FM
synthesizer

MM_WSS_SBPRO_SYNTH

Sound Blaster Pro FM
synthesizer

MM_MSFT_SBPRO_SYNTH

Sound Blaster Pro MIDI in MM_WSS_SBPRO_MIDIIN
Sound Blaster Pro MIDI in MM_MSFT_SBPRO_MIDIIN
Sound Blaster Pro MIDI out MM_WSS_SBPRO_MIDIOUT
Sound Blaster Pro MIDI out MM_MSFT_SBPRO_MIDIOUT
Sound Blaster Pro mixer MM_WSS_SBPRO_MIXER
Sound Blaster Pro mixer MM_MSFT_SBPRO_MIXER
Sound Blaster Pro
waveform input

MM_WSS_SBPRO_WAVEIN

Sound Blaster Pro
waveform input

MM_MSFT_SBPRO_WAVEIN

Sound Blaster Pro
waveform output

MM_WSS_SBPRO_WAVEOUT

Sound Blaster Pro
waveform output

MM_MSFT_SBPRO_WAVEOUT

WSS NT aux MM_MSFT_WSS_NT_AUX
WSS NT FM synthesizer MM_MSFT_WSS_NT_FMSYNTH_STER

EO
WSS NT mixer MM_MSFT_WSS_NT_MIXER
WSS NT wave in MM_MSFT_WSS_NT_WAVEIN
WSS NT wave out MM_MSFT_WSS_NT_WAVEOUT

 Product Identifiers

Company Product identifiers
Artisoft, Inc. MM_ARTISOFT_SBWAVEIN

MM_ARTISOFT_SBWAVEOUT
Audio Processing
Technology

MM_APT_ACE100CD

Aztech Labs, Inc. MM_AZTECH_AUX_CD
MM_AZTECH_AUX_LINE
MM_AZTECH_AUX_MIC
MM_AZTECH_DSP16_FMSYNTH
MM_AZTECH_DSP16_WAVEIN
MM_AZTECH_DSP16_WAVEOUT
MM_AZTECH_DSP16_WAVESYNTH
MM_AZTECH_FMSYNTH
MM_AZTECH_MIDIIN
MM_AZTECH_MIDIOUT
MM_AZTECH_PRO16_FMSYNTH
MM_AZTECH_PRO16_WAVEIN
MM_AZTECH_PRO16_WAVEOUT
MM_AZTECH_WAVEIN
MM_AZTECH_WAVEOUT

Computer Aided
Technology, Inc.

MM_CAT_WAVEOUT

Creative Labs, Inc. MM_CREATIVE_AUX_CD
MM_CREATIVE_AUX_LINE
MM_CREATIVE_AUX_MASTER
MM_CREATIVE_AUX_MIC
MM_CREATIVE_AUX_MIDI
MM_CREATIVE_AUX_PCSPK
MM_CREATIVE_AUX_WAVE
MM_CREATIVE_FMSYNTH_MONO
MM_CREATIVE_FMSYNTH_STEREO
MM_CREATIVE_MIDIIN
MM_CREATIVE_MIDIOUT
MM_CREATIVE_SB15_WAVEIN
MM_CREATIVE_SB15_WAVEOUT
MM_CREATIVE_SB16_MIXER
MM_CREATIVE_SB20_WAVEIN
MM_CREATIVE_SB20_WAVEOUT
MM_CREATIVE_SBP16_WAVEIN
MM_CREATIVE_SBP16_WAVEOUT
MM_CREATIVE_SBPRO_MIXER
MM_CREATIVE_SBPRO_WAVEIN
MM_CREATIVE_SBPRO_WAVEOUT

DSP Group, Inc. MM_DSP_GROUP_TRUESPEECH
DSP Solutions, Inc. MM_DSP_SOLUTIONS_AUX

MM_DSP_SOLUTIONS_SYNTH
MM_DSP_SOLUTIONS_WAVEIN
MM_DSP_SOLUTIONS_WAVEOUT

Echo Speech
Corporation

MM_ECHO_AUX
MM_ECHO_MIDIIN

MM_ECHO_MIDIOUT
MM_ECHO_SYNTH
MM_ECHO_WAVEIN
MM_ECHO_WAVEOUT

ESS Technology, Inc. MM_ESS_AMAUX
MM_ESS_AMMIDIIN
MM_ESS_AMMIDIOUT
MM_ESS_AMSYNTH
MM_ESS_AMWAVEIN
MM_ESS_AMWAVEOUT

Everex Systems, Inc. MM_EVEREX_CARRIER
I/O Magic Corporation MM_IOMAGIC_TEMPO_AUXOUT

MM_IOMAGIC_TEMPO_MIDIOUT
MM_IOMAGIC_TEMPO_MXDOUT
MM_IOMAGIC_TEMPO_SYNTH
MM_IOMAGIC_TEMPO_WAVEIN
MM_IOMAGIC_TEMPO_WAVEOUT

Ing. C. Olivetti & C.,
S.p.A.

MM_OLIVETTI_ACM_ADPCM
MM_OLIVETTI_ACM_CELP
MM_OLIVETTI_ACM_GSM
MM_OLIVETTI_ACM_OPR
MM_OLIVETTI_ACM_SBC
MM_OLIVETTI_AUX
MM_OLIVETTI_JOYSTICK
MM_OLIVETTI_MIDIIN
MM_OLIVETTI_MIDIOUT
MM_OLIVETTI_MIXER
MM_OLIVETTI_SYNTH
MM_OLIVETTI_WAVEIN
MM_OLIVETTI_WAVEOUT

Integrated Circuit
Systems, Inc.

MM_ICS_WAVEDECK_AUX
MM_ICS_WAVEDECK_MIXER
MM_ICS_WAVEDECK_SYNTH
MM_ICS_WAVEDECK_WAVEIN
MM_ICS_WAVEDECK_WAVEOUT

InterActive, Inc. MM_INTERACTIVE_WAVEIN
MM_INTERACTIVE_WAVEOUT

International Business
Machines

MM_IBM_PCMCIA_AUX
MM_IBM_PCMCIA_MIDIIN
MM_IBM_PCMCIA_MIDIOUT
MM_IBM_PCMCIA_SYNTH
MM_IBM_PCMCIA_WAVEIN
MM_IBM_PCMCIA_WAVEOUT
MM_MMOTION_WAVEAUX
MM_MMOTION_WAVEIN
MM_MMOTION_WAVEOUT

Iterated Systems, Inc. MM_ITERATEDSYS_FUFCODEC
Lyrrus, Inc. MM_LYRRUS_BRIDGE_GUITAR
Matsushita Electric
Corporation of America

MM_MATSUSHITA_AUX
MM_MATSUSHITA_FMSYNTH_STEREO
MM_MATSUSHITA_MIXER
MM_MATSUSHITA_WAVEIN

MM_MATSUSHITA_WAVEOUT
Media Vision, Inc. MM_MEDIAVISION_CDPC

MM_CDPC_AUX
MM_CDPC_MIDIIN
MM_CDPC_MIDIOUT
MM_CDPC_MIXER
MM_CDPC_SYNTH
MM_CDPC_WAVEIN
MM_CDPC_WAVEOUT
MM_OPUS401_MIDIIN
MM_OPUS401_MIDIOUT
MM_MEDIAVISION_OPUS1208
MM_OPUS1208_AUX
MM_OPUS1208_MIXER
MM_OPUS1208_SYNTH
MM_OPUS1208_WAVEIN
MM_OPUS1208_WAVEOUT
MM_MEDIAVISION_OPUS1216
MM_OPUS1216_AUX
MM_OPUS1216_MIDIIN
MM_OPUS1216_MIDIOUT
MM_OPUS1216_MIXER
MM_OPUS1216_SYNTH
MM_OPUS1216_WAVEIN
MM_OPUS1216_WAVEOUT
MM_MEDIAVISION_PROAUDIO
MM_PROAUD_AUX
MM_PROAUD_MIDIIN
MM_PROAUD_MIDIOUT
MM_PROAUD_MIXER
MM_MEDIAVISION_PROAUDIO_16
MM_PROAUD_16_AUX
MM_PROAUD_16_MIDIIN
MM_PROAUD_16_MIDIOUT
MM_PROAUD_16_MIXER
MM_PROAUD_16_SYNTH
MM_PROAUD_16_WAVEIN
MM_PROAUD_16_WAVEOUT
MM_MEDIAVISION_PROAUDIO_PLUS
MM_PROAUD_PLUS_AUX
MM_PROAUD_PLUS_MIDIIN
MM_PROAUD_PLUS_MIDIOUT
MM_PROAUD_PLUS_MIXER
MM_PROAUD_PLUS_SYNTH
MM_PROAUD_PLUS_WAVEIN
MM_PROAUD_PLUS_WAVEOUT
MM_PROAUD_SYNTH
MM_PROAUD_WAVEIN
MM_PROAUD_WAVEOUT
MM_MEDIAVISION_PROSTUDIO_16
MM_STUDIO_16_AUX
MM_STUDIO_16_MIDIIN
MM_STUDIO_16_MIDIOUT

MM_STUDIO_16_MIXER
MM_STUDIO_16_SYNTH
MM_STUDIO_16_WAVEIN
MM_STUDIO_16_WAVEOUT
MM_MEDIAVISION_THUNDER
MM_THUNDER_AUX
MM_THUNDER_SYNTH
MM_THUNDER_WAVEIN
MM_THUNDER_WAVEOUT
MM_MEDIAVISION_TPORT
MM_TPORT_SYNTH
MM_TPORT_WAVEIN
MM_TPORT_WAVEOUT

Metheus Corporation MM_METHEUS_ZIPPER
microEngineering Labs MM_MELABS_MIDI2GO
MOSCOM Corporation MM_MOSCOM_VPC2400
NCR Corporation MM_NCR_BA_AUX

MM_NCR_BA_MIXER
MM_NCR_BA_SYNTH
MM_NCR_BA_WAVEIN
MM_NCR_BA_WAVEOUT

New Media Corporation MM_NEWMEDIA_WAVJAMMER
OPTi, Inc. MM_OPTI_M16_AUX

MM_OPTI_M16_FMSYNTH_STEREO
MM_OPTI_M16_MIDIIN
MM_OPTI_M16_MIDIOUT
MM_OPTI_M16_MIXER
MM_OPTI_M16_WAVEIN
MM_OPTI_M16_WAVEOUT
MM_OPTI_M32_AUX
MM_OPTI_M32_MIDIIN
MM_OPTI_M32_MIDIOUT
MM_OPTI_M32_MIXER
MM_OPTI_M32_SYNTH_STEREO
MM_OPTI_M32_WAVEIN
MM_OPTI_M32_WAVEOUT
MM_OPTI_P16_AUX
MM_OPTI_P16_FMSYNTH_STEREO
MM_OPTI_P16_MIDIIN
MM_OPTI_P16_MIDIOUT
MM_OPTI_P16_MIXER
MM_OPTI_P16_WAVEIN
MM_OPTI_P16_WAVEOUT

Roland Corporation MM_ROLAND_MPU401_MIDIIN
MM_ROLAND_MPU401_MIDIOUT
MM_ROLAND_SC7_MIDIIN
MM_ROLAND_SC7_MIDIOUT
MM_ROLAND_SERIAL_MIDIIN
MM_ROLAND_SERIAL_MIDIOUT
MM_ROLAND_SMPU_MIDIINA
MM_ROLAND_SMPU_MIDIINB
MM_ROLAND_SMPU_MIDIOUTA

MM_ROLAND_SMPU_MIDIOUTB
Sierra Semiconductor
Corporation

MM_SIERRA_ARIA_AUX
MM_SIERRA_ARIA_AUX2
MM_SIERRA_ARIA_MIDIIN
MM_SIERRA_ARIA_MIDIOUT
MM_SIERRA_ARIA_SYNTH
MM_SIERRA_ARIA_WAVEIN
MM_SIERRA_ARIA_WAVEOUT

Silicon Software, Inc. MM_SILICONSOFT_SC1_WAVEIN
MM_SILICONSOFT_SC1_WAVEOUT
MM_SILICONSOFT_SC2_WAVEIN
MM_SILICONSOFT_SC2_WAVEOUT
MM_SILICONSOFT_SOUNDJR2_WAVEOUT
MM_SILICONSOFT_SOUNDJR2PR_WAVEIN
MM_SILICONSOFT_SOUNDJR2PR_WAVEOU
T
MM_SILICONSOFT_SOUNDJR3_WAVEOUT

Tandy Corporation MM_TANDY_PSSJWAVEIN
MM_TANDY_PSSJWAVEOUT
MM_TANDY_SENS_MMAMIDIIN
MM_TANDY_SENS_MMAMIDIOUT
MM_TANDY_SENS_MMAWAVEIN
MM_TANDY_SENS_MMAWAVEOUT
MM_TANDY_SENS_VISWAVEOUT
MM_TANDY_VISBIOSSYNTH
MM_TANDY_VISWAVEIN
MM_TANDY_VISWAVEOUT

Toshihiko Okuhura,
Korg, Inc.

MM_KORG_PCIF_MIDIIN
MM_KORG_PCIF_MIDIOUT

Truevision, Inc. MM_TRUEVISION_WAVEIN1
MM_TRUEVISION_WAVEOUT1

VideoLogic, Inc. MM_VIDEOLOGIC_MSWAVEIN
MM_VIDEOLOGIC_MSWAVEOUT

Visual Information
Technologies, Inc.

MM_VITEC_VMAKER
MM_VITEC_VMPRO

VocalTec, Inc. MM_VOCALTEC_WAVEIN
MM_VOCALTEC_WAVEOUT

Wang Laboratories MM_WANGLABS_WAVEIN1
MM_WANGLABS_WAVEOUT1

Winnov, LP MM_WINNOV_CAVIAR_CHAMPAGNE
MM_WINNOV_CAVIAR_VIDC
MM_WINNOV_CAVIAR_WAVEIN
MM_WINNOV_CAVIAR_WAVEOUT
MM_WINNOV_CAVIAR_YUV8

Yamaha Corporation of
America

MM_YAMAHA_GSS_AUX
MM_YAMAHA_GSS_MIDIIN
MM_YAMAHA_GSS_MIDIOUT
MM_YAMAHA_GSS_SYNTH
MM_YAMAHA_GSS_WAVEIN
MM_YAMAHA_GSS_WAVEOUT

 Legal Notice

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

Portions of this document contain information pertaining to prerelease code that is not at the level of
performance and compatibility of the final, generally available product offering. This information may be
substantially modified prior to the first commercial shipment. Microsoft is not obligated to make this or
any later version of the software product commercially available. APIs that constitute prerelease code
are marked as "Preliminary Windows 95" or "Preliminary Windows NT" (as applicable). If your
application is using any of these APIs, it must be marked as a BETA application. For further details and
restrictions, see Sections 1 and 3 of the License Agreement.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1985-1995 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Windows, Win32, and Win32s are registered
trademarks; and Visual C++ and Windows NT are trademarks of Microsoft Corporation. OS/2 is a
registered trademark licensed to Microsoft Corporation.

Adaptec is a registered trademark of Adaptec, Inc.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc.

Asymetrix and ToolBook are registered trademarks of Asymetrix Corporation.

CompuServe is a registered trademark of CompuServe, Inc.

Sound Blaster and Sound Blaster Pro are trademarks of Creative Technology, Ltd.

Alpha AXP and DEC are trademarks of Digital Equipment Corporation.

Kodak is a registered trademark of Eastman Kodak Company.

PANOSE is a trademark of ElseWare Corporation.

Future Domain is a registered trademark of Future Domain Corporation.

Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.

AT, IBM, Micro Channel, OS/2, and XGA are registered trademarks, and PC/XT and RISC
System/6000 are trademarks of International Business Machines Corporation.

Intel and Pentium are registered trademarks, and i386 and i486 are trademarks of Intel Corporation.

Video Seven is a trademark of Headland Technology, Inc.

Lotus is a registered trademark of Lotus Development Corporation.

MIPS is a registered trademark of MIPS Computer Systems, Inc.

Arial, Monotype, and Times New Roman are registered trademarks of The Monotype Corporation.

Motorola is a registered trademark of Motorola, Inc.

NCR is a registered trademark of NCR Corporation.

Nokia is a registered trademark of Nokia Corporation.

Novell and NetWare are registered trademarks of Novell, Inc.

Olivetti is a registered trademark of Ing. C. Olivetti.

PostScript is a registered trademark of Adobe Systems, Inc.

R4000 is a trademark of MIPS Computer Systems, Inc.

Roland is a registered trademark of Roland Corporation.

SCSI is a registered trademark of Security Control Systems, Inc.

Epson is a registered trademark of Seiko Epson Corporation, Inc.

Silicon Graphics is a registered trademark and OpenGL is a trademark of Silicon Graphics, Inc.

Stacker is a registered trademark of STAC Electronics.

Tandy is a registered trademark of Tandy Corporation.

Unicode is a registered trademark of Unicode, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

VAX is a trademark of Digital Equipment Corporation

Yamaha is a registered trademark of Yamaha Corporation of America.

Paintbrush is a trademark of Wordstar Atlanta Technology Center.

Microsoft Win32 Developer’s Reference
You have requested information from the Microsoft Win32 Developer’s Reference. One or more of
these help files is not available on your system.

